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Abstract: In this paper we analyzed the main aspects of oligopoly, in the case of n firms. The 

analysis has made, as a rule, for arbitrary marginal costs, each time, however, by considering these 
costs constant recovering well known results of the models presented: the Stackelberg model, the case 
of more production leaders, the price leader, the Cournot equilibrium for duopoly, the Cournot 
equilibrium for oligopoly or in the case of perfect competition and cartels. We also treat the problems 
above for the general case of cost function, again customizing the overall results for linear functions 
and obtaining the corresponding classical relations. 
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1. Introduction 

The oligopoly is a market situation where there is a small number of suppliers (at 

least two) of a good unsubstituted and a sufficient number of consumers. The 
oligopoly composed of two producers called duopoly. 

Considering below, two competitors A and B which produce the same normal 

good, we propose analyzing their activity in response to the work of each other 
company. 

Each of them when it set the production level and the selling price will cover the 

production and price of other companies. If one of the two firms will set price or 

quantity produced first, the other adjusting for it, it will be called price leader or 
leader of production respectively, the second company called the satellite price, or 

satellite production respectively. 
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2. The Production Leader (The Stackelberg Model) 

Consider that the company is a leader of production. If it will produce QA units of a 
good, then the company B will adjust production after A, producing QB=f(QA) units 

of good (f being called the reaction function). The selling price depends on the total 

quantity of products reached the market. Be so: p=p(QA+QB) – the price per unit of 
good. 

The company A must establish a level of production depending on the reaction of 

firm B, because it will determine through the production realized the selling price 
of the product. Similarly, the company B will adjust its production levels according 

to A, because at a higher or lower level, the price will change and therefore profit 

of the company. 

Let therefore, the profit of the production leader: 

  )Q(CTQQQp)Q( AAABAAA   

Since QB=f(QA) we have: 

  )Q(CTQ)Q(fQp)Q( AAAAAAA   

Consider also the profit of the satellite: 

  )Q(CTQQQp)Q( BBBBABB   

The extreme condition for the profit of A is: 

     0)Q(Cm)Q(fQpQ)Q('f1)Q(fQ'p
Q

)Q(
AAAAAAAA

A

AA 



 

and one for satellite B: 

    0)Q(CmQQpQQQ'p
Q

)Q(
BBBABBA

B

BB 



 

Considering the leader production QA as given, it follows that the satellite meets 

the condition: 

    0)Q(CmQQpQQQ'p BBBABBA   

Ranging the production QA we have: QB=f(QA) therefore the problem of leader 

profit’s maximizing becomes: 

     0)Q(Cm)Q(fQpQ)Q('f1)Q(fQ'p AAAAAAAA   

with f determined above. 
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In particular, for a function of price (the inverse function of the demand) of the 

form: p(Q)=a-bQ, a,b0 we obtain for the satellite company B: 

  0)Q(CmQQbabQ BBBAB   

from where: 

b2

)Q(CmbQa
Q BBA

B


  

Let note that in this relationship, is purely formal QB’s determination, requiring the 

knowledge of B’s total cost and thus, implicitly, its marginal cost. Substituting the 
above expression of QB in the profit maximization condition of leader A, results for 

f(QA)=
b2

)Q(CmbQa BBA 
: 

0)Q(Cm
b2

)Q(CmbQa
QbaQ

b2

Q

)Q(Cm
b

1b AA
BBA

AA
A

BB








 

























  

from where: 

2

)Q(Cm
)Q(Cm

2

a
Qb

Q

)Q(Cm

2

1 BB
AAA

A

BB 














 

or otherwise: 

A

BB

BBAA
A

Q

)Q(Cm
b2

)Q(Cm)Q(Cm2a
Q







  

Noting with 
*
AQ  - the solution of the above equation, we get: 






























A

BB

*
BB

A

BB*
BB

*
AA

A

BB

*
BB

*
A*

B

Q

)Q(Cm
b2b2

)Q(Cm
Q

)Q(Cm
)Q(bCm3)Q(bCm2

Q

)Q(Cm
aab

b2

)Q(CmbQa
Q

 

where all partial derivatives are calculated in 
*
AQ  and 

*
BQ . 
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The condition that the leader has a higher production than the satellite is: 
*
B

*
A QQ   

which is equivalent to: 

0

Q

)Q(Cm
b2b2

)Q(Cm
Q

)Q(Cm
)Q(bCm5)Q(bCm6

Q

)Q(Cm
aab

A

BB

*
BB

A

BB*
BB

*
AA

A

BB





























 

With the additional assumption that the two marginal costs of A and B are constant 

(on short term, marginal cost variations being very small, the assumption is not 

absurd), we obtain for CmA= and CmB=: 

b2

2a
Q*

A


 , 

b4

32a
Q*

B


 , 

b4

56a
QQ *

B
*
A


  

If a6-5, it follows that the leader will have an output greater than that of the 

satellite. From the fact that CmA= and CmB=, results after a simple integration: 

CTA(Q)=Q+, CTB(Q)=Q+, ,,,0 

Returning to the profits of both firms A and B we have: 

  )Q(CTQQQp)Q( AAABAAA  =    AABAA QQQQbaQ = 

   AB
2
A QabQbQ  

respectively: 

  )Q(CTQQQp)Q( BBBBABB  =    BBBAB QQQQbaQ = 

   BA
2
B QabQbQ . 

Considering )Q( AA =1=constant, respectively )Q( BB =2=constant, we obtain 

the two isoprofit curves in the system axis QA-Q-QB: 

   AB
2
A QabQbQ =A – for A 

   BA
2
B QabQbQ =B – for B 

For a graphical representation of the isoprofit curve of A, from the equation it 

follows: 

A

AA
2
A

B
bQ

Q)a(bQ
Q


  
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Let g(x)=
bx

x)a(bx A
2 

. We have: 

0
bx

bx
)x('g

2

A
2




  

hence, the stationary point of the function g is xd=
b

A 
. Therefore, )x('g 0 

x(0,xd) and )x('g 0 x(xd,). Also: 

g(xd)=
b

)(b2)a( A 
 

As g(x)=0 implies: 0x)a(bx A
2   we get the two real roots: 

xrad 1,rad 2=
b2

)(b4)a()a( A
2 

 

for A small enough so that: )(b4)a( A
2  0. 

With the observation that )x(glim

0x
0x




=-, )x(glim
x 

=-, we obtain that the isoprofit 

curve will be assessed on the range: 

D=












 

b2

)(b4)a()a(
,

b2

)(b4)a()a( A
2

A
2

 

Considering now the reaction function of B to A: 
b2

bQa
Q A

B


 , let the 

difference between this and the corresponding point of the isoprofit curve. We 

therefore: 

h(QA,1)=
A

AA
2
A

bQ2

)(2Q)2a(bQ 
 

The minimum difference will be obtain by canceling the first order partial 

derivative: 
AQ

h




=

2
A

A
2
A

bQ2

)(2bQ 
=0, from where: 

AQ =
b

)(2 A 
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The minimum distance between the two curves is obtained for: 

0=h( AQ ,A)=
b2

)(2b2)2a( A 
 

from where: 

b2

2a
)(2 A


  

Substituting in the expression of AQ , we get: 

AQ =
b2

2a 
=

*
AQ  

Therefore, the steady production of the leader is the point of tangency of the 

reaction function of B relative to A at the family of isoprofit curves of A. 

For the satellite company B will done analogously. 

The general situation in which marginal costs are not constant, involves a series of 

additional assumptions. Thus, from the relation 
b2

)Q(CmbQa
Q BBA

B


  

follows:   ABBB bQaQ1b2Cm   where 1B is the identical function. If the 

function BB 1b2Cm   is invertible, then: 

   A

1

BBAB bQa1b2Cm)Q(fQ 


 

With the expression of f thus obtained, from the equation: 

    0)Q(Cm)Q(fQbaQ)Q('f1b AAAAAA   

will be determine 
*
AQ  and after 

*
BQ =f(

*
AQ ). 

 

3. The Case of more Production Leaders  

Let consider that companies A1,...,An leaders of production. If they produce 

n1 AA Q,...,Q  units of good, then the company B will adjust its production as they, 

producing QB=  
n1 AA Q,...,Qf  (f being called the reaction function). The selling 

price depends on the total quantity of products reached the market. Be so: 

p= 










B

n

1k
A QQp

k
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the price per unit of product. The firms A1,...,An must establish a level of 

production depending on the reaction of the firm B, because it will determine 
through the production realized, the selling price of the product. Similarly, the 

company B will adjust its production level, according to A1,...,An, because at a 

higher or lower level, the price will change and therefore the profit of the company. 

Let therefore the profit of the leader “i”: 

)Q(CTQQQp)Q(
iiikii AAAB

n

1k
AAA 








 



 

Because QB=  
n1 AA Q,...,Qf  we have: 

  )Q(CTQQ,...,QfQp)Q(
iiin1kii AAAAA

n

1k
AAA 








 



 

Consider also the profit of the satellite: 

)Q(CTQQQp)Q( BBBB

n

1k
ABB k









 



 

The extreme condition for the profit of Ai is: 

 

  0)Q(CmQ,...,QfQp

Q
Q

f
1Q,...,QfQ'p

Q

)Q(

iin1k

i

i

n1k

i

ii

AAAA

n

1k
A

A

A

AA

n

1k
A

A

AA



















































 

and the one for satellite B: 

0)Q(CmQQpQQQ'p
Q

)Q(
BBB

n

1k
ABB

n

1k
A

B

BB

kk


























 

Considering the productions of the leaders 
n1 AA Q,...,Q  as given, it follows that the 

satellite will satisfy the condition: 

0)Q(CmQQpQQQ'p BBB

n

1k
ABB

n

1k
A kk


















 



 

Varying now the production QA we will have that QB=  
n1 AA Q,...,Qf  from where, 

the problem of maximizing the leader’s profit becoming: 
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    0)Q(CmQ,...,QfQpQ
Q

f
1Q,...,QfQ'p

iin1ki

i

n1k AAAA

n

1k
AA

A

AA

n

1k
A 




































 



 

with f determined above. 

In particular, for a function of price (the inverse function of the demand) of the 

form: p(Q)=a-bQ, a,b0, we obtain for the satellite company B: 

0)Q(CmQQbabQ BBB

n

1k
AB k









 



 

from where: 

b2

)Q(CmQba

Q
BB

n

1k
A

B

k




  

Let note that, in this relationship, the determination of QB is purely formal, because 
it requires the knowledge of B’s total cost and thus, implicitly, its marginal cost. 

Substituting the above expression of QB in the condition of maximizing the leader’s 

A profit, results for  
n1 AA Q,...,Qf =

b2

)Q(CmQba BB

n

1k
Ak

 
 : 

0)Q(Cm
b2

)Q(CmQba

QbaQ
b2

Q

)Q(Cm
b

1b
ii

k

ki

i

AA

BB

n

1k
An

1k
AA

A

BB


















































 



 

from where: 

2

)Q(CmQba

)Q(CmQ
2

Q

)Q(Cm
b

BB

n

1k
A

AAA

A

BB

k

iii

i


























 

  

Because the right side does not depend on the amount of i explicit, it follows the 

condition of compatibility i,j= n,1 : 
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)Q(CmQ
2

Q

)Q(Cm
b

)Q(CmQ
2

Q

)Q(Cm
b

jjj

j

iii

i

AAA

A

BB

AAA

A

BB





















































 

Returning, we get: 

2

)Q(Cm

2

a
)Q(CmQ

2

b
Qb

Q

)Q(Cm

2

1 BB
AA

n

ik
1k

AA

A

BB

iiki

i
























 

In a matrix form, the system writes: 
































































































2

)Q(Cm

2

a
)Q(Cm

...
2

)Q(Cm

2

a
)Q(Cm

2

)Q(Cm

2

a
)Q(Cm

Q

...

Q

Q

b
Q

)Q(Cm

2

1
...

2

b

2

b
............

2

b
...b

Q

)Q(Cm

2

1

2

b

2

b
...

2

b
b

Q

)Q(Cm

2

1

BB
AA

BB
AA

BB
AA

A

A

A

A

BB

A

BB

A

BB

nn

22

11

n

2

1

n

2

1

 

Let M2=












































b
Q

)Q(Cm

2

1
...

2

b

2

b
............

2

b
...b

Q

)Q(Cm

2

1

2

b

2

b
...

2

b
b

Q

)Q(Cm

2

1

n

2

1

A

BB

A

BB

A

BB

. 

Now consider a matrix M1=(aij) and M2=(bij) where bij=aij+. We have: 

det M2=det M1+ 



n

1j,i
ij  

where ij  is the algebraic complement of aij in M1. In this case, considering the 

matrix: 
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M1=










































2

b

Q

)Q(Cm

2

1
...00

............
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2

b

Q

)Q(Cm

2

1
0

0...0
2

b

Q

)Q(Cm

2

1

n

2

1

A

BB

A

BB

A

BB

 

and =
2

b
  in the above relation, we get: 

det M2= 










































 n

1i

n

ik
1k A

BB
n
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BB

2

b

Q

)Q(Cm

2

1

2

b

2

b

Q

)Q(Cm

2

1

kk

= 










 









































 n
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A
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n

1k A
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n

1k A
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2

b

Q

)Q(Cm

2

1

2

b

Q

)Q(Cm

2

1

2

b

2

b

Q

)Q(Cm

2

1

i

k

k

= 















































n

1k A

BB
n

1i

A

BB 2

b

Q

)Q(Cm

2

1

2

b

Q

)Q(Cm

2

1

1

2

b
1

k

i

. 

Also, for the matrix (corresponding to column i): 

M4,i=












































b
Q

)Q(Cm

2

1
...

2

)Q(Cm

2

a
)Q(Cm...

2

b

2

b
..................

2

b
...

2

)Q(Cm

2

a
)Q(Cm...b

Q

)Q(Cm

2

1

2

b

2

b
...

2

)Q(Cm

2

a
)Q(Cm...

2

b
b

Q

)Q(Cm

2

1

n

nn

22

2

11

1

A

BBBB
AA

BB
AA

A

BB

BB
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A
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considering: 
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M3,i= 


































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

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

2

b
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1
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2
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2
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2

)Q(Cm
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b
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2

1
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2

1

n
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we obtain: 

det M3,i= 




























 


n

ik
1k A

BBBB
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2

b

Q

)Q(Cm

2

1

2

ab

2

)Q(Cm
)Q(Cm

k

ii
. 

We have therefore: 















































 






 










n
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n
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n
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b

Q
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1

2

b

2

b

Q

)Q(Cm

2

1

2
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2

b

MdetMdet

k

k
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
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

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
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
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
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
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
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
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
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b
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)Q(Cm
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2
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k

k
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Finally: 

*
Ai

Q =
2

i,4

Mdet

Mdet
, i= n,1  

Suppose now that all the marginal costs of Ai, i= n,1 , and B respectively, are 

constant (on short term, the marginal cost variations are very small, the 

assumption being not absurd). If therefore 
iACm =i and CmB= we obtain: 
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det M2= 




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





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
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
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
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b

2
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Mdet

i1n

1n
1n

n
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n
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n
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from where: 

*
Ai

Q = 
 

b)1n(

b)1n(n2nna i




; 

b2

Qba

Q

n

1k

*
A

*
B

k





 = 






















n

1k
k

22

b)1n(

n

)1n(2

)1n(n

b)1n(2

)1nn(

b)1n(2

a)1nn(
 

On the other hand, the compatibility condition leads to: 

 *
A

*
Aij ji

QQ
2

b
  i,j= n,1  

therefore: 

ij   i,j= n,1  

Following these considerations, it follows that the problem has solution only if 

marginal costs are equal to leader firms. As a first conclusion, that detach, the n 

firms behave as leaders such as one that produces a common marginal cost. 

Thus we obtain for i=, i= n,1 : 

*
Ai

Q =
 

b)1n(

b)1n(n2nna




, 

b)1n(

n

)1n(2

)1n(n

b)1n(2

)1nn(

b)1n(2

a)1nn(
Q

222
*
B



















  

The B’s reaction function is: 
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QB=  
n1 AA Q,...,Qf = 




 n

1k
Ak

Q
2

1

b2

a
 

so in R
n
 ( BAA QQ...QO

n1
 ) will be the equation of a hyperplane. 

From the fact that 
iACm = and CmB=, we obtain after integration: )Q(CT

iA

=Q+i, i= n,1  and CTB(Q)=Q+ respectively ,,i,0. 

Considering now the cumulative profit of the n leader firms: 









 



n

1i
AA

n

1i
AB

n

1i
A

n

1i
AA )Q(CTQQQp)Q(

iiiiii
 =constant 

we obtain the equation of isoprofit hypersurfaces: 









 



n

1i
i

n

1i
AB

n

1i
A nQQQba

ii
 

or otherwise: 










 




n

1i
An

1i
A

n

1i
i

B i

i

Q

Qb

na

Q  

The condition of equilibrium will be reduced therefore to the tangent hyperplane of 

reaction of B to the n firms at the isoprofit hypersurface of the n firms. 

 

4. The Price Leader 

Consider now that the company A is a leader of price, in the sense that it sets the 

selling price. It is obvious that, regardless of the satellite firm behavior, the final 
sale price will be the same for the two companies, otherwise the demand being 

moving to the company with the lowest price. 

Let QA – the production of the leader and QB – the satellite production, the price 

being p0. We assume also the B’s marginal cost as being an invertible function. 
The profit functions of the two companies are therefore: 

)Q(CTpQ)Q( AAAAA   

)Q(CTpQ)Q( BBBBB   

The profit maximization condition of B is: 
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0)Q(Cmp
Q

BB

B

B 



 

from where: p=CmB(QB). The production of B will therefore be: 

QB= )p(Cm 1
B


 

Meanwhile, the company leadership is aware that setting a selling price p will lead 

a production QB of the satellite firm, so in terms of a demand curve Q=Q(p) its 

offer will be restricted to QA=Q-QB=Q(p)- )p(Cm 1
B


. Its profit function becomes: 

   )p(Cm)p(QCT)p(Cm)p(Qp)Q(CTpQ)p( 1
BA

1
BAAAA

   

The profit maximization condition of A is therefore: 

     0)p('Cm)p('Q)p(Cm)p(QCm
p

1
B

1
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A 


   

from where: 
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1
B
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
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
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If the equation has the solution p
*
0 we obtain the allocation of production: 

*
AQ =Q(p

*
)- )p(Cm *1

B


, 
*
BQ = )p(Cm *1

B


 

In particular, for the demand and cost functions: 

Q(p)=a-bp, a,b0, CTA(Q)=Q+, CTB(Q)=Q
2
+Q+, ,,,,0 

we have: CmA(Q)=, CmB=2Q+, ))p(Cm(Cm 1
B

'
B


=2. 

The above equation becomes: 

0
2

1
b

2

1
bp

2

p
bpa 


























  

from where: 

)1b2(2

)ba(2
p*




  
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AQ =Q(p
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*
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*
BQ = )p(Cm *1

B


=




2

p*

=
)1b2(4

b4)ba(2




 

 

5. The Cournot Equilibrium for Duopoly 

The Cournot duopoly model involves a successive adjustment yields the two 

companies by assuming leadership at a time. 

Be so, at some time tN, the production of the firm A based on the previous of the 

firm B: 

QA,t=f(QB,t-1) t1 

and the production of the company B based on the previous firm A: 

QB,t=g(QA,t-1) t1 

where f and g are continuous functions. The function QA=f(QB) is called the A’s 

firm reaction curve relative to B, and QB=g(QA) – the B’s firm reaction curve 

relative to A. 

If 
*
At,A

t
QQlim 


, 

*
Bt,B

t
QQlim 


 then from the above relations, it follows: 

)Q(fQ *
B

*
A  , )Q(gQ *

A
*
B   

The pair production  *
B

*
A Q,Q  is called Cournot equilibrium and it obtains like 

intersection of reaction curves of the two companies. 

In the following we will consider a function of price of the form: 

p(Q)=a-BQ, a,b0 same for both companies. 

Suppose now that at time t, firm A has a production QA,t. The company B is in a 

position of a satellite company and at time t+1 will have a production, in order that 

maximize its profit: 

QB,t+1=
b2

)Q(CmbQa t,BBt,A 
 

Analogously, at the same time t, the firm A considers B as a leader and adjusts its 

output to: 
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QA,t+1=
b2

)Q(CmbQa t,AAt,B 
 

Suppose now that CmA= and CmB=. We obtain the recurrence relations: 

QB,t+1=
b2

bQa t,A
 

QA,t+1=
b2

bQa t,B
 

In a matrix writing, the relations become: 
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If we note Qt= 
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, we can write the above 

relations as: 

Qt+1=AQt+C 

After induction, we obviously have: 

Qt+n=A
n
Qt+(A

n-1
+...+A+I2)C, n1 

where I2 is the unit matrix. 

In particular, for t=0, we obtain: 

Qn=A
n
Q0+(A

n-1
+...+A+I2)C 

On the other hand, we can see (again induction) that: 

A
2k

=
k22

1
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2k+1
=

k22

1
A, kN 

and also: 

A
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(A
n
-I2) 
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



















3

4

3

2
3

2

3

4

 

From these facts, we obtain: 

lim Qn= 























3

4

3

2
3

2

3

4

C=























b3

2a
b3

2a

 

The limit quantities of the two companies at equilibrium are therefore: 

b3

2a
Q*

A


 , 

b3

2a
Q*

B


  

the selling price being: 

p
*
=a-b )QQ( *

B
*
A  =

3

a 
 

 

6. The Cournot Equilibrium for Oligopoly or in the Case of Perfect 

Competition 

Let now consider a number of n firms whose productions are Q1,...,Qn. The selling 

price will be the same for all firms (otherwise, the buyer choosing the lowest price) 
and will depend on total production. 

The corresponding profit function of the firm “k” is then: 

)Q(CTQQp)Q( kkk

n

1i
ikk 







 



 

where CTk is the total cost accordingly. 

The profit maximization condition implies: 
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0)Q(CmQpQQ'p
Q

kk

n

1i
ik

n

1i
i

k

k 
























 

where Cmk is the the marginal cost appropriate to the firm “k”. 

Considering now the coefficient of elasticity of demand in relation to the price: 

p,Q =
Q

p

dp

dQ
  follows: 

dQ

dp
=

p,Q

1

Q

p


 and for Q= 



n

1i
iQ  we obtain: 












n

1i
iQ'p =

p,Q
n

1i
i

n

1i
i

1

Q

Qp


















  

Substituting in the profit maximization condition, results: 

)Q(Cm
1

Q

Q
1Qp kk

p,Q
n

1i
i

k
n

1i
i 





































 

Noting now k=




n

1i
i

k

Q

Q
, k= n,1  - the share of “k” in all companies, we have: 

)Q(Cm1Qp kk

p,Q

k
n

1i
i 






























 

From this relationship, it follows that for n=1 that 1=1 and we have: 

  )Q(Cm
1

1Qp 11

p,Q

1 















  

so just state of monopoly. 

On the other hand, if it exist a large number of companies on market whose share 

as a whole is negligible, we have: k0 k= n,1  and: )Q(CmQp kk

n

1i
i 










 k=

n,1  so the price equals the marginal cost of each firm, the market equilibrium 

being specific to the perfect competition. 
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7. Cartels 

Considering any number of firms, the cartel is a situation where they collaborate to 
establish production that will maximize total profit, and then reverse them to divide 

it between them. 

Let therefore be a number of n2 firms whose productions are Q1,...,Qn, the selling 
price depending on total production, the asset sold being normal. 

The cartel’s profit function has the following expression: 














n

1i
ii

n

1i
i

n

1i
in1 )Q(CTQQp)Q,...,Q(  

where CTi is the total cost appropriate of the firm “i”. 

The profit maximization condition involves determining Q1,...,Qn such that 

)Q,...,Q( n1  =maximum. We therefore have: 

0)Q(CmQpQQ'p
Q

kk

n

1i
i

n

1i
i

n

1i
i

k


























, k= n,1  

where Cmk is the marginal cost of the firm “k”. 

From the relationship above, it follows: 

Cm1(Q1)=...=Cmn(Qn) 

so at optimum, the marginal costs of the n firms must be equal. If one of the 

companies will have a higher marginal cost than the other, then their production 

will be increased to equal marginal costs at the dominant firm. 

Consider now the optimal production of the n companies as: 
*
1Q ,...,

*
nQ . From the 

optimal relationship above, we have seen that: 

0)Q(CmQpQQ'p *
kk

n

1i

*
i

n

1i

*
i

n

1i

*
i 




















, k= n,1  

or: 




















 n

1i

*
i

n

1i

*
i

*
kk

n

1i

*
i QQ'p)Q(CmQp , k= n,1  

For some firm “j” the profit is: 

)Q(CTQQp)Q,...,Q( jjj

n

1i
in1j 







 


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from where: 

)Q(CmQpQQ'p
Q
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n

1i
ij

n

1i
i

j

j
























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Adding the individual variations in profit for all companies involved in cartel 
result: 

  
  







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i
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

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














 n
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n

1i
i

n

1j
j

n

1i
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In the optimum point: 








n

1j j

j

Q



















 n

1j

*
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n

1i

*
i

n

1j

*
j

n

1i

*
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 
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



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


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













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*
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n
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*
i

n
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*
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*
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















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






 
 

n

1j

n

1i

*
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*
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*
i QQ'pQQ'p  




















 n

1j

*
j

n

1i

*
i

n

1j

*
j

n

1i

*
i QQ'npQQ'p = 
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






n

1j

*
j

n

1i

*
i QQ'p)1n( 0 

because good being normal: 'p 0. 

If the firm “j” believes that all other firms will follow the terms of the cartel 

agreement and production will not change, so: 
k

k

Q


=0 k= n,1 , kj then from the 

above relationship follows: 
j

j

Q


0 so the firm “j” will be tempted to unilaterally 

increase its production to increase profit. 

On the other hand, from the above relationship follows: 

j

j
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
= 
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If the firm “j” believes that at least one of the companies do not comply with the 

cartel agreement and produce more, we have: 

j

j

Q


= 

 












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

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*
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




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1i

*
i

Q
QQ'p)1n(  

where we denoted by I=
















 0

Q
n,1k

k

k  - the set of companies that violate the 

understanding and J=
















 0

Q
n,1k

k

k  - the companies that set the conditions 

cartel. 

From optimal relationship, 


n

1i

*
iQ =constant thus 

j

j

Q


 varies in reverse with 


 



Ik k

k

Q
0. Therefore at a breach of agreement by the other companies, the firm 

“j” will reduce the profit. As a result of this suspicion, the company will increase 

its production before this happens. 

We see therefore that in the absence of strict regulations and a strict control, any 

firm in the cartel is tempted to increase production to achieve an increase in profit. 

As a special case, let consider the case of two companies A and B that records 

constant marginal costs: CmA= și CmB=, the price function being of the form: 

p(Q)=a-bQ, a,b0 - the same for the two companies. 

We have: 

    )Q(CT)Q(CTQQQQba)Q,Q( BBAABABABA   

and the profit maximizing conditions: 

  0QQb2a
Q

BA

A





 

  0QQb2a
Q

BA

B





 

We saw above that for the existence of optimal production, we have: = and from 
the above system: 
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  

the selling price being: 

p
*
=a-b

b2

a 
=

2

a 
 

In the case of Cournot equilibrium, we have: 
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  

from where: 
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The selling price is: 

*
cp =a-b )QQ( *

c,B
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c,A  =
3
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We now have: 
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
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p
*
-

*
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3

a 
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Following these considerations, it follows that if the cartel’s total production is less 

than that resulting in oligopolistic competition, the selling price increases. 

 

8. Conclusion 

In this paper we analyzed the main aspects of oligopoly, in the case of n firms. The 

analysis has made, as a rule, for arbitrary marginal costs, each time, however, by 

considering these costs constant recovering well known results of the models 
presented. 

We also treat the problems above for the general case of cost function, again 

customizing the overall results for linear functions and obtaining the corresponding 
classical relations. 
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