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Abstract: The article deals with a particular rational production function of two factors with constant 

scale return. It were determined from the compatibility conditions with the axioms of production 

function all the cases for a such function. 
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1 Introduction 

In what follows we shall presume there is a certain number of resources, 

supposedly indivisible needed for the proper functioning of the production process. 

We define on R
2
 – the production space for two resources: K – capital and L - 

labor as SP=(K,L)K,L0 where xSP, x=(K,L) is an ordered set of resources 

and we restrict the production area to a subset DpSP called domain of 

production. 

It is called production function an application Q:DpR+, (K,L)Q(K,L)R+ 

(K,L)Dp. 

For an efficient and complex mathematical analysis of a production function, we 

impose a number of axioms both its definition and its scope. 

1. The domain of production is convex; 

2. Q(0,0)=0 (if it is defined on (0,0)); 
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3. The production function is of class C
2
 on Dp that is it admits partial derivatives 

of order 2 and they are continuous; 

4. The production function is monotonically increasing in each variable; 

5. The production function is quasiconcave that is: Q(x+(1-)y)min(Q(x),Q(y)) 

[0,1] x,yRp. 

In a preceding paper ([5]), one of the authors define a rational production function 

with constant return to scale as: 

Q:DpR
2
R+, (K,L)Q(K,L)R+ (K,L)Dp 

 
 
 L,KR

L,KP
L,KQ   K,L0 

where P and R are homogenous polynomials in K and L, deg P=n, deg R=n-1, n2. 

The compatibility conditions for that function to be of production were (from 

theorem 2): 
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where 
L

K
  and Lw , Kw  are the average productivity relative to L and K 

respectively. 

 

2 A Type of a Rational Production Function 

Let now: 

 
eLdK

cLbKLaK
L,KQ

22




 , a,d0 

We shall suppose that d=1 with loss of generality, after a simplification of the ratio 

with d. 

Therefore, let:  
eLK

cLbKLaK
L,KQ

22




 =

e

cba
L
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. 

The average productivity relative to K and L are: 
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  wK =
 
K

L,KQ
=

 e

cba 2




,   wL =

 
L

L,KQ
=

e

cba 2




 

The first and the second derivatives are: 

 ' wK =
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The compatibility conditions become: 
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or after simplifying: 
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Let now the transformation: e , therefore e  and also: g= cbeae2  . 

The conditions become: 
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Case 1: g0 
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From the third inequality, we have that 0 . From the first: 0ga 2   therefore 

a0. Also: 




























 ,

a

g

a

g
,  and because 0  we get: 
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,  

or 
a

g
e0  . 

But 
a

g
e0   is equivalent with: e

a

g
  therefore e0 and cbe  . 

Analysing the inequality:     0geg2baef 2   we have first = cg . 

If c0 then 0 therefore   fsgn =  baesgn  = 






 

e

cg
sgn =-1. In consequence: 

  0geg2bae 2   R. 

If c0 then 0. The roots of the equation   0geg2bae 2   are: 

bae

cgg
2,1




  therefore if bae   then: 
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 which is possible 

because 0  if 0
bae

cgg





 that is:   0baee   which is true. In this case: 
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If now bae  then: 
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, . Because, in this case: 

cgg   we finally find that: 
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If ae=b then: 
2

e
  which is true because e0. In this case: 

a

g
e0  . 
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Case 2: g0 

From the third inequality, we have that 0 . From the first: ga 2  . 

If now a0 the inequality holds for all R. From the relation: 

  0geg2bae 2   we have = cg . 

If c0 we obtain 0 therefore if bae  then the inequality holds for all R. If 

bae   then: . 

If ae=b then: g=c0 – contradiction.  

If now c0 we have: 0 therefore, if bae  : 























bae

cgg
,

bae

cgg
 or 
























bae

cgc
,

bae

cgc
 

If e0 then  0 therefore  . If e0 then 
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If e0 then  0 therefore  . If e0 then: 
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If c=0 then =0 and we must have bae  and 
bae

g


  or 0 . 
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Let suppose now that a0. In this case, from the first: ga 2   therefore 
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For the inequality   0geg2bae 2   we have = cg . 

If c0 we obtain 0 therefore if bae  then the inequality holds for all R. If 

bae   then: . 

If ae=b then: g=c0 – contradiction.  

If now c0 we have: 0 therefore, if bae  : 
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If e0 then  0 therefore  . If e0 then 
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If e0 then  0 therefore  . If e0 then: 
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If c=0 then =0 and we must have bae  and 
bae

g


  or 0 . 

Finally we have the following cases for all combinations of parameters: 

1. cbeae2  0, a0, e0, c0, cbe  , 
a

g
e0   
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2. cbeae2  0, a0, e0, c0, cbe  , bae  , e
bae

cgc





 

3. cbeae2  0, a0, e0, c0, cbe  , bae , e
bae

cgc





 

4. cbeae2  0, a0, e0, c0, cbe  , bae  , 
a

g
e0   

5. cbeae2  0, a0, c0, bae ,  0 

6. cbeae2  0, a0, c0, e0, bae  , 
bae

cgc
0




  

7. cbeae2  0, a0, c0, e0, bae , 





































 e,
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cgc

bae

cgc
,0  

8. beae2  0, a0, c=0, e0, bae , 0  

9. cbeae2  0, a0, c0, bae , cbe   
a

g
e   

10. cbeae2  0, a0, c0, bae , cbe   0  

11. cbeae2  0, a0, c0, e0, bae  , 
bae

cgc
0




  

12. cbeae2  0, a0, c0, e0, bae  , 





































 e,
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cgc
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cgc
,0  

13. beae2  0, a0, c=0, e0, bae  , 0  

 

3 The Main Indicators of the Production Function 

Considering now a production function:  
eLK

cLbKLaK
L,KQ
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  we have: 

 the marginal productivity relative to K: K =
K
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 the average productivity relative to K: Kw =
K

Q
=
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 the average productivity relative to L: Lw =
L

Q
=

 eLKL

cLbKLaK 22




 

 the partial marginal substitution rate of factors K and L: RMS(K,L)=
L

K




= 

 
  22

22
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LcbeaeKL2aK




 

 the elasticity of output with respect to K: 

K =
K

K

w
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 the elasticity of output with respect to L: 
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L
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 the elasticity of the marginal rate of technical substitution 
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4 Example for the Case 1 

cbeae2  0, a0, e0, c0, cbe  , 
a

g
e0   

The graph for a=2, b=0, c=-1, e=-1 is: 

 

Figure 1 
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5 Conclusions 

Rational production functions may occur in the process of determining specific 

method of least squares (leading to relatively simple systems solved) based on 

concrete data. Conditions compatibility axioms production function were analyzed 

and obtaining 13 cases for a ratio of polinomyals of degree 2 and 1 respectively. 
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