About Andrica's Conjecture

Cătălin Angelo Ioan ${ }^{1}$, Alin Cristian Ioan ${ }^{2}$

Abstract

The paper establishes an equivalence of the Andrica's conjecture in the direction of an increase of the difference of square root of primes by a power of a ratio of two consecutive primes.

Keywords: Andrica's conjecture; prime
JEL Classification: E23

1. Introduction

Even prime number theory dates back to ancient times (see the Rhind papyrus or Euclid's Elements) it retains its topicality and fascination to any mathematician due to numerous issues remain unresolved to this day.

A number $\mathrm{p} \in \mathbf{N}, \mathrm{p} \geq 2$ is called prime if its only positive divisors are 1 and p . The remarkable property of primes is that any nonzero natural number other than 1 can be written as a unique product (up to a permutation of factors) of prime numbers to various powers.
If there is not a formula, for the moment, generating prime numbers, there exist a lot of attempts (many successful, in fact) to determine some of their properties.
Unfortunately, many results are at the stage of conjectures (theorems that seem to be valid, but remained unproven yet).
A famous conjecture relative to prime numbers is that of Dorin Andrica. Denoting by p_{n} - the n -th prime number $\left(\mathrm{p}_{1}=2, \mathrm{p}_{2}=3, \mathrm{p}_{3}=5\right.$ etc.), Andrica's conjecture ([1]) states that:

$$
\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}<1 \quad \forall \mathrm{n} \geq 1
$$

[^0]Noting $g_{n}=p_{n+1}-p_{n}-$ the prime gap that is the difference between two successive prime numbers, the conjecture can be written in the form:

$$
\mathrm{g}_{\mathrm{n}}<2 \sqrt{\mathrm{p}_{\mathrm{n}}}+1 \quad \forall \mathrm{n} \geq 1
$$

The equivalence is immediate because
$\mathrm{g}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}+1}-\mathrm{p}_{\mathrm{n}}<2 \sqrt{\mathrm{p}_{\mathrm{n}}}+1 \Leftrightarrow \mathrm{p}_{\mathrm{n}+1}<\left(\sqrt{\mathrm{p}_{\mathrm{n}}}+1\right)^{2}$ which is obviously equivalent to:
$\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}<1$.
Even if Andrica's conjecture is weaker than that resulting from Oppermann's conjecture which states that $\mathrm{g}_{\mathrm{n}}<\sqrt{\mathrm{p}_{\mathrm{n}}}$ the attempts to prove have not been successful to this moment.

In the following, we shall prove a theorem of equivalence of Andrica's conjecture with another conjecture of increasing the difference of square root of consecutive primes with a power of their ratio.

2. Main Theorem

Theorem

Let p_{n} the n -th prime number. The following statements are equivalent for $\mathrm{n} \geq 5$:

1. $\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}<1$;
2. $\exists \alpha \geq 0$ such that: $\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}<\left(\frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{p}_{\mathrm{n}+1}}\right)^{\alpha}$.

Proof

$\underline{2 \Rightarrow 1}$ Because $\frac{p_{n}}{p_{n+1}}<1$ follows that: $\left(\frac{p_{n}}{p_{n+1}}\right)^{\alpha}<\left(\frac{p_{n}}{p_{n+1}}\right)^{0}=1$.
$\underline{1 \Rightarrow 2}$ If we take the logarithm in the relationship, it becomes:
$\ln \left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)<\alpha \ln \left(\frac{p_{n}}{p_{n+1}}\right) \Leftrightarrow \ln \left(\sqrt{p_{n+1}}-\sqrt{p_{n}}\right)<\alpha\left(\ln p_{n}-\ln p_{n+1}\right) \Leftrightarrow$
$\frac{\ln \left(\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}\right)}{\ln \mathrm{p}_{\mathrm{n}+1}-\ln \mathrm{p}_{\mathrm{n}}}<-\alpha \Leftrightarrow$
150
$\frac{\ln \left(\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}\right)}{\ln \sqrt{\mathrm{p}_{\mathrm{n}+1}}-\ln \sqrt{\mathrm{p}_{\mathrm{n}}}}<-2 \alpha$.
Let now the function:

$$
\mathrm{f}:(\mathrm{a}, \infty) \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=\frac{\ln (\mathrm{x}-\mathrm{a})}{\ln \mathrm{x}-\ln \mathrm{a}} \text { with } \mathrm{a}>2
$$

We have now: $f^{\prime}(x)=\frac{x(\ln x-\ln a)-(x-a) \ln (x-a)}{x(x-a)(\ln x-\ln a)^{2}}$.
Noting $g(x)=x(\ln x-\ln a)-(x-a) \ln (x-a)$ we get: $g^{\prime}(x)=\ln x-\ln a-\ln (x-a)=h(x)$.
Because $h^{\prime}(x)=-\frac{a}{x(x-a)}<0$ we have that h is strictly decreasing. How $h(a+1)=\ln (a+1)-\ln a>0, h(a+2)=\ln \frac{a+2}{2 a}<0$, follows that $\exists \xi \in(a+1, a+2)$ such that: $h(\xi)=0$ that is:
(1) $\ln \xi-\ln a=\ln (\xi-a)$
and after the monotony: $\mathrm{h}(\mathrm{x})>0 \forall \mathrm{x}<\xi$ and $\mathrm{h}(\mathrm{x})<0 \forall \mathrm{x}>\xi$.
Because $g^{\prime}=h$ we obtain that g is strictly increasing on (a, ξ) and strictly decreasing on (ξ, ∞).
But $\lim _{x \rightarrow a} g(x)=0, \lim _{x \rightarrow \infty} g(x)=-\infty, g(\xi)=\xi(\ln \xi-\ln a)-(\xi-a) \ln (\xi-a)$ and from (1):

$$
\mathrm{g}(\xi)=\operatorname{aln}(\xi-a)>0
$$

It results that $\exists \eta>\xi>a+1$ such that: $g(\eta)=0$ that is:
(2) $\eta(\ln \eta-\ln a)=(\eta-a) \ln (\eta-a)$

From monotonicity, we obtain that: $g(x)>0 \forall x \in(a, \eta)$ and $g(x)<0 \forall x \in(\eta, \infty)$.
Therefore, f is strictly increasing on (a, η) and strictly decreasing on (η, ∞).
As $f(a+1)=0, f(\eta)=\frac{\ln (\eta-a)}{\ln \eta-\ln a}$, and from (2): $f(\eta)=\frac{\eta}{\eta-a}>0, \lim _{x \rightarrow \infty} f(x)=1$ it follows that: $\mathrm{f}(\mathrm{x})<0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{a}+1)$.

From hypothesis 1 (Andrica's conjecture), we have: $\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}<1$ and noting: $\mathrm{x}=\sqrt{\mathrm{p}_{\mathrm{n}+1}}, \mathrm{a}=\sqrt{\mathrm{p}_{\mathrm{n}}}$ we have: $\mathrm{x} \in(\mathrm{a}, \mathrm{a}+1)$.
Be so: $\alpha=-\frac{1}{2} \sup _{\mathrm{n}} \frac{\ln \left(\sqrt{\mathrm{p}_{\mathrm{n}+1}}-\sqrt{\mathrm{p}_{\mathrm{n}}}\right)}{\ln \sqrt{\mathrm{p}_{\mathrm{n}+1}}-\ln \sqrt{\mathrm{p}_{\mathrm{n}}}} \geq 0$. The statement 2 is now obvious. Q.E.D.

3. Determination of the Constant α

Using the Wolfram Mathematica software, in order to determine the constant α (for the first 100000 prime numbers):

```
alfa:=1000.
For[n=5,n<100000,n++,alfa1=Log[Prime[n]/Prime[n+1],Sqrt[Prime[n+1]]-
Sqrt[Prime[n]]];alfa=Min[alfa1,alfa]];
Print[N[alfa,1000]]
we found that the first 1000 decimals are:
```

$\alpha=2.281103221027218229423232822443286599017584100009984588220198770$ 7555016956079556125523902095828355521972189294678153434257651743655 1726362923880678160746758935639657414508211919857643587356785905060 6949765734239636479131860224037385179731071495942268916184068058269 6177512720818817490245596293254286947503092584044428951753449292269 7389861883902366389124093450412998636957454073445598539595694269058 9958313834222509660041292032936969131875482708936809950924268932852 6997409051212237021151286038659114545358509297427153361178689719192 7351545951228711831887776623070206318211691345478696428460823105785 4097720248263859745150386851610652371395957541613534650131084885714 3384952309151433452360237879606095184289487480462134479859039214689 8208626417098165357501169756266653666858624450374358872935039206880 8501947089500551068277858220736778549760090107511452195156335525727 1942429070573882246361510791556298086569047772964502980196653160300 34642716170057957313704524610621876879383627332120315454057552219

4. References

Andrica, D. (1986). Note on a conjecture in prime number theory. Studia Univ. Babes-Bolyai Math 31 (4), pp. 44-48.

Guy, R.K. (1994). Unsolved Problems in Number Theory. Second Edition. New York: Springer Verlag.
Wolf, M. (2010). A Note on the Andrica Conjecture. arXiv:1010.3945v1 [math.NT] 19 Oct.

[^0]: ${ }^{1}$ Associate Professor, PhD, Danubius University of Galati, Faculty of Economic Sciences, Romania, Address: 3 Galati Blvd, Galati, Romania, Tel.: +40372 361 102, Fax: +40372 361 290, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.
 ${ }^{2}$ Nicolae Oncescu College, Braila, Address: 1-3 ŞOS. Brăilei, City: Ianca, Brăila County, Tel.: +40239-668 494, E-mail: alincristianioan @yahoo.com.

