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Abstract: The article deals with some aspects of differential production functions with examples for 

Cobb-Douglas function in two or three variables. There are studied in each case, the conditions of the 

parameters in order that the sectional curvature be constant. 

Keywords: production function; metric; Riemann; sectional curvature 

JEL Classification: C02 

 

1. Introduction 

Let H be a hypersurface in Rn+1 of equation: 

xn+1=f(x1,...,xn), (x1,...,xn)DRn, D – open 

We will assume in what follows that fC2(D). 

A parametric representation of hypersurfaces is: 

H: 
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x,...,xfx,...,xfx

n1,i ,xx,...,xfx
 

We will note sometimes: x=  n1 x,...,x Rn. 

Considering the Jacobian matrix Jf= 
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f
 we will assume that all hypersurfaces 

points are regular i.e. rank 
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We define the tangent hyperplane to the hypersurface at a point x0 and noted H
0xT : 
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which is the locus of the tangents to the curves on H passing through x0. Any element 

of H
0xT  is called the tangent vector to the hypersurface. 

The normal at the hypersurface is the straight line orthogonal in x0 on H and has 

equation: 
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We define (Eisenhart, 1926) the metric tensor of the hypersurface as having 

components of matrix g=(gij) where: 
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g , i,j= n,1  

The tensor g, called the first fundamental form of the hypersurfaces, allows to define 

the length of a vector v H
0xT  as  v,vg , the angle of two non-null vectors being: 

 
 

   w,wgv,vg

w,vg
w,vcos   

where g(X,Y)= 


n

1j,i

ji
ij YXg , Xi and Yj being the components of the vectors X,Y

H
0xT . 

Taking into account the parametric expression of hypersurfaces, we have: 
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 , i,j= n,1  

where 









ji if 0

ji if 1
ij  is the Kronecker's symbol. 

We therefore fundamental matrix of the first forms of hypersurfaces: 
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Consider also the inverse of the metric tensor: g-1=(gij) where gij are the inverse 

matrix elements g-1: 
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We define now Christoffel's symbols of the first kind: 

k,ij
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and of the second kind: 

ij

k  
= p,ijg
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, i,j,k= n,1  

For considered hypersurface we have so: 
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, i,j,k= n,1  

Let us define also for two vectors tangent to the hypersurface at a point x0=

 n,01,0 x,...,x D the covariant derivative of Y=



n

1j
j

jY  relative to X=



n

1i
i

iX  

where Xi,Yi:DR, i =
ix


, i= n,1 : 
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YX = 
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So we have for the considered hypersurface: 
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The covariant derivative is the generalization of the concept of directional derivative, 

in the sense that if X is, locally, tangent to a curve xi=xi(t), i= 1n,1   and Y is the 

restriction of a field of vectors along the curve, then YX  represents “the rate of 

change” of Y in the movement on the curve. In other words, in a flat space, the 

components of YX  are given by the derivatives in the direction of the tangent to 

the curve. 

A curve xi=ci(t), i= 1n,1  , t(a,b), ab, a,bR is called geodesic if, considering the 

vector X=



n

1i
ii )t('c  occurs: XX =0. The equation of a geodesic is: (Ianuș, 1983)  

0
dt

dc

dt

dc

jk

 i 

dt

cd kj

2

i
2

 , i= 1n,1   

Considering 2-space  generated by two vectors tangent to the hypersurface at the 

point x0, then all geodesics passing through x0 and have as tangent vectors to the 

curve vectors of , they generate a surface S passing through x0 and having  as 

tangent plane. Considering the normal to S in x0, this, together with an arbitrary 

tangent vector from  generates a normal plane. It intersects the surface S after a 

curve called normal section. Considering their curvature, that is their “deviation” 

from a straight line, there are obtain several curvatures whose extreme (minimum 

and maximum) form the so-called principal curvatures. The product of the two 

principal curvatures is called Gaussian curvature of the surface S. In the case of 

hypersurfaces, corresponding Gaussian curvature to the plane  determined by two 

vectors X,Y H
0xT  is called the sectional curvature corresponding to the vectors 

X,Y in x0 noted with k(x0,) where =<X,Y> (the subspace generated by X and Y). 

We define now the Riemann curvature tensor: R(X,Y)Z=

ZZZ ]Y,X[XYYX   and the Riemann-Christoffel curvature tensor: 

R(X,Y,Z,V)=g(R(X,Y)V,Z) X,Y,Z,V H
0xT . 

We will note: 
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Taking into account that: 
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The significance of the Riemann curvature tensor is that X,Y H
0xT : 

R(X,Y,X,Y)=k(x0,)       2
Y,XgY,YgX,Xg   

A hypersurface is said to have constant curvature if the sectional curvature is the 

same independent of the point x0 and the 2-space  determined by two arbitrary 

vectors of H
0xT . It shows that if hypersurface has constant curvature k then: 

R(X,Y,Z,V)=         Z,YgV,XgV,YgZ,Xgk   X,Y,Z,V H
0xT  

Schur's theorem states that if the hypersurfaces dimension is larger or equal to 3 and 

the sectional curvature depends only on the point and not tangent vectors (isotropy 

property) than the sectional curvature is constant. 

If Riemann curvature tensor is null then it can build a coordinate system in which 

metric tensor components are constant. If the metric tensor is constant then the 

Riemann curvature tensor is trivial null. 
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Considering Riemann curvature tensor, it defines the Ricci tensor as: S(X,Y) with 

 jiij ,SS   and Sij= 
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kpRg  and also the scalar curvature S= 
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For considered hypersurface: 

Sij= 


n

1p,k
kijp

kpRg = 





























































n

1k

2

kkj

2

ki

2

2
k

2

ji

2

2 x

f
1

xx

f

xx

f

x

f

xx

f

g

1
 

S= 


n

1j,i
ij

ijSg =

 
 




































































































n

1j,i

n

1k

2

kkj

2

ki

2

2
k

2

ji

2n

1k ji

2

k

ijij3 x

f
1

xx

f

xx

f

x

f

xx

f

x

f

x

f

x

f

g

1

= 















































































































































 n

1j,i,k

2

kkj

2

ki

2

2
k

2

ji

2

ji
3

n

1k,i

2

k

2

ki

2

2
k

2

2
i

2

2 x

f
1

xx

f

xx

f

x

f

xx

f

x

f

x

f

g

1

x

f
1

xx

f

x

f

x

f

g

1

A hypersurface is called Einstein hypersurface if S(X,Y)=g(X,Y) X,Y H
0xT  

x0H. 

If a hypersurface has constant curvature, then it is Einstein, and if it is Einstein and 

has dimension 3 then it has constant curvature. 

We now define the curvature tensor of Weyl: 

C(X,Y)Z=R(X,Y)Z-XL(Y,Z)+YL(X,Z)+g(X,Z)lY-g(Y,Z)lX X,Y,Z H
0xT  

where L(X,Y)=  
 

 












Y,Xg

1n2

S
Y,XS

2n

1
 and    Y,XLY,lXg   

and also: C(X,Y,Z,V)=g(C(X,Y)V,Z) from where: 

               

           




























Z,YgV,Xg
1n

S
V,XRZ,YgZ,YRV,Xg

2n

1

V,YgZ,Xg
1n

S
Z,XRV,YgV,YRZ,Xg

2n

1
V,Z,Y,XRV,Z,Y,XC

On a hypersurface of dimension 3 the Weyl tensor is null. 

A hypersurface is said to be applied conformal to another space (e.g. the flat 

Euclidean space) if there is an application that preserves angles between any two 
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tangent vectors. If hypersurface is conformal to an Euclidian space we will say that 

it is conformally flat. 

Weyl theorem states that any hypersurface of dimension 2 (i.e. surface in the usual 

sense) is conformally flat,  one of dimension 3 is conformally flat if and only if the 

tensor Riemann vanishes identically and if the dimension is greater than 3, then the 

necessary and sufficient condition to be conformally flat is that the Weyl tensor 

vanishes identically. 

 

2. The Production Function 

We define on Rn – the production space for n resources: SP=(x1,...,xn)x1,...,xn0 

where x=(x1,...,xn)SP is an ordered set of resources. 

Because in a production process, depending on the nature of applied technology, but 

also its specificity, not any amount of resources are possible, we will restrict the 

production area to a subset DPSP called domain of production. 

It is called production function an application Q:DPR+, (x1,...,xn)Q(x1,...,xn)R+ 

(x1,...,xn)DP. 

The production function must satisfy a number of axioms: 

 The domain of production is convex; 

 Q(0,...,0)=0; 

 The production function is of class C2 on DP that is it admits partial 

derivatives of order 2 and they are continuous; 

 The production function is monotonically increasing in each variable; 

 The production function is quasi-concave that is: Q(x+(1-

)y)min(Q(x),Q(y)) [0,1] x,yDP. 

One of the most used production function in microeconomics or macroeconomics 

analysis is the Cobb-Douglas function: 

Q:
n
R R+,   n1 k

n
k
1n1 x...Axx,...,xQ  , A0, k1,...,kn0 

 

3. The Differential Geometry of Cobb-Douglas Function in 2 Variables 

In what follows we will consider the Cobb-Douglas function: Q:
2
R R+, 

   yxy,xQ  (where for simplification we took A=1, ,0. 

The equation of the surface is therefore: u=
yx . 
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The parametric representation of this surface is: 

H: 
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The tangent plane to the surface at a point  00 y,x  is: 

H
0xT :         0y,xfuyyy,x

y

f
xxy,x

x

f
00000000 









 

that is: 

H
0xT :   0yx1uyyxxyx 00

1
000

1
0  

 

We can see that the tangent plane pass through origin if and only if +=1 that is the 

function is homogenous of degree 1. 

The unitary normal at the surface is: 

N(
(xα−1yβ)α

√(x2α−2y2β−2)(y2α2+x2β2)+1

, 
βxαyβ−1

√x2α−2y2β−2(β2x2+α2y2)+1

, −
1

√x2α−2y2β−2(β2x2+α2y2)+1

) 

The metric tensor has the components: 

g11 = α2x2α−2y2β + 1, g12 = g21 = αβx2α−1y2β−1, g22 = β2x2αy2β−2 + 1 

and the inverse: 

g11 =
β2x2αy2β−2+1

x2α−2y2β−2(y2α2+x2β2)+1
,g12 = g21 = −

αβx2α+1y2β+1

x2y2+x2αy2β(β2x2+α2y2)
,g22 =

α2x2α−2y2β+1

x2α−2y2β−2(β2x2+α2y2)+1
 

Christoffel's symbols of the first kind are: 

|11,1| = (α − 1)α2x2α−3y2β,  
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|11,2| =
1

2
(2α(2α − 1)βx2α−2y2β−1 − 2α2βx2α−2y2β−1),|12,1| = |21,1| =

α2βx2α−2y2β−1, |12,2| = |21,2| = αβ2x2α−1y2β−2,  

|22,1| =
1

2
(2αβ(2β − 1)x2α−1y2β−2 − 2αβ2x2α−1y2β−2), |22,2| = (β −

1)β2x2αy2β−3 

Christoffel's symbols of the second kind are: 

|
1
11

| =
(α−1)α2y2β+2

y2x3−2α+xy2β(β2x2+α2y2)
, |

2
11

| =
(α−1)αβx2αy2β+1

x2y2+x2αy2β(β2x2+α2y2)
, 

|
1
12

| = |
1
21

| =
α2βx2αy2β+1

x2y2+x2αy2β(β2x2+α2y2)
, |

2
12

| = |
2
21

| =
αβ2x2α+1y2β

x2y2+x2αy2β(β2x2+α2y2)
, 

|
1
22

| =
α(β−1)βx2α+1y2β

x2y2+x2αy2β(β2x2+α2y2)
, |

2
22

| =
(β−1)β2x2α+2

x2y3−2β+yx2α(β2x2+α2y2)
 

Riemann-Christoffel curvature tensor is: 

R1212 =
αβ(1 − α − β)x2αy2β

x2y2 + x2αy2β(β2x2 + α2y2)
 

The components of Ricci tensor are: 

S11 = −
αβ(α+β−1)x2αy2β+2(α2x2αy2β+x2)

(x2y2+x2αy2β(β2x2+α2y2))2
, S12 = S21 = −

α2β2(α+β−1)x4α+1y4β+1

(x2y2+x2αy2β(β2x2+α2y2))2
, 

S22 = −
αβ(α + β − 1)x2α+2y2β(β2x2αy2β + y2)

(x2y2 + x2αy2β(β2x2 + α2y2))2
 

and the scalar curvature: 

S= −
αβ(α+β−1)x2α+2y2β+2(α2β2x4αy4β+2x2y2+2x2αy2β(β2x2+α2y2))

(x2y2+x2αy2β(β2x2+α2y2))3
 

Finally, the sectional curvature is: 

K(1,2) = −
αβ(α + β − 1)x2α+2y2β+2

(x2y2 + x2αy2β(β2x2 + α2y2))2
 

where K(1,2) corresponds to the plane determined by the vectors: 1 =
x


 and 2 =

y


. 

We can see that the sectional curvature vanishes if and only if +=1 that is the 

function is homogenous of degree 1. In this case we have that Riemann-Christoffel 

curvature tensor vanishes and obviously Ricci tensor and the scalar of curvature. 



ŒCONOMICA 

 257 

4. The Differential Geometry of Cobb-Douglas Function in 3 Variables 

In what follows we will consider the Cobb-Douglas function: Q:
3
R R+, 

   zyxz,y,xQ  (where for simplification we took A=1, ,,0. 

The equation of the surface is therefore: u=
 zyx . 

The parametric representation of this hypersurface is: 

H: 

 



















 zyxz,y,xfu

zz

yy

xx

 

First, we have: 





zyx

x

f 1 , 





zyx

y

f 1
, 1zyx

z

f 



, 

  



yx1

x

f 2

2

2

, 





zyx

yx

f 11
2

, 11
2

zyx
zx

f 



, 

  



zyx1

y

f 2

2

2

, 
11

2

zyx
zy

f 



,   2

2

2

zyx1
z

f 



 

The tangent hyperplane to the hypersurface at a point  000 z,y,x  is: 

H
0xT : 

           0z,y,xfuzzz,y,x
z
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f
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000000000000000 















that is: 

H
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1
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1
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We can see that the tangent hyperplane pass through origin if and only if ++=1 

that is the function is homogenous of degree 1. 

The unitary normal at the hypersurface is: 
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N(
𝛼𝑥𝛼−1𝑦𝛽𝑧𝛾

√𝑥2𝛼−2𝑦2𝛽−2𝑧2𝛾−2(𝛾2𝑥2𝑦2+𝑧2(𝛽2𝑥2+𝛼2𝑦2))+1

,

𝛽𝑥𝛼𝑦𝛽−1𝑧𝛾

√𝑥2𝛼−2𝑦2𝛽−2𝑧2𝛾−2(𝛾2𝑥2𝑦2+𝑧2(𝛽2𝑥2+𝛼2𝑦2))+1

,

 
𝛾𝑥𝛼𝑦𝛽𝑧𝛾−1

√𝑥2𝛼−2𝑦2𝛽−2𝑧2𝛾−2(𝛾2𝑥2𝑦2+𝑧2(𝛽2𝑥2+𝛼2𝑦2))+1

,

 −
1

√𝑥2𝛼−2𝑦2𝛽−2𝑧2𝛾−2(𝛾2𝑥2𝑦2+𝑧2(𝛽2𝑥2+𝛼2𝑦2))+1

) 

Computing as in the upper we find thate the sectional curvatures are: 

K(1,2)

= −
αβ(α + β − 1)x2α+2y2β+2z2γ+2

(x2y2 + x2αy2βz2γ(β2x2 + α2y2))(x2y2z2 + x2αy2βz2γ(γ2x2y2 + z2(β2x2 + α2y2)))
 

K(1,3)

= −
αγ(α + γ − 1)x2α+2y2β+2z2γ+2

(x2z2 + x2αy2βz2γ(γ2x2 + α2z2))(x2y2z2 + x2αy2βz2γ(γ2x2y2 + z2(β2x2 + α2y2)))
 

K(2,3)

= −
βγ(β + γ − 1)x2α+2y2β+2z2γ+2

(x2αy2βz2γ(γ2y2 + β2z2) + y2z2)(x2y2z2 + x2αy2βz2γ(γ2x2y2 + z2(β2x2 + α2y2)))
 

where K(1,2) corresponds to the plane determined by the vectors: 1 =
x


 and 2 =

y


, K(1,3) corresponds to the plane determined by the vectors: 1 =

x


 and 3 =

z


 and K(2,3) corresponds to the plane determined by the vectors: 2 =

y


 and 3

=
z


. 

We can see that the upper sectional curvatures vanishes if and only if +=1, +=1 

and +=1 from where we find that ===
2

1
 that is the function becomes: 

  xyzz,y,xQ  . 
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