Business Administration and Business Economics

Analysis of Natural Movement of Romanian Population During 2007-2014 - III

Cătălin Angelo Ioan ${ }^{1}$

Abstract

Article shall carry out the analysis of natural movement of Romanian population During 2007-2014. They are thus treated indicators: Live births, Deceased, Natural increase, Marriages, Divorces and Deaths under 1 year. In addition to the regression analysis, are determined the median, quartiles, the arithmetic mean and standard deviation for each indicator. Also the analysis examines dependence aforementioned indicators of regional GDP variation.

Keywords: live births; deceased; natural increase; marriages; divorces
JEL Classification: Q56

1. Introduction

In what follows we shall carry out the analysis of natural movement of Romanian population During 2007-2014. They are thus treated indicators: Live births, Deceased, Natural increase, Marriages, Divorces and Deaths under 1 year. In addition to the regression analysis, are determined the median, quartiles, the arithmetic mean and standard deviation for each indicator. Also the analysis examines dependence aforementioned indicators of regional GDP variation.

In this third part, we shall analize the following counties: Hunedoara, Ialomita, Iasi, Ilfov, Maramures, Mehedinti, Mures, Neamt, Olt, Prahova and Salaj.

2. Analysis of Natural Movement of Romanian Population during 20072014

2.23. Analysis of Natural Movement of Hunedoara County Population

Statistics of natural movement corresponding to Hunedoara County are the following:

[^0]Table 133. The natural movement of Hunedoara County population during 2007-2008

$\begin{aligned} & \frac{5}{E} \\ & \frac{0}{2} \end{aligned}$	$\frac{8}{y}$	$\begin{aligned} & \ddot{W} \\ & \mathbb{H}_{8}^{0} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { U0 } \\ & 0.0 \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$		$\frac{5}{\sum}$	$\frac{y}{y}$				$\begin{aligned} & \text { ©0 } \\ & 0.0 \\ & \vdots \\ & 0 \\ & \hline 0 \end{aligned}$	
ian, 07	361	566	-205	156	111	3	ian, 08	380	489	-109	125	128	2
feb, 07	302	454	-152	315	122	3	feb,08	286	504	-218	196	75	3
mar, 07	334	520	-186	171	145	6	mar,08	352	501	-149	151	112	4
apr, 07	323	439	-116	224	106	2	apr,08	299	509	-210	63	132	2
mai, 07	340	472	-132	293	110	2	mai,08	313	491	-178	308	75	6
iun, 07	327	407	-80	333	121	7	iun,08	315	423	-108	308	103	5
iul, 07	400	442	-42	438	107	7	iul,08	341	423	-82	394	92	6
aug, 07	353	440	-87	433	89	3	aug, 08	352	414	-62	517	108	6
sept, 07	294	397	-103	446	77	5	sept,08	371	490	-119	363	80	2
oct, 07	333	439	-106	348	74	5	oct, 08	338	491	-153	313	111	5
nov, 07	308	462	-154	232	113	2	nov,08	304	443	-139	172	103	3
dec,07	342	499	-157	127	140	3	dec,08	336	515	-179	98	120	1

Source: INSSE
Table 134. The natural movement of Hunedoara County population during 2009-2010

Source: INSSE

Table 135. The natural movement of Hunedoara County population during 2011-2012

Source: INSSE
Table 136. The natural movement of Hunedoara County population during 2013-2014

를	$\frac{0}{5}$						$\frac{\text { I }}{\sum}$	$\begin{aligned} & \frac{n}{工} \\ & \text { 들 } \\ & \stackrel{y y}{3} \end{aligned}$				$\begin{aligned} & \text { प्0 } \\ & \frac{0}{3} \\ & \stackrel{3}{0} \end{aligned}$	
ian, 13	298	453	-155	92	39	0	ian, 14	271	500	-229	77	27	0
feb, 13	228	483	-255	101	55	1	feb, 14	231	480	-249	113	51	2
mar, 13	231	540	-309	130	99	2	mar, 14	228	485	-257	63	69	2
apr, 13	249	468	-219	57	98	5	apr, 14	295	471	-176	102	100	1
mai, 13	241	458	-217	170	83	3	mai,14	245	444	-199	252	49	5
iun, 13	265	498	-233	241	87	4	iun, 14	274	462	-188	209	80	2
iul, 13	280	431	-151	300	57	3	iul, 14	345	477	-132	330	52	4
aug, 13	297	429	-132	447	52	5	aug, 14	311	456	-145	420	46	1
sept, 13	271	422	-151	295	63	3	sept, 14	314	463	-149	262	50	2
oct, 13	273	466	-193	201	43	2	oct, 14	299	489	-190	198	43	1
nov, 13	264	432	-168	109	43	2	nov, 14	262	516	-254	111	48	1
dec, 13	229	496	-267	89	93	2	dec, 14	276	564	-288	121	57	4

Source: INSSE

Table 137. The population trends of Hunedoara County during 2007-2014

Year	Population	Year	Population
2007	502593	2011	489548
2008	499521	2012	485787
2009	496391	2013	481915
2010	493479	2014	477675

Source: INSSE

Figure 243
From figure 243 we can see a sinusoidal evolution of the indicator. \#VALUE!
Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $0.867329083 x+341.4508772$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=0.034820944 \mathrm{x}+469.2070175$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-0.902150027 \mathrm{x}+-127.7561404$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Live births" is 299, for "Deceased" is 470 and for "Natural increase": -176. This means that the probability
that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births": $(228,268.5,298.5,334,400)$, for "Deceased": $(362,439,469.5,498,574)$ and for "Natural increase": ($-312,-$ $217.25,-176,-131.25,-42)$.
The arithmetic mean and the standard deviation for "Live births" are: $(299,39.88)$, for "Deceased": $(471,41.53)$ and for "Natural increase": $(-172,62.33)$. This means that with a probability greather than 0.68 "Live births" are in the range [259,339], for "Deceased" in $[429,513]$ and for "Natural increase" in [-234,-110].

Percentiles length indicators analysis (Figure 244) show that, indeed the concentration is around the middle of the data.

Figure 244
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 245.

Figure 245
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.01403398 x+6.773460526$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=0.006449335 x+9.283561404$ where x is the number of month (Jan, $2007=1$), therefore an upward trend.

Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.020450488 x+-2.511484649$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 6, for "Deceased/ 10000 inh." is 10 and for "Natural increase/ 10000 inh.": -4. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/10000 inh.": (4.73,5.4975,6.06,6.67,7.96), for "Deceased/10000 inh.": (7.39,8.8925,9.65,10.16,11.82) and for "Natural increase/10000 inh.": (-6.42,-$4.4475,-3.555,-2.6225,-0.84)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(6,0.75)$, for "Deceased/10000 inh.": $(10,0.87)$ and for "Natural increase/10000 inh.": ($-4,1.3$). This means that with a probability greather than 0.68 "Live births/ 10000 inh." are in the range [5,7], for "Deceased/10000 inh." in [9,11] and for "Natural increase/10000 inh." in [-5,-3].

Percentiles length indicators analysis (Figure 246) show that, indeed the concentration is around the middle of the data.

Figure 246
A comparison of the indicator "Live births" with the national level shows that it is worse than the national, being better only in 1.04% cases. For "Deceased" the indicator is worse than the national, being better only in 28.13% cases. Finally, for "Natural increase", the indicator is worse than the national, being better only in 2.08% cases.

Figure 247
Regression analysis relative to indicator "Marriages" gives us an equation: $\mathrm{y}=-$ $0.998955507 x+261.8660088$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.591766142 \mathrm{x}+116.1381579$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Marriages" is 197 and for "Divorces" is 93. Also, the distribution of quartiles is for "Marriages": (57,102,197,308,517) and for "Divorces": $(27,63,93,108.25,151)$. The arithmetic mean and the standard deviation for "Marriages" are: $(213,119.69)$ and for "Divorces": $(87,28.97)$. This means that with a probability greather than 0.68 "Marriages" are in the range $[93,333]$ and for "Divorces" in $[58,116]$.

Percentiles length indicators analysis (Figure 248) show that, indeed the concentration is around the middle of the data.

Figure 248
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/ 10000 inh. and Divorces/ 10000 inh . as in the figure 249.

Figure 249
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.017586747 x+5.191811404$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=-0.011066264 x+2.312859649$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/10000 inh." is 2. Also, the distribution of quartiles is for "Marriages/ 10000 inh.": $(1.18,2.13,4.035,6.2225,10.35)$ and for "Divorces/10000
inh.": $(0.57,1.3075,1.895,2.1925,3.08)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,2.42)$ and for "Divorces/10000 inh.": $(2,0.58)$. This means that with a probability greather than 0.68 "Marriages/10000 inh." are in the range [2,6] and for "Divorces/10000 inh." in [1,3].
Percentiles length indicators analysis (Figure 250) show that, indeed the concentration is around the middle of the data.

Figure 250
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 32.29% cases. For "Divorces" the indicator is worse than the national, being better only in 7.29% cases.

Figure 251
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.022816061 x+3.981578947$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 3 and the distribution of quartiles is for "Deaths under 1 year": $(0,2,3,4,7)$. The arithmetic
mean and the standard deviation for "Deaths under 1 year" are: $(3,1.7)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [1,5].
Percentiles length indicators analysis (Figure 252) show that, indeed the concentration is around the middle of the data.

Figure 252

Figure 253
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $y=-0.004257868 x+0.790673246$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": ($0,0.4,0.6,0.8125,1.41$). The arithmetic mean and the standard deviation for
"Deaths under 1 year/ 100000 inh." are: $(1,0.34)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is better than the national, being better in 67.71% cases.
A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 138. The evolution of Hunedoara County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	8885	-
2008	8531	-3.98
2009	7879	-7.64
2010	7406	-6.01
2011	7185	-2.98
2012	7964	10.83
2013	7206	-9.51
2014	7424	3.02

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is a dependence of Live births from GDP in the current year and the regression equation is: $0.5878 \mathrm{dGDP}+-1.0181$ we find that there is a dependence of Live births from GDP offset by 2 years and the regression equation is:0.7415dGDP+-1.4156. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.24. Analysis of Natural Movement of Ialomita County Population

Statistics of natural movement corresponding to Ialomita County are the following:

Table 139. The natural movement of Ialomita County population during 2007-2008

Source: INSSE
Table 140. The natural movement of Ialomita County population during 2009-2010

$\begin{aligned} & \frac{\overline{1}}{\overline{0}} \\ & \frac{1}{2} \end{aligned}$					$\begin{aligned} & \text { OU0 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\overline{1}}{5} \\ & \frac{1}{2} \end{aligned}$					$\begin{aligned} & \text { \%0 } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
ian, 09	263	377	-114	52	17	8	ian, 10	279	356	-77	56	33	2
feb,09	253	305	-52	83	44	3	feb, 10	248	331	-83	54	44	1
mar,09	273	357	-84	63	28	1	mar, 10	239	364	-125	37	35	1
apr,09	260	329	-69	52	44	5	apr, 10	217	329	-112	109	30	7
mai,09	243	300	-57	152	17	2	mai, 10	229	317	-88	139	30	2
iun,09	318	291	27	154	57	1	iun, 10	288	286	2	81	26	4
iul, 09	378	294	84	169	11	2	iul, 10	296	276	20	151	43	4
aug,09	312	271	41	224	48	4	aug, 10	311	321	-10	176	33	5
sept,09	304	266	38	231	6	3	sept, 10	312	245	67	200	15	2
oct, 09	323	304	19	258	32	6	oct, 10	292	320	-28	176	12	1
nov,09	216	308	-92	135	23	5	nov, 10	264	316	-52	68	8	2

Source: INSSE

Table 141. The natural movement of Ialomita County population during 2011-2012

Source: INSSE
Table 142. The natural movement of Ialomita County population during 2013-2014

Source: INSSE

Table 143. The population trends of Ialomita County during 2007-2014

Year	Population	Year	Population
2007	306077	2011	302177
2008	305343	2012	300799
2009	304288	2013	299163
2010	303532	2014	297343

Source: INSSE

Figure 254
From figure 254 we can see a sinusoidal evolution of the indicator. Except months aug 2007, sept 2007, iun 2008, iul 2008, sept 2008, iun 2009, iul 2009, aug 2009, sept 2009 , oct 2009 , iun 2010 , iul 2010 , sept 2010 , sept 2011 , aug 2012 , sept 2012 , oct 2012, aug 2013, sept 2013, aug 2014, sept 2014 the natural increase was negative.
Regression analysis relative to indicator "Live births" gives us an equation: y=$0.713917526 x+292.5625$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=0.044546934 \mathrm{x}+314.9019737$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-0.75846446 \mathrm{x}+-22.33947368$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
For the set of values above, the median indicator for "Live births" is 260, for "Deceased" is 313 and for "Natural increase": -69. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births": $(176,229,259.5,288.25,378)$, for "Deceased": $(232,291,312.5,349.5,396)$ and for "Natural increase": (-202,-$112.5,-69,-7.5,106$).

The arithmetic mean and the standard deviation for "Live births" are: $(258,41.86)$, for "Deceased": $(317,38.54)$ and for "Natural increase": $(-59,67.9)$. This means that with a probability greather than 0.68 "Live births" are in the range [216,300], for "Deceased" in [278,356] and for "Natural increase" in [-127,9].
Percentiles length indicators analysis (Figure 255) show that, indeed the concentration is around the middle of the data.

Figure 255
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 256.

Figure 256
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.020772179 x+9.532554825$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=0.004984807 x+10.24657018$ where x is the number of month (Jan, $2007=1$), therefore an upward trend.

Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.025743489 x+-0.714357456$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 9, for "Deceased/10000 inh." is 10 and for "Natural increase/10000 inh.": -2. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births/10000 inh.": (5.85,7.57,8.54,9.4525,12.42), for "Deceased/10000 inh.": $(7.8,9.635,10.36,11.5675,13.16)$ and for "Natural increase/10000 inh.": (-6.75,-$3.705,-2.265,-0.245,3.47)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(9,1.35)$, for "Deceased/10000 inh.": $(10,1.29)$ and for "Natural increase/10000 inh.": (-2,2.26). This means that with a probability greather than 0.68 "Live
births/10000 inh." are in the range [8,10], for "Deceased/10000 inh." in [9,11] and for "Natural increase/10000 inh." in [-4,0].
Percentiles length indicators analysis (Figure 257) show that, indeed the concentration is around the middle of the data.

Figure 257
A comparison of the indicator "Live births" with the national level shows that it is better than the national, being better in 91.67% cases. For "Deceased" the indicator is worse than the national, being better only in 3.13% cases. Finally, for "Natural increase", the indicator is about the same with the national, being better in 41.67% cases.

Figure 258
Regression analysis relative to indicator "Marriages" gives us an equation: $y=-$ $1.362757732 \mathrm{x}+194.75$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Divorces" gives us an equation: $y=-$ $0.17289745 x+40.11469298$ where x is the number of month (Jan, 2007=1), therefore a downward trend. For the set of values above, the median indicator for "Marriages" is 114 and for "Divorces" is 30 . Also, the distribution of quartiles is for "Marriages": $(21,56,114,176,434)$ and for "Divorces": $(6,20,29.5,43.25,78)$. The arithmetic mean and the standard deviation for "Marriages" are: $(129,81.88)$ and for "Divorces": $(32,14.67)$. This means that with a probability greather than 0.68 "Marriages" are in the range [47,211] and for "Divorces" in [17,47].

Percentiles length indicators analysis (Figure 259) show that, indeed the concentration is around the middle of the data.

Figure 259

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages $/ 10000$ inh. and Divorces/ 10000 inh. as in the figure 260.

Figure 260
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.043437398 \mathrm{x}+6.350984649$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=-0.005389921 \mathrm{x}+1.309640351$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1 . Also, the distribution of quartiles is for "Marriages/10000 inh.": (0.7,1.8625,3.79,5.89,14.18) and for "Divorces/10000 inh.": $(0.2,0.67,0.975,1.4275,2.58)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,2.68)$ and for "Divorces/10000 inh.": $(1,0.48)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range [1,7] and for "Divorces/10000 inh." in [1,1].

Percentiles length indicators analysis (Figure 261) show that, indeed the concentration is around the middle of the data.

Figure 261
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 28.13% cases. For "Divorces" the indicator is better than the national, being better in 61.46% cases.

Figure 262
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.01359197 x+3.49254386$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 3 and the distribution of quartiles is for "Deaths under 1 year": $(0,2,3,4,8)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(3,1.77)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [1,5].

Percentiles length indicators analysis (Figure 263) show that, indeed the concentration is around the middle of the data.

Figure 263

Figure 264
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.004211883 \mathrm{x}+1.140317982$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.66,0.98,1.31,2.63)$. The arithmetic mean and the standard deviation for
"Deaths under 1 year/100000 inh." are: $(1,0.58)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [0,2].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is about the same with the national, being better in 40.63% cases.
A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 144. The evolution of Ialomita County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	3297	-
2008	3992	21.08
2009	3743	-6.25
2010	3837	2.51
2011	4028	4.97
2012	3960	-1.67
2013	4068	2.73
2014	4190	2.99

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.
Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is a dependence of Deaths under 1 year from GDP offset by 2 years and the regression equation is:-1.1925dGDP+-3.1494.

2．25．Analysis of Natural Movement of Iasi County Population

Statistics of natural movement corresponding to Iasi County are the following：
Table 145．The natural movement of Iasi County population during 2007－2008

$\begin{aligned} & \text { 曹 } \\ & \text { 号 } \end{aligned}$							$\begin{aligned} & \text { 㐁 } \\ & \text { in } \end{aligned}$	$\frac{5}{5}$	$\begin{aligned} & \text { प्《 } \\ & \text { 太 } \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { 苞 } \\ & \text { 言 } \end{aligned}$	
ian， 07	853	764	89	584	55	16	ian， 08	1110	788	322	209	44	16
feb，07	785	681	104	618	41	9	feb，08	932	678	254	252	77	11
mar， 07	856	706	150	282	65	10	mar，08	801	703	98	247	79	10
apr， 07	799	653	146	497	48	11	apr，08	748	648	100	174	94	12
mai，07	864	716	148	594	59	10	mai，08	839	707	132	562	90	13
iun， 07	861	560	301	513	71	13	iun，08	862	628	234	490	75	6
iul， 07	951	678	273	911	26	13	iul， 08	981	622	359	766	56	8
aug， 07	893	591	302	1076	30	16	aug，08	874	552	322	1313	93	3
sept，07	932	592	340	849	34	10	sept，08	884	605	279	645	32	7
oct， 07	922	666	256	695	31	8	oct， 08	1017	705	312	623	22	9
nov， 07	787	691	96	456	54	8	nov，08	764	704	60	371	57	13
dec，07	848	669	179	307	38	13	dec，08	704	752	－48	254	72	13

Source：INSSE
Table 146．The natural movement of Iasi County population during 2009－2010

\sum_{i}^{E}	$\frac{\stackrel{\sim}{\#}}{\substack{0 \\ 0}}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \AA \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\text { Deaths under } 1 \text { year }$	$\begin{aligned} & \text { E } \\ & \sum \\ & \hline \end{aligned}$		ت $\ddot{\#}$ 0 0 			$$	$\text { Deaths under } 1 \text { year }$
ian，09	911	732	179	231	77	9	ian，10	842	850	－8	168	$\begin{aligned} & 10 \\ & 9 \end{aligned}$	14
feb，09	754	658	96	258	$\begin{aligned} & 10 \\ & 9 \end{aligned}$	7	feb，10	762	689	73	184	77	4
mar，09	825	749	76	135	96	6	mar， 10	809	847	－38	106	92	10
apr，09	685	736	－51	223	95	5	apr，10	741	791	－50	321	94	8
mai，09	867	653	214	558	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	14	mai，10	718	700	18	434	72	7
iun，09	798	606	192	378	62	8	iun，10	815	725	90	150	84	12
iul，09	860	610	250	725	49	7	iul，10	831	651	180	779	82	7
aug，09	876	549	327	$\begin{aligned} & 131 \\ & 3 \end{aligned}$	93	3	aug， 10	878	629	249	$\begin{aligned} & 100 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	6

Source：INSSE

Table 147. The natural movement of Iasi County population during 2011-2012

\sum_{\sum}^{5}			$\begin{aligned} & \text { U. } \\ & \text { Ey } \\ & \text { E } \end{aligned}$		$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{5}{\tilde{D}}$		$\begin{aligned} & \text { च्0 } \\ & 0 \\ & \mathbb{U} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 券 } \\ & \text { N } \\ & \text { E } \\ & \text { 彩 } \\ & \text { Z } \end{aligned}$			Deaths under 1 year
ian,11	806	824	-18	161	57	9	ian, 12	747	812	-65	176	68	7
feb,11	614	705	-91	148	97	8	feb, 12	637	898	-261	161	84	5
mar, 11	672	737	-65	98	117	5	mar, 12	690	818	-128	78	80	7
apr,11	631	673	-42	169	108	5	apr, 12	648	705	-57	208	105	6
mai,11	657	644	13	358	93	4	mai, 12	787	711	76	369	88	8
iun,11	683	584	99	383	81	3	iun, 12	756	672	84	349	90	5
iul,11	787	614	173	655	85	4	iul,12	857	711	146	650	51	12
aug, 11	880	651	229	1016	88	5	aug,12	964	628	336	1047	73	6
sept,11	821	569	252	579	43	5	sept, 12	872	533	339	713	61	4
oct, 11	767	697	70	386	51	9	oct, 12	883	719	164	390	58	10
nov, 11	758	712	46	153	58	10	nov, 12	709	708	1	229	47	4
dec,11	578	737	-159	185	82	4	dec,12	602	755	-153	173	78	8

Source: INSSE
Table 148.The natural movement of Iasi County population during 2013-2014

Source: INSSE

Table 149. The population trends of Iasi County during 2007-2014

Year	Population	Year	Population
2007	854783	2011	865229
2008	857689	2012	868171
2009	860674	2013	877726
2010	863290	2014	892215

Source: INSSE

Figure 265
From figure 265 we can see a sinusoidal evolution of the indicator. Except months an 2007, feb 2007, mar 2007, apr 2007, mai 2007, iun 2007, iul 2007, aug 2007, sept 2007, oct 2007, nov 2007, dec 2007, ian 2008, feb 2008, mar 2008, apr 2008, mai 2008, iun 2008, iul 2008, aug 2008, sept 2008 , oct 2008 , nov 2008 , ian 2009 , feb 2009 , mar 2009, mai 2009, iun 2009 , iul 2009 , aug 2009 , sept 2009 , oct 2009 , feb 2010, mai 2010, iun 2010, iul 2010, aug 2010, sept 2010 , oct 2010 , nov 2010 , mai 2011, iun 2011, iul 2011, aug 2011, sept 2011, oct 2011, nov 2011, mai 2012, iun 2012, iul 2012, aug 2012, sept 2012, oct 2012, nov 2012, ian 2013, iun 2013, iul 2013, aug 2013, sept 2013, oct 2013, nov 2013, ian 2014, feb 2014, mai 2014, iun 2014, iul 2014, aug 2014, sept 2014, oct 2014 , nov 2014 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $1.357297884 \mathrm{x}+864.0372807$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend. Regression analysis relative to indicator "Deceased" gives us an equation: $y=0.3375 x+679.1625$ where x is the number of month (Jan, 2007=1), therefore a pronounced upward trend. Regression analysis relative to indicator "Natural increase" gives us an equation: $y=-$ $1.694797884 x+184.8747807$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend. For the set of values above, the median indicator for "Live births" is 799, for "Deceased" is 704 and for "Natural increase": 96. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births": $(553,734.5,799,872.5,1110)$, for "Deceased": $(533,651,703.5,740.75,898)$ and for "Natural increase": $(-261,-$ $17.25,96,231.75,359)$. The arithmetic mean and the standard deviation for "Live births" are: $(798,110.83)$, for "Deceased": $(696,74.36)$ and for "Natural increase": $(103,149.99)$. This means that with a probability greather than 0.68 "Live births" are in the range $[687,909]$, for "Deceased" in $[622,770]$ and for "Natural increase" in [-47,253].

Percentiles length indicators analysis (Figure 266) show that, indeed the concentration is around the middle of the data.

Figure 266

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 267.

Figure 267
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $\mathrm{y}=-0.019725312 \mathrm{x}+10.16376096$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=0.000446215 x+7.996587719$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.
Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.020154029 x+2.166324561$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 9, for "Deceased/ 10000 inh." is 8 and for "Natural increase/10000 inh.": 1. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/10000 inh.": (6.3,8.3125,9.295,10.125,12.94), for "Deceased/10000 inh.": $(6.14,7.4775,8.095,8.5325,10.34)$ and for "Natural increase/10000 inh.": (-3.01,$0.195,1.12,2.685,4.19)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(9,1.31)$, for "Deceased/10000 inh.": $(8,0.85)$ and for "Natural increase/10000
inh.": (1,1.73). This means that with a probability greather than 0.68 "Live births/10000 inh." are in the range [8,10], for "Deceased/10000 inh." in [7,9] and for "Natural increase/10000 inh." in [-1,3].
Percentiles length indicators analysis (Figure 268) show that, indeed the concentration is around the middle of the data.

Figure 268
A comparison of the indicator "Live births" with the national level shows that it is better than the national, being better in 98.96% cases. For "Deceased" the indicator is better than the national, being better in 98.96% cases. Finally, for "Natural increase", the indicator is better than the national, being better in 100% cases.

Figure 269
Regression analysis relative to indicator "Marriages" gives us an equation: $y=-$ $1.666793272 \mathrm{x}+516.610307$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=0.349742268 \mathrm{x}+55.99583333$ where x is the number of month (Jan, 2007=1), therefore a pronounced upward trend.

For the set of values above, the median indicator for "Marriages" is 375 and for "Divorces" is 77. Also, the distribution of quartiles is for "Marriages": (78,206.75,374.5,586.5,1313) and for "Divorces": ($-8,55.75,77,92,124$). The arithmetic mean and the standard deviation for "Marriages" are: $(436,289.9)$ and for "Divorces": $(73,25.51)$. This means that with a probability greather than 0.68 "Marriages" are in the range [146,726] and for "Divorces" in [47,99].
Percentiles length indicators analysis (Figure 270) show that, indeed the concentration is around the middle of the data.

Figure 270
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh. as in the figure 271.

Figure 271
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.021579083 x+6.075960526$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.Regression analysis relative to indicator "Divorces/10000 inh." gives us an equation: $\mathrm{y}=0.003691129 \mathrm{x}+0.660563596$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": $(0.9,2.35,4.36,6.8075,15.31)$ and for "Divorces/10000 inh.": (-0.09, $0.6475,0.89,1.07,1.41)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(5,3.35)$ and for "Divorces/10000 inh.": $(1,0.29)$. This means that with a probability greather than 0.68 "Marriages/10000 inh." are in the range [2,8] and for "Divorces/ 10000 inh." in $[1,1]$. Percentiles length indicators analysis (Figure 272) show that, indeed the concentration is around the middle of the data.

Figure 272
A comparison of the indicator "Marriages" with the national level shows that it is about the same with the national, being better in 55.21% cases. For "Divorces" the indicator is better than the national, being better in 83.33% cases.

Figure 273

Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.064785676 x+11.0379386$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 7 and the distribution of quartiles is for "Deaths under 1 year": $(2,5,7,10,16)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(8,3.29)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range $[5,11]$.

Percentiles length indicators analysis (Figure 274) show that, indeed the concentration is around the middle of the data.

Figure 274

Figure 275

Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.007889582 \mathrm{x}+1.295561404$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": ($0.23,0.58,0.81,1.16,1.87$). The arithmetic mean and the standard deviation for "Deaths under 1 year/ 100000 inh." are: $(1,0.39)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].

A comparison of the indicator "Deaths under 1 year" with the national level shows that it is worse than the national, being better only in 35.42% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 150. The evolution of Iasi County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	12277	-
2008	13226	7.73
2009	12466	-5.74
2010	12765	2.39
2011	12415	-2.74
2012	12574	1.28
2013	13591	8.08
2014	14011	3.09

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.
Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual
variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.26. Analysis of Natural Movement of Ilfov County Population

Statistics of natural movement corresponding to Ilfov County are the following:
Table 151. The natural movement of Ilfov County population during 2007-2008

$\frac{\tilde{I}}{\sum}$					$\begin{aligned} & \text { 第 } \\ & \frac{3}{6} \end{aligned}$		$\frac{\tilde{I}}{\overline{0}}$	$\begin{aligned} & \stackrel{y y}{\leftrightharpoons} \\ & \frac{0}{3} \\ & \stackrel{y y}{3} \end{aligned}$	$\begin{aligned} & \text { प्0 } \\ & \stackrel{0}{4} \\ & 00 \\ & 0 \\ & 0 \end{aligned}$				
ian, 07	267	298	-31	100	13	2	ian,08	339	339	0	55	21	4
feb,07	248	284	-36	144	12	3	feb,08	256	340	-84	98	29	1
mar,07	239	319	-80	109	17	4	mar,08	250	292	-42	128	28	3
apr,07	253	312	-59	210	18	2	apr,08	281	253	28	89	22	2
mai,07	298	282	16	186	20	3	mai,08	280	271	9	230	14	4
iun, 07	270	303	-33	307	40	1	iun,08	327	302	25	349	26	4
iul, 07	313	279	34	397	7	1	iul,08	374	252	122	380	35	4
aug, 07	318	274	44	318	9	3	aug,08	323	298	25	436	25	6
sept,07	311	254	57	412	36	3	sept,08	360	262	98	320	34	2
oct, 07	306	269	37	293	45	1	oct, 08	339	289	50	247	15	0
nov,07	289	310	-21	165	26	1	nov,08	317	279	38	157	57	4
dec,07	277	309	-32	74	16	3	dec,08	275	330	-55	63	27	4

Source: INSSE
Table 152. The natural movement of Ilfov County population during 2009-2010

Source: INSSE

Table 153．The natural movement of Ilfov County population during 2011－2012

$\begin{aligned} & \overline{\overline{1}} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { 步 } \\ & 2 \\ & 2 \\ & 2 \end{aligned}$			$\begin{aligned} & 00 \\ & \text { 免 } \\ & \text { E } \\ & \text { 己 } \end{aligned}$			$\begin{aligned} & \overline{\bar{E}} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{2}{3} \\ & \frac{2}{3} \end{aligned}$					
ian， 11	242	329	－87	32	11	5	ian， 12	311	306	5	49	6	2
feb， 11	249	304	－55	76	20	1	feb， 12	335	322	13	58	20	1
mar， 11	307	337	－30	58	34	3	mar， 12	330	388	－58	56	23	1
apr， 11	243	302	－59	86	34	2	apr， 12	263	329	－66	126	24	4
mai， 11	304	316	－12	137	21	2	mai， 12	324	334	－10	146	20	4
iun， 11	279	278	1	204	22	4	iun，12	342	300	42	265	21	3
iul， 11	283	282	1	311	35	2	iul， 12	310	341	－31	312	22	2
aug， 11	304	272	32	284	29	3	aug， 12	326	292	34	345	32	5
sept， 11	299	269	30	274	20	1	sept，12	363	238	125	346	26	0
oct， 11	308	283	25	230	36	0	oct， 12	382	318	64	198	20	2
nov， 11	326	309	17	103	33	4	nov， 12	320	303	17	110	44	2
dec，11	432	316	116	58	32	5	dec， 12	282	340	－58	61	28	2

Source：INSSE
Table 154．The natural movement of Ilfov County population during 2013－2014

Source：INSSE

Table 155. The population trends of Ilfov County during 2007-2014

Year	Population	Year	Population
2007	292087	2011	329932
2008	298047	2012	339940
2009	307938	2013	352466
2010	316808	2014	364954

Source: INSSE

Figure 276
From figure 276 we can see a sinusoidal evolution of the indicator. Except months mai 2007, iul 2007, aug 2007, sept 2007, oct 2007, ian 2008, apr 2008, mai 2008, iun 2008, iul 2008, aug 2008, sept 2008, oct 2008, nov 2008, apr 2009, mai 2009, iun 2009, iul 2009, aug 2009, sept 2009, oct 2009 , nov 2009, ian 2010, feb 2010, mar 2010, iun 2010, iul 2010, aug 2010, sept 2010, oct 2010, nov 2010, iun 2011, iul 2011, aug 2011, sept 2011, oct 2011, nov 2011, dec 2011, ian 2012, feb 2012, iun 2012, aug 2012, sept 2012, oct 2012, nov 2012, ian 2013, mai 2013, iun 2013, iul 2013, aug 2013, sept 2013, oct 2013, dec 2013, feb 2014, mai 2014, iun 2014 , iul 2014, aug 2014, sept 2014, oct 2014 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=0.443597396 \mathrm{x}+294.7355263$ where x is the number of month (Jan, 2007=1), therefore a pronounced upward trend.

Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=0.160560228 \mathrm{x}+293.3690789$ where x is the number of month (Jan, 2007=1), therefore an upward trend. Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=0.283037168 \mathrm{x}+1.366447368$ where x is the number of month (Jan, 2007=1), therefore an upward trend.
For the set of values above, the median indicator for "Live births" is 317 , for "Deceased" is 302 and for "Natural increase": 17. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this. Also, the distribution of quartiles is for "Live births": $(239,288.75,317,339.75,432)$, for "Deceased": $(238,279,302,321,388)$ and for "Natural increase": (-93,-31,16.5,51.25,138).

The arithmetic mean and the standard deviation for "Live births" are: $(316,41.08)$, for "Deceased": $(301,29.73)$ and for "Natural increase": $(15,54.53)$. This means that with a probability greather than 0.68 "Live births" are in the range [275,357], for "Deceased" in [271,331] and for "Natural increase" in [-40,70].
Percentiles length indicators analysis (Figure 277) show that, indeed the concentration is around the middle of the data.

Figure 277

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 278.

Figure 278
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.012187873 x+10.34486184$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=-0.019653622 x+10.25163816$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=0.007484672 x+0.092201754$ where x is the number of month (Jan, $2007=1$), therefore an upward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 10 , for "Deceased/ 10000 inh." is 9 and for "Natural increase/ 10000 inh.": 1. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births/10000 inh.": (7.33,8.7725,9.505,10.685,13.09), for "Deceased/10000 inh.":
$(7,8.7075,9.32,9.8075,12.6)$ and for "Natural increase/10000 inh.": (-3.02,$0.91,0.51,1.695,4.48)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(10,1.3)$, for "Deceased/10000 inh.": $(9,1.04)$ and for "Natural increase/ 10000 inh.": $(0,1.68)$. This means that with a probability greather than 0.68 "Live births/10000 inh." are in the range [9,11], for "Deceased/10000 inh." in $[8,10]$ and for "Natural increase/ 10000 inh." in [-2,2]. Percentiles length indicators analysis (Figure 279) show that, indeed the concentration is around the middle of the data.

The length of percentiles for
Natural increase at 10000 inhabitants during 2007-2014

Figure 279
A comparison of the indicator "Live births" with the national level shows that it is better than the national, being better in 92.71% cases. For "Deceased" the indicator is better than the national, being better in 71.88% cases. Finally, for "Natural increase", the indicator is better than the national, being better in 96.88% cases.

Figure 280
Regression analysis relative to indicator "Marriages" gives us an equation: $\mathrm{y}=-$ $0.224511666 x+196.0138158$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=0.117702116 \mathrm{x}+22.64561404$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

For the set of values above, the median indicator for "Marriages" is 149 and for "Divorces" is 26. Also, the distribution of quartiles is for "Marriages": $(32,79.5,149,281,436)$ and for "Divorces": $(5,20,26,34.25,96)$. The arithmetic mean and the standard deviation for "Marriages" are: $(185,114.52)$ and for "Divorces": $(28,14.4)$. This means that with a probability greather than 0.68 "Marriages" are in the range [70,300] and for "Divorces" in [14,42].
Percentiles length indicators analysis (Figure 281) show that, indeed the concentration is around the middle of the data.

Figure 281

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh . as in the figure 282.

Figure 282
Regression analysis relative to indicator "Marriages/10000 inh." gives us an equation: $y=-0.023597328 x+6.892699561$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Divorces/10000 inh." gives us an equation: $\mathrm{y}=0.001239352 \mathrm{x}+0.810412281$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.
For the set of values above, the median indicator for "Marriages/ 10000 inh." is 5 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": $(0.97,2.345,4.785,8.37,14.63)$ and for "Divorces/10000 inh.": $(0.14,0.6,0.82,1.0625,2.63)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(6,3.63)$ and for "Divorces/10000 inh.": $(1,0.43)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range $[2,10]$ and for "Divorces/10000 inh." in $[1,1]$.
Percentiles length indicators analysis (Figure 283) show that, indeed the concentration is around the middle of the data.

Figure 283
A comparison of the indicator "Marriages" with the national level shows that it is better than the national, being better in 63.54% cases. For "Divorces" the indicator is better than the national, being better in 76.04% cases.

Figure 284
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.006992675 x+2.932894737$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 2 and the distribution of quartiles is for "Deaths under 1 year": $(0,1.75,2,4,7)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(3,1.58)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [1,5].
Percentiles length indicators analysis (Figure 285) show that, indeed the concentration is around the middle of the data.

The length of percentiles for Deaths under 1 year during 2007-2014

Figure 285

Figure 286
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $y=-0.004082406 x+1.004350877$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.4975,0.64,1.21,2.27)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/100000 inh." are: $(1,0.5)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,2].

A comparison of the indicator "Deaths under 1 year" with the national level shows that it is about the same with the national, being better in 57.29% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 156. The evolution of Ilfov County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	9931	-
2008	11549	16.29
2009	10745	-6.96
2010	10270	-4.42
2011	10992	7.04

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.27. Analysis of Natural Movement of Maramures County Population

Statistics of natural movement corresponding to Maramures County are the following:

Table 157．The natural movement of Maramures County population during 2007－ 2008

$\begin{aligned} & \text { 吉 } \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { प्0 } \\ & \text { 気 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					$\begin{aligned} & \text { 亏 } \\ & \text { ㄹ } \end{aligned}$	$\begin{aligned} & \frac{y y}{J} \\ & \frac{0}{3} \\ & \stackrel{y y}{3} \end{aligned}$				$\begin{aligned} & \text { O. } \\ & 0.0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	
ian， 07	419	571	－152	357	113	7	ian，08	494	503	－9	271	54	5
feb，07	394	427	－33	325	86	3	feb，08	408	442	－34	161	90	7
mar， 07	417	449	－32	143	84	7	mar，08	445	432	13	162	64	3
apr，07	387	463	－76	304	84	6	apr，08	488	425	63	97	111	3
mai，07	472	468	4	322	79	4	mai，08	394	443	－49	403	106	6
iun， 07	408	395	13	295	77	3	iun，08	418	424	－6	233	57	5
iul，07	495	425	70	538	79	7	iul，08	523	392	131	452	80	2
aug， 07	503	425	78	774	71	2	aug，08	560	410	150	815	78	6
sept，07	484	390	94	485	72	2	sept，08	446	428	18	400	94	5
oct， 07	447	446	1	316	91	3	oct，08	499	471	28	262	46	5
nov， 07	423	443	－20	194	97	7	nov，08	424	421	3	174	68	4
dec，07	434	506	－72	132	83	4	dec，08	414	487	－73	123	71	3

Source：INSSE
Table 158．The natural movement of Maramures County population during 2009－ 2010

Source：INSSE

Table 159. The natural movement of Maramures County population during 20112012

Source: INSSE
Table 160. The natural movement of Maramures County population during 20132014

Source: INSSE

Table 161. The population trends of Maramures County during 2007-2014

Year	Population	Year	Population
2007	536890	2011	532852
2008	535747	2012	531949
2009	535068	2013	530239
2010	534365	2014	528768

Source: INSSE

Figure 287
From figure 287 we can see a sinusoidal evolution of the indicator. Except months mai 2007, iun 2007, iul 2007, aug 2007, sept 2007, oct 2007, mar 2008, apr 2008, iul 2008, aug 2008, sept 2008, oct 2008, nov 2008, feb 2009, iul 2009, aug 2009, sept 2009, aug 2010, iul 2011, aug 2011, sept 2011, mai 2012, iul 2012, aug 2012, sept 2012, iul 2013, aug 2013, iul 2014, aug 2014 the natural increase was negative.
Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=$ $0.886808193 x+458.3122807$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend. Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=0.014093869 \mathrm{x}+452.170614$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-0.900902062 \mathrm{x}+6.141666667$ where x is the number of month (Jan, 2007=1),
therefore a pronounced downward trend. For the set of values above, the median indicator for "Live births" is 415, for "Deceased" is 445 and for "Natural increase": -37. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this. Also, the distribution of quartiles is for "Live births": (280,372,414.5,446.25,646), for "Deceased": $(390,425,444.5,478.25,571)$ and for "Natural increase": $(-208,-100.5,-$ 37,7,214).
The arithmetic mean and the standard deviation for "Live births" are: $(415,66.38)$, for "Deceased": $(453,40.47)$ and for "Natural increase": $(-38,85.84)$. This means that with a probability greather than 0.68 "Live births" are in the range [349,481], for "Deceased" in [413,493] and for "Natural increase" in [-124,48].

Percentiles length indicators analysis (Figure 288) show that, indeed the concentration is around the middle of the data.

Figure 288
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/ 10000 inh . as in the figure 289.

Figure 289
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.015262547 x+8.526379386$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $\mathrm{y}=0.001749593 \mathrm{x}+8.40785307$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.

Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.017016888 x+0.118756579$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 8 , for "Deceased/ 10000 inh." is 8 and for "Natural increase/ 10000 inh.": -1 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/10000 inh.": (5.28,7.005,7.745,8.37,12.14), for "Deceased/10000 inh.": $(7.26,7.9375,8.33,9.015,10.64)$ and for "Natural increase/10000 inh.": (-3.89,-$1.8875,-0.69,0.13,4.02)$.

The arithmetic mean and the standard deviation for "Live births/ 10000 inh." are: $(8,1.23)$, for "Deceased/10000 inh.": $(8,0.76)$ and for "Natural increase/10000 inh.": $(-1,1.61)$. This means that with a probability greather than 0.68 "Live births/10000 inh." are in the range [7,9], for "Deceased/10000 inh." in [7,9] and for "Natural increase/10000 inh." in [-3,1].

Percentiles length indicators analysis (Figure 290) show that, indeed the concentration is around the middle of the data.

Figure 290
A comparison of the indicator "Live births" with the national level shows that it is about the same with the national, being better in 53.13% cases. For "Deceased" the indicator is better than the national, being better in 98.96% cases. Finally, for "Natural increase", the indicator is better than the national, being better in 89.58% cases.

Figure 291
Regression analysis relative to indicator "Marriages" gives us an equation: $y=-$ $0.960967173 x+315.9506579$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.335533098 \mathrm{x}+84.86710526$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Marriages" is 205 and for "Divorces" is 68. Also, the distribution of quartiles is for "Marriages": $(58,131.75,205,357.25,815)$ and for "Divorces": $(17,55,68,82.25,127)$. The arithmetic mean and the standard deviation for "Marriages" are: $(269,182.3)$ and for "Divorces": $(69,21.46)$. This means that with a probability greather than 0.68 "Marriages" are in the range [87,451] and for "Divorces" in [48,90].

Percentiles length indicators analysis (Figure 292) show that, indeed the concentration is around the middle of the data.

Figure 292
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh . as in the figure 293.

Figure 293
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.017104721 x+5.877912281$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $\mathrm{y}=-0.006057854 \mathrm{x}+1.578910088$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/ 10000 inh.": $(1.09,2.475,3.85,6.6625,15.21)$ and for "Divorces/ 10000 inh.": $(0.32,1.0375,1.275,1.535,2.38)$. The arithmetic mean and the standard
deviation for "Marriages/10000 inh." are: $(5,3.41)$ and for "Divorces/10000 inh.": $(1,0.4)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range [2,8] and for "Divorces/10000 inh." in [1,1].
Percentiles length indicators analysis (Figure 294) show that, indeed the concentration is around the middle of the data.

Figure 294
A comparison of the indicator "Marriages" with the national level shows that it is about the same with the national, being better in 52.08% cases. For "Divorces" the indicator is worse than the national, being better only in 28.13% cases.

Figure 295
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.023440043 x+4.782675439$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 3 and the distribution of quartiles is for "Deaths under 1 year": $(0,2,3,5,9)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(4,2.07)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [2,6].
Percentiles length indicators analysis (Figure 296) show that, indeed the concentration is around the middle of the data.

Figure 296

Figure 297
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.004247558 \mathrm{x}+0.889548246$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.3775,0.57,0.9425,1.69)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/ 100000 inh." are: $(1,0.39)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is better than the national, being better in 61.46% cases.
A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 162. The evolution of Maramures County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	6887	-
2008	7095	3.03
2009	6890	-2.88
2010	6704	-2.71
2011	6539	-2.46
2012	7107	8.69
2013	7057	-0.71
2014	7408	4.97

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is a dependence of Live births from GDP in the current year and the regression equation is: $0.7916 \mathrm{dGDP}+-2.7224$. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is a dependence of Deaths under 1 year from GDP offset by 1 year and the regression equation is:-5.4739dGDP+0.9088.

2．28．Analysis of Natural Movement of Mehedinti County Population

Statistics of natural movement corresponding to Mehedinti County are the following：
Table 163．The natural movement of Mehedinti County population during 2007－2008

를	$\begin{aligned} & \stackrel{2}{\leftrightharpoons} \\ & \stackrel{y y}{3} \\ & \stackrel{y y}{3} \end{aligned}$	$\begin{aligned} & \text { प्थ } \\ & \text { \# } \\ & 0 \\ & 0 \end{aligned}$					$\frac{\bar{I}}{\overline{0}}$	$\begin{aligned} & \stackrel{2}{\leftrightharpoons} \\ & \frac{2}{3} \\ & \stackrel{y y}{3} \end{aligned}$				$\begin{aligned} & \text { W్ } \\ & 0.0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
ian， 07	208	439	－231	321	55	6	ian，08	233	420	－187	72	50	4
feb， 07	179	320	－141	593	60	1	feb，08	189	366	－177	99	40	1
mar，07	187	375	－188	323	38	2	mar，08	227	384	－157	81	42	7
apr， 07	188	289	－101	237	40	2	apr，08	190	340	－150	63	41	3
mai， 07	199	328	－129	191	54	4	mai，08	211	332	－121	147	82	4
iun， 07	219	339	－120	189	42	4	iun，08	185	312	－127	178	66	2
iul， 07	222	346	－124	236	37	6	iul，08	233	319	－86	183	25	1
aug，07	225	309	－84	256	31	4	aug，08	217	304	－87	305	31	5
sept，07	212	299	－87	270	22	5	sept，08	262	284	－22	226	7	5
oct， 07	203	366	－163	274	45	3	oct， 08	242	341	－99	259	23	4
nov，07	185	384	－199	167	60	2	nov，08	206	364	－158	134	49	1
dec，07	199	375	－176	128	60	3	dec，08	223	374	－151	89	52	0

Source：INSSE
Table 164．The natural movement of Mehedinti County population during 2009－2010

$\begin{aligned} & \text { 吉 } \\ & \text { 之 } \end{aligned}$	$\begin{aligned} & \frac{5}{3} \\ & \frac{2}{3} \\ & \frac{0}{3} \end{aligned}$				管 8 8 8	$\text { Deaths under } 1 \text { year }$	$\frac{\tilde{\#}}{\bar{K}}$	$\begin{aligned} & \frac{\infty}{ㄹ} \\ & \frac{2}{3} \\ & \stackrel{y}{3} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { \% } \\ & 0 \\ & 0 \\ & \hline \mathbf{S} \\ & \hline \end{aligned}$	
ian，09	236	419	－183	78	58	4	ian， 10	224	403	－179	67	41	2
feb，09	248	360	－112	91	34	6	feb， 10	204	359	－155	52	40	5
mar， 09	224	388	－164	74	47	5	mar， 10	212	379	－167	65	76	0
apr，09	218	360	－142	96	53	7	apr， 10	198	353	－155	108	48	1
mai，09	181	295	－114	153	39	5	mai， 10	192	331	－139	137	55	1
iun，09	233	317	－84	156	38	3	iun， 10	228	326	－98	71	39	6
iul，09	278	309	－31	211	46	4	iul， 10	261	336	－75	220	50	5
aug，09	279	313	－34	286	39	4	aug， 10	248	341	－93	261	56	1
sept， 09	296	275	21	233	14	4	sept， 10	241	278	－37	202	7	3
oct，09	259	343	－84	228	22	6	oct， 10	193	319	－126	166	14	3
nov，09	222	320	－98	99	22	4	nov， 10	216	347	－131	81	34	2

Source：INSSE

Table 165. The natural movement of Mehedinti County population during 2011-2012

Source: INSSE
Table 166. The natural movement of Mehedinti County population during 2013-2014

$\frac{\tilde{7}}{\frac{1}{2}}$		$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{0}{0} \\ & 0 . \end{aligned}$			$\begin{aligned} & \text { © } \\ & \text { © } \\ & \text { B } \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \frac{5}{\overline{0}} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$				
ian, 13	196	329	-133	53	40	1	ian, 14	219	353	-134	59	7	2
feb, 13	140	301	-161	63	20	5	feb, 14	162	311	-149	84	12	2
mar, 13	146	335	-189	78	28	2	mar, 14	169	365	-196	58	29	1
apr, 13	191	331	-140	60	31	0	apr, 14	187	364	-177	79	22	1
mai, 13	193	303	-110	100	27	2	mai, 14	168	335	-167	96	1	1
iun, 13	164	291	-127	156	0	4	iun, 14	163	346	-183	97	39	3
iul, 13	237	310	-73	133	44	2	iul, 14	267	308	-41	177	7	1
aug, 13	244	284	-40	276	17	1	aug, 14	265	319	-54	280	25	2
sept, 13	217	258	-41	183	39	0	sept, 14	248	266	-18	199	14	3
oct, 13	185	344	-159	180	11	2	oct,14	141	315	-174	167	6	0

Source: INSSE

Table 167. The population trends of Mehedinti County during 2007-2014

Year	Population	Year	Population
2007	307612	2011	298143
2008	305042	2012	295975
2009	302821	2013	293999
2010	300756	2014	291674

Source: INSSE

Figure 298
From figure 298 we can see a sinusoidal evolution of the indicator. Except months sept 2009, aug 2011 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $0.295523603 x+224.4995614$ where x is the number of month (Jan, 2007=1), therefore a downward trend.
Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=$ $0.330921053 x+353.2475877$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=0.03539745 \mathrm{x}+-128.7480263$ where x is the number of month (Jan, 2007=1), therefore an upward trend.
For the set of values above, the median indicator for "Live births" is 211 , for "Deceased" is 338 and for "Natural increase": -132 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births": (140,187.75,210.5,230.75,303), for "Deceased": $(255,309.75,337.5,364,439)$ and for "Natural increase": (-232,-167.5,-132,-91.5,21).

The arithmetic mean and the standard deviation for "Live births" are: $(210,34.34)$, for "Deceased": $(337,37.31)$ and for "Natural increase": ($-127,55.99$). This means that with a probability greather than 0.68 "Live births" are in the range [176,244], for "Deceased" in $[300,374]$ and for "Natural increase" in [-183,-71].
Percentiles length indicators analysis (Figure 299) show that, indeed the concentration is around the middle of the data.

Figure 299
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 300.

Figure 300
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $\mathrm{y}=-0.005678717 \mathrm{x}+7.28927193$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased/10000 inh." gives us an equation: $y=-0.004101058 x+11.45640132$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.001602008 \mathrm{x}+-4.165219298$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Live births/ 10000 inh." is 7 , for "Deceased/10000 inh." is 11 and for "Natural increase/10000 inh.": -4. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births/10000 inh.": (4.76,6.2225,6.975,7.64,10.16), for "Deceased/10000 inh.": (8.62,10.39,11.22,12.11,14.27) and for "Natural increase/10000 inh.": (-7.84,-$5.7225,-4.41,-3.035,0.69)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: (7,1.13), for "Deceased/10000 inh.": $(11,1.22)$ and for "Natural increase/10000 inh.": (-4,1.88). This means that with a probability greather than 0.68 "Live
births/10000 inh." are in the range [6,8], for "Deceased/10000 inh." in [10,12] and for "Natural increase/10000 inh." in [-6,-2].
Percentiles length indicators analysis (Figure 301) show that, indeed the concentration is around the middle of the data.

The length of percentiles for
Natural increase at 10000
inhabitants during 2007-2014

Figure 301
A comparison of the indicator "Live births" with the national level shows that it is worse than the national, being better only in 23.96% cases. For "Deceased" the indicator is worse than the national, being better only in 0% cases. Finally, for "Natural increase", the indicator is worse than the national, being better only in 0% cases.

Figure 302
Regression analysis relative to indicator "Marriages" gives us an equation: y=1.172239555x+203.1140351 where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.323996202 \mathrm{x}+50.88048246$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

For the set of values above, the median indicator for "Marriages" is 121 and for "Divorces" is 39. Also, the distribution of quartiles is for "Marriages": (44,77.75, 121,193,593) and for "Divorces": $(0,22.75,39,47.25,82)$. The arithmetic mean and the standard deviation for "Marriages" are: $(146,88.49)$ and for "Divorces": $(35,17.24)$. This means that with a probability greather than 0.68 "Marriages" are in the range [58,234] and for "Divorces" in [18,52].

Percentiles length indicators analysis (Figure 303) show that, indeed the concentration is around the middle of the data.

Figure 303
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh. as in the figure 304.

Figure 304
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $\mathrm{y}=-0.035614826 \mathrm{x}+6.592214912$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/10000 inh." gives us an equation: $y=-0.010165152 x+1.662905702$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/ 10000 inh.": $(1.48,2.58,4.075,6.345,19.28)$ and for "Divorces/10000
inh.": $(0,0.75,1.295,1.5625,2.69)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(5,2.9)$ and for "Divorces/10000 inh.": $(1,0.57)$. This means that with a probability greather than 0.68 "Marriages/10000 inh." are in the range [2,8] and for "Divorces/10000 inh." in [0,2].
Percentiles length indicators analysis (Figure 305) show that, indeed the concentration is around the middle of the data.

Figure 305
A comparison of the indicator "Marriages" with the national level shows that it is better than the national, being better in 60.42% cases. For "Divorces" the indicator is about the same with the national, being better in 52.08% cases.

Figure 306

Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.022809278 x+4.095833333$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year" is 3 and the distribution of quartiles is for "Deaths under 1 year": $(0,1,3,4,8)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(3,1.86)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range $[1,5]$.

Percentiles length indicators analysis (Figure 307) show that, indeed the concentration is around the middle of the data.

Figure 307

Figure 308

Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $y=-0.007062941 \mathrm{x}+1.337344298$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.34,1,1.35,2.68)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/100000 inh." are: $(1,0.62)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [0,2].

A comparison of the indicator "Deaths under 1 year" with the national level shows that it is worse than the national, being better only in 35.42% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 168. The evolution of Mehedinti County GDP during 2007-2014

Year	GDP(in mil. lei 2007)	Variation (\%)
2007	3741	-
2008	3837	2.55
2009	3653	-4.78
2010	3390	-7.2
2011	3355	-1.03
2012	3304	-1.52
2013	3216	-2.68
2014	3229	0.41
,		

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is a dependence of Live births from GDP offset by 1 year and the regression equation is:1.9742dGDP+3.3069. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is a dependence of Natural increase from GDP offset by 2 years and the regression equation is:4.4552dGDP+19.6447. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the
variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is a dependence of Deaths under 1 year from GDP offset by 2 years and the regression equation is:-6.1815dGDP+-31.2189.

2.29. Analysis of Natural Movement Of Mures County Population

Statistics of natural movement corresponding to Mures County are the following:
Table 169. The natural movement of Mures County population during 2007-2008

Source: INSSE

Table 170. The natural movement of Mures County population during 2009-2010

$\frac{5}{\overline{0}}$							$\begin{aligned} & \text { 吉 } \\ & \frac{1}{5} \end{aligned}$	$\begin{aligned} & \frac{y}{\tilde{Z}} \\ & \stackrel{y}{y} \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & \text { प्थ } \\ & \text { \#్ర్ } \\ & 0 \\ & \hline 0 \end{aligned}$				
ian,09	537	752	-215	133	19	8	ian,10	504	627	-123	96	16	10
feb,09	487	576	-89	163	54	9	feb, 10	480	589	-109	139	87	3
mar,09	523	645	-122	104	94	10	mar, 10	572	657	-85	115	77	7
apr,09	488	619	-131	144	80	8	apr, 10	429	589	-160	207	86	8
mai,09	500	559	-59	391	54	4	mai, 10	493	589	-96	379	86	4
iun,09	543	555	-12	257	92	4	iun, 10	536	575	-39	206	88	4
iul,09	569	502	67	475	56	6	iul, 10	513	523	-10	464	55	5
aug, 09	567	549	18	523	63	4	aug, 10	583	580	3	451	81	6
sept,09	626	491	135	407	41	6	sept, 10	528	540	-12	378	37	5
oct,09	530	574	-44	176	86	7	oct, 10	514	616	-102	262	68	5
nov,09	492	592	-100	147	45	4	nov,10	475	621	-146	112	53	4
dec,09	503	638	-135	108	48	1	dec, 10	493	625	-132	97	81	7

Source: INSSE
Table 171. The natural movement of Mures County population during 2011-2012

$\begin{aligned} & \frac{5}{E} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \frac{n}{5} \\ & \underset{y y}{0} \\ & 0 \end{aligned}$						$\begin{aligned} & \frac{5}{1} \\ & \sum \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{n}{5} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					
ian,11	523	624	-101	91	78	6	ian, 12	466	581	-115	64	15	3
feb,11	502	622	-120	83	26	8	feb, 12	435	655	-220	86	69	3
mar, 11	477	668	-191	115	101	4	mar, 12	452	688	-236	101	70	3
apr,11	402	607	-205	97	76	6	apr, 12	441	598	-157	129	76	4
mai, 11	469	595	-126	294	75	6	mai, 12	469	546	-77	288	68	3
iun,11	481	504	-23	277	78	2	iun, 12	489	514	-25	270	61	1
iul,11	543	464	79	399	37	6	iul, 12	526	537	-11	389	35	2
aug, 11	613	503	110	415	53	3	aug, 12	531	522	9	395	27	6
sept, 11	511	510	1	362	64	4	sept, 12	461	437	24	356	112	1
oct,11	502	549	-47	219	49	4	oct, 12	568	556	12	224	43	8
nov,11	456	651	-195	89	63	6	nov, 12	422	525	-103	99	34	5

Source: INSSE

Table 172．The natural movement of Mures County population during 2013－2014

$\begin{aligned} & \overline{\#} \\ & \frac{1}{2} \end{aligned}$		$\begin{aligned} & \overrightarrow{⿹ 勹 巳_{x}^{2}} \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ư } \\ & \stackrel{0}{3} \\ & \stackrel{3}{0} \end{aligned}$		$\frac{5}{5}$	$\begin{aligned} & \frac{n}{工} \\ & \frac{2}{3} \\ & 0 \\ & y \end{aligned}$					
ian， 13	537	610	－73	81	27	8	ian， 14	538	593	－55	91	17	4
feb，13	418	585	－167	93	63	6	feb，14	379	519	－140	94	63	4
mar， 13	460	619	－159	118	69	9	mar， 14	451	639	－188	93	44	4
apr， 13	480	552	－72	111	30	5	apr， 14	439	585	－146	121	66	6
mai， 13	502	497	5	244	83	2	mai， 14	457	563	－106	355	52	3
iun， 13	401	472	－71	301	25	3	iun，14	440	571	－131	273	28	3
iul， 13	572	488	84	377	6	3	iul， 14	540	494	46	387	37	3
aug， 13	475	512	－37	472	29	4	aug， 14	510	532	－22	486	71	5
sept， 13	485	490	－5	314	90	0	sept， 14	585	557	28	343	47	6
oct， 13	569	585	－16	195	35	0	oct，14	487	535	－48	211	41	6
nov， 13	396	556	－180	122	46	2	nov， 14	432	547	－115	126	59	2
dec，13	419	680	－261	88	16	8	dec，14	431	621	－190	86	47	8

Source：INSSE
Table 173．The population trends of Mures County during 2007－2014

Year	Population	Year	Population
2007	605853	2011	602537
2008	605092	2012	601226
2009	604647	2013	599984
2010	603708	2014	598872

Source：INSSE

Figure 309
From figure 309 we can see a sinusoidal evolution of the indicator. Except months aug 2007, sept 2007, iun 2008, iul 2008, aug 2008, sept 2008, oct 2008, iul 2009, aug 2009, sept 2009, aug 2010, iul 2011, aug 2011, sept 2011, aug 2012, sept 2012, oct 2012, mai 2013, iul 2013, iul 2014, sept 2014 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $0.931741725 x+550.3144737$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=-$ $0.307813348 x+588.5122807$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-0.633288117 \mathrm{x}+-37.95219298$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Live births" is 503, for "Deceased" is 576 and for "Natural increase": -71. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births": $(379,468.25,502.5,543,633)$, for "Deceased": $(437,530.25,575.5,619,752)$ and for "Natural increase": (-261,-130.25,-70.5,-10.75,135).

The arithmetic mean and the standard deviation for "Live births" are: $(505,56.87)$, for "Deceased": $(574,56.29)$ and for "Natural increase": $(-69,86.83)$. This means that with a probability greather than 0.68 "Live births" are in the range [448,562], for "Deceased" in $[518,630]$ and for "Natural increase" in [-156,18].

Percentiles length indicators analysis (Figure 310) show that, indeed the concentration is around the middle of the data.

Figure 310
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 311.

Figure 311
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.014293814 x+9.072208333$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=-0.003817146 x+9.700756579$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $\mathrm{y}=-0.010655792 \mathrm{x}+-0.623923246$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Live births/ 10000 inh." is 8 , for "Deceased/ 10000 inh ." is 10 and for "Natural increase/10000 inh.": -1 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/10000 inh.": (6.33,7.7725,8.34,8.9875,10.46), for "Deceased/10000 inh.": $(7.27,8.7675,9.53,10.2525,12.44)$ and for "Natural increase/10000 inh.": (-4.35,-$2.155,-1.17,-0.1775,2.23)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(8,0.93)$, for "Deceased/10000 inh.": $(10,0.93)$ and for "Natural increase/10000
inh.": (-1,1.44). This means that with a probability greather than 0.68 "Live births/ 10000 inh." are in the range [7,9], for "Deceased/10000 inh." in [9,11] and for "Natural increase/10000 inh." in [-2,0].
Percentiles length indicators analysis (Figure 312) show that, indeed the concentration is around the middle of the data.

Figure 312
A comparison of the indicator "Live births" with the national level shows that it is better than the national, being better in 89.58% cases. For "Deceased" the indicator is worse than the national, being better only in 36.46% cases. Finally, for "Natural increase", the indicator is better than the national, being better in 82.29% cases.

Figure 313
Regression analysis relative to indicator "Marriages" gives us an equation: $\mathrm{y}=-$ $2.325379816 x+378.6767544$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.252963918 x+71.63333333$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

For the set of values above, the median indicator for "Marriages" is 222 and for "Divorces" is 63. Also, the distribution of quartiles is for "Marriages": ($64,115,221.5,387,1159$) and for "Divorces": $(3,42.5,63,77.25,112)$. The arithmetic mean and the standard deviation for "Marriages" are: $(266,174.86)$ and for "Divorces": $(59,24.61)$. This means that with a probability greather than 0.68 "Marriages" are in the range $[91,441]$ and for "Divorces" in $[34,84]$.

Percentiles length indicators analysis (Figure 314) show that, indeed the concentration is around the middle of the data.

Figure 314
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages $/ 10000$ inh. and Divorces/ 10000 inh. as in the figure 315.

Figure 315
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.037880087 x+6.245309211$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/10000 inh." gives us an equation: $y=-0.00407481 x+1.181482456$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": $(1.06,1.9075,3.68,6.4075,19.13)$ and for "Divorces/10000 inh.": $(0.05,0.71,1.04,1.2825,1.86)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,2.89)$ and for "Divorces/10000 inh.": $(1,0.41)$. This means that with a probability greather than 0.68 "Marriages/10000 inh." are in the range [1,7] and for "Divorces/10000 inh." in [1,1].

Percentiles length indicators analysis (Figure 316) show that, indeed the concentration is around the middle of the data.

Figure 316
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 26.04% cases. For "Divorces" the indicator is better than the national, being better in 72.92% cases.

Figure 317
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.030453066 x+6.643640351$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year" is 5 and the distribution of quartiles is for "Deaths under 1 year": $(0,4,5,6.25,10)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(5,2.32)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [3,7].
Percentiles length indicators analysis (Figure 318) show that, indeed the concentration is around the middle of the data.

Figure 318

Figure 319
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.004961272 \mathrm{x}+1.097809211$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.66,0.83,1.04,1.66)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/ 100000 inh." are: $(1,0.38)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].

A comparison of the indicator "Deaths under 1 year" with the national level shows that it is about the same with the national, being better in 43.75% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 174. The evolution of Mures County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	9510	-
2008	9816	3.22
2009	9050	-7.81
2010	8635	-4.58
2011	8576	-0.68
2012	9452	10.22
2013	9409	-0.46
2014	9823	4.41
Source: INSSE and own calculations		

In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is a dependence of Marriages from GDP offset by 2 years and the regression equation is: $0.7835 \mathrm{dGDP}+-2.362$. Searching dependence annual variations of "Divorces" from GDP, we find that there is a dependence of Divorces from GDP offset by 1 year and the regression equation is:-1.8414dGDP+-4.906. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.30. Analysis of Natural Movement of Neamt County Population

Statistics of natural movement corresponding to Neamt County are the following:

Table 175. The natural movement of Neamt County population during 2007-2008

Source: INSSE
Table 176. The natural movement of Neamt County population during 2009-2010

Source: INSSE

Table 177. The natural movement of Neamt County population during 2011-2012

Source: INSSE
Table 178. The natural movement of Neamt County population during 2013-2014

Source: INSSE

Table 179. The population trends of Neamt County during 2007-2014

Year	Population	Year	Population
2007	593893	2011	588809
2008	592673	2012	586824
2009	591338	2013	584895
2010	590307	2014	582445

Source: INSSE

Figure 320
From figure 320 we can see a sinusoidal evolution of the indicator. Except months iun 2007, iul 2007, aug 2007, sept 2007, iul 2008, aug 2008, sept 2008, iul 2009, aug 2009, sept 2009, aug 2010, aug 2011, sept 2011, aug 2012, sept 2012, aug 2013, iul 2014, aug 2014 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $0.665056972 x+464.2135965$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Deceased" gives us an equation: $y=0.252651926 x+529.4859649$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-0.917708899 \mathrm{x}+-65.27236842$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
For the set of values above, the median indicator for "Live births" is 429 , for "Deceased" is 551 and for "Natural increase": -123 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births": $(325,374.75,429,475,577)$, for "Deceased": $(387,497.25,550.5,582.25,652)$ and for "Natural increase": $(-303,-$ 209,-122.5,-35.25,120).
The arithmetic mean and the standard deviation for "Live births" are: $(432,65.27)$, for "Deceased": $(542,58.07)$ and for "Natural increase": $(-110,108.12)$. This means that with a probability greather than 0.68 "Live births" are in the range [367,497], for "Deceased" in $[484,600]$ and for "Natural increase" in [-218,-2].
Percentiles length indicators analysis (Figure 321) show that, indeed the concentration is around the middle of the data.

Figure 321

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 322.

Figure 322
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.00961191 x+7.799719298$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=0.006316739 x+8.893846491$ where x is the number of month (Jan, $2007=1$), therefore an upward trend.
Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.015944995 x+-1.09364693$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Live births/10000 inh." is 7, for "Deceased/ 10000 inh." is 9 and for "Natural increase/ 10000 inh.": -2. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/10000 inh.": (5.52,6.355,7.28,8.0425,9.83), for "Deceased/10000 inh.": $(6.59,8.44,9.335,9.99,11.11)$ and for "Natural increase/10000 inh.": (-5.16,-$3.5475,-2.075,-0.5975,2.02)$.
The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(7,1.1)$, for "Deceased/10000 inh.": $(9,0.99)$ and for "Natural increase/10000 inh.":
$(-2,1.84)$. This means that with a probability greather than 0.68 "Live births/ 10000 inh." are in the range [6,8], for "Deceased/10000 inh." in [8,10] and for "Natural increase/10000 inh." in [-4,0].
Percentiles length indicators analysis (Figure 323) show that, indeed the concentration is around the middle of the data.

Figure 323
A comparison of the indicator "Live births" with the national level shows that it is worse than the national, being better only in 25% cases. For "Deceased" the indicator is about the same with the national, being better in 59.38% cases. Finally, for "Natural increase", the indicator is worse than the national, being better only in 36.46% cases.

Figure 324
Regression analysis relative to indicator "Marriages" gives us an equation: $\mathrm{y}=-$ $1.486950624 x+335.6796053$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Divorces" gives us an equation: $y=-$ $0.427177157 x+107.6451754$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Marriages" is 183 and for "Divorces" is 83. Also, the distribution of quartiles is for "Marriages": $(37,93,182.5,331.75,1151)$ and for "Divorces": $(38,61,83,104.25,243)$. The arithmetic mean and the standard deviation for "Marriages" are: $(264,241.91)$ and for "Divorces": $(87,33.79)$. This means that with a probability greather than 0.68 "Marriages" are in the range $[22,506]$ and for "Divorces" in $[53,121]$.
Percentiles length indicators analysis (Figure 325) show that, indeed the concentration is around the middle of the data.

Figure 325

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages $/ 10000$ inh. and Divorces/10000 inh. as in the figure 326.

Figure 326
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.024184889 x+5.643800439$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=-0.006949878 x+1.811756579$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Marriages/ 10000 inh." is 3 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": ($0.63,1.5925,3.11,5.645,19.42$) and for "Divorces/10000 inh.": $(0.65,1.0375,1.415,1.7725,4.13)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,4.1)$ and for "Divorces/10000 inh.": $(1,0.57)$. This means that with a probability greather than 0.68 "Marriages/10000 inh." are in the range [0,8] and for "Divorces/10000 inh." in [0,2].

Percentiles length indicators analysis (Figure 327) show that, indeed the concentration is around the middle of the data.

Figure 327
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 18.75% cases. For "Divorces" the indicator is worse than the national, being better only in 26.04% cases.

Figure 328
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.018970429 x+5.263815789$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year" is 4 and the distribution of quartiles is for "Deaths under 1 year": $(0,3,4,6,10)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(4,2.1)$
which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range $[2,6]$.

Percentiles length indicators analysis (Figure 329) show that, indeed the concentration is around the middle of the data.

Figure 329

Figure 330
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $y=-0.003048426 x+0.884932018$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.51,0.68,1.01,1.69)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/100000 inh." are: $(1,0.36)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is about the same with the national, being better in 48.96% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 180. The evolution of Neamt County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	6517	-
2008	6592	1.16
2009	6177	-6.3
2010	5701	-7.69
2011	5722	0.36
2012	5942	3.85
2013	6093	2.54
2014	6013	-1.31

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is a dependence of Live births from GDP offset by 1 year and the regression equation is: $0.8859 \mathrm{dGDP}+-0.8957$. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is a dependence of Marriages from GDP offset by 1 year and the regression equation is:1.0502dGDP+-3.3141. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.31. Analysis of Natural Movement of Olt County Population

Statistics of natural movement corresponding to Olt County are the following:
Table 181. The natural movement of Olt County population during 2007-2008

Source: INSSE
Table 182. The natural movement of Olt County population during 2009-2010

$\sum_{\sum}^{\text {플 }}$	$\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ت} \\ & 0 \\ & \ddot{\#} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { © } \\ & 0 . \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		产	$\begin{aligned} & \text { n } \\ & \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$	
ian,09	305	629	-324	67	6	6	ian,10	264	656	-392	73	0	5
feb,09	295	567	-272	117	54	3	feb, 10	295	589	-294	69	58	2
mar, 09	324	633	-309	71	52	3	mar, 10	341	585	-244	59	54	5
apr,09	301	545	-244	114	54	5	apr,10	266	591	-325	154	50	1
mai,09	285	531	-246	257	73	3	mai,10	256	532	-276	199	71	2
iun,09	331	497	-166	198	60	3	iun,10	307	520	-213	79	58	3
iul,09	381	470	-89	320	22	5	iul,10	309	484	-175	322	24	3
aug,09	393	419	-26	423	91	2	aug,10	372	465	-93	365	89	5
sept, 09	372	443	-71	338	10	3	sept,10	312	413	-101	320	13	3
oct,09	353	517	-164	342	7	6	oct, 10	301	545	-244	292	31	2
nov,09	305	600	-295	156	43	1	nov, 10	340	505	-165	81	36	5
dec,09	323	671	-348	77	87	3	dec,10	266	615	-349	48	115	4

Source: INSSE

Table 183. The natural movement of Olt County population during 2011-2012

\sum_{i}^{5}		$\begin{aligned} & \text { U్ } \\ & \text { W్ } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Natural increase		$\begin{aligned} & \text { :0 } \\ & 0 . \\ & 0 \\ & \vdots \\ & \hline 0 \\ & \hline \end{aligned}$		$\sum_{\sum}^{\tilde{Z}}$		$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { O} \\ & 0.0 \\ & 0 \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$	
ian,11	258	592	-334	59	0	4	ian,12	268	612	-344	55	3	2
feb,11	266	588	-322	58	51	1	feb,12	260	608	-348	53	35	4
mar,11	266	647	-381	43	85	0	mar, 12	290	691	-401	44	30	1
apr,11	221	549	-328	58	62	2	apr, 12	203	605	-402	104	45	6
mai,11	274	523	-249	174	50	4	mai, 12	304	493	-189	131	51	3
iun,11	257	475	-218	155	43	0	iun,12	245	495	-250	161	57	3
iul,11	319	472	-153	308	18	4	iul,12	301	542	-241	266	15	4
aug,11	340	397	-57	353	73	5	aug, 12	316	461	-145	393	64	4
sept,11	302	440	-138	301	18	0	sept, 12	369	422	-53	345	27	3
oct,11	284	505	-221	224	21	0	oct, 12	365	434	-69	230	27	1
nov,11	274	518	-244	84	42	1	nov, 12	279	508	-229	87	21	2
dec,11	251	545	-294	60	44	2	dec, 12	229	586	-357	47	35	1

Source: INSSE
Table 184. The natural movement of Olt County population during 2013-2014

\sum_{\sum}^{5}		$\begin{aligned} & \ddot{0} \\ & \ddot{\#} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \text { \% } \\ & 0.0 \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$		\sum_{\sum}^{E}	$\begin{aligned} & \stackrel{\infty}{ \pm} \\ & \frac{\square}{0} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & \ddot{\#} \\ & \hline \\ & 0 \\ & \hline \end{aligned}$	asearout permen			
ian,13	324	568	-244	58	6	2	ian,14	278	590	-312	69	1	3
feb, 13	240	561	-321	48	42	3	feb,14	243	568	-325	55	44	1
mar, 13	250	544	-294	62	32	3	mar,14	223	594	-371	55	52	4
apr, 13	229	513	-284	63	59	3	apr,14	267	609	-342	104	44	1
mai,13	230	486	-256	162	46	3	mai,14	230	541	-311	171	42	5
iun, 13	229	447	-218	178	32	3	iun,14	282	484	-202	156	25	2
iul, 13	305	460	-155	230	3	1	iul,14	304	450	-146	268	15	1
aug,13	307	437	-130	386	50	2	aug,14	286	479	-193	432	60	2
sept, 13	320	449	-129	278	18	4	sept,14	323	397	-74	278	10	0
oct, 13	292	547	-255	218	31	2	oct, 14	345	573	-228	236	25	2
nov, 13	253	492	-239	105	39	5	nov,14	277	526	-249	103	35	2
$\mathrm{dec}, 13$	257	641	-384	45	33	1	dec,14	292	627	-335	62	21	3

Source: INSSE

Table 185. The population trends of Olt County during 2007-2014

Year	Population	Year	Population
2007	488146	2011	472009
2008	484604	2012	467951
2009	480287	2013	463568
2010	476608	2014	459212

Source: INSSE

Figure 331
From figure 331 we can see a sinusoidal evolution of the indicator. \#VALUE!
Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $0.634122355 x+328.9320175$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=-$ $0.371819045 x+554.085307$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $y=-0.26230331 \mathrm{x}+-225.1532895$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

For the set of values above, the median indicator for "Live births" is 301, for "Deceased" is 539 and for "Natural increase": -247. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births": (203,266.75,301,323.25,393), for "Deceased": $(397,482.75,538.5,588.25,740)$ and for "Natural increase": $(-402,-311.25,-246.5,-165.75,-26)$.

The arithmetic mean and the standard deviation for "Live births" are: $(298,41.63)$, for "Deceased": $(536,72.33)$ and for "Natural increase": $(-238,91.36)$. This means that with a probability greather than 0.68 "Live births" are in the range [256,340], for "Deceased" in [464,608] and for "Natural increase" in [-329,-147].

Percentiles length indicators analysis (Figure 332) show that, indeed the concentration is around the middle of the data.

Figure 332
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 333.

Figure 333
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.008842037 x+6.713109649$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased/10000 inh." gives us an equation: $\mathrm{y}=0.000318638 \mathrm{x}+11.29392105$ where x is the number of month (Jan, 2007=1), therefore a very small upward trend.
Regression analysis relative to indicator "Natural increase/10000 inh." gives us an equation: $y=-0.00915681 x+-4.580269737$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 6 , for "Deceased/10000 inh." is 11 and for "Natural increase/10000 inh.": -5 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births/ 10000 inh.": (4.34,5.6375,6.28,6.7525,8.18), for "Deceased/10000 inh.": $(8.41,10.135,11.29,12.465,15.27)$ and for "Natural increase/10000 inh.": (-8.59,-$6.6975,-5.13,-3.46,-0.54)$.
The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(6,0.83)$, for "Deceased/10000 inh.": $(11,1.52)$ and for "Natural increase/10000 inh.": $(-5,1.95)$. This means that with a probability greather than 0.68 "Live
births/10000 inh." are in the range [5,7], for "Deceased/10000 inh." in [9,13] and for "Natural increase/10000 inh." in [-7,-3].
Percentiles length indicators analysis (Figure 334) show that, indeed the concentration is around the middle of the data.

Figure 334
A comparison of the indicator "Live births" with the national level shows that it is worse than the national, being better only in 4.17% cases. For "Deceased" the indicator is worse than the national, being better only in 0% cases. Finally, for "Natural increase", the indicator is worse than the national, being better only in 0% cases.

Figure 335
Regression analysis relative to indicator "Marriages" gives us an equation: $y=-$ $1.58817146 x+275.2763158$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.270048833 \mathrm{x}+55.68070175$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

For the set of values above, the median indicator for "Marriages" is 167 and for "Divorces" is 43. Also, the distribution of quartiles is for "Marriages": $(43,72.5,166.5,300.25,576)$ and for "Divorces": $(0,24.75,43,58,115)$. The arithmetic mean and the standard deviation for "Marriages" are: $(198,130.83)$ and for "Divorces": $(43,24.4)$. This means that with a probability greather than 0.68 "Marriages" are in the range [67,329] and for "Divorces" in [19,67].

Percentiles length indicators analysis (Figure 336) show that, indeed the concentration is around the middle of the data.

Figure 336
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh. as in the figure 337.

Figure 337
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.030085458 x+5.623311404$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=-0.005066196 x+1.140710526$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1 . Also, the distribution of quartiles is for "Marriages/10000 inh.": $(0.91,1.5225,3.59,6.2075,11.8)$ and for "Divorces/10000 inh.": $(0,0.53,0.905,1.22,2.41)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,2.72)$ and for "Divorces/10000 inh.": $(1,0.51)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range [1,7] and for "Divorces/10000 inh." in [0,2].

Percentiles length indicators analysis (Figure 338) show that, indeed the concentration is around the middle of the data.

Figure 338
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 17.71% cases. For "Divorces" the indicator is better than the national, being better in 73.96% cases.

Figure 339
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.023379002 x+4.185964912$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year" is 3 and the distribution of quartiles is for "Deaths under 1 year": $(0,2,3,4,8)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(3,1.74)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [1,5].
Percentiles length indicators analysis (Figure 340) show that, indeed the concentration is around the middle of the data.

Figure 340

Figure 341
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $y=-0.004434685 x+0.856436404$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.42,0.635,0.85,1.65)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/100000 inh." are: $(1,0.36)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is better than the national, being better in 64.58% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 186. The evolution of Olt County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	5453	-
2008	5769	5.8
2009	5050	-12.47
2010	5618	11.26
2011	5439	-3.19
2012	5558	2.18
2013	5572	0.26
2014	5752	3.23

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.

Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Natural increase" from GDP, we find that there is a dependence of Natural increase from GDP in the current year and the regression equation is: $0.7436 \mathrm{dGDP}+1.4146$. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.32. Analysis of Natural Movement of Prahova County Population

Statistics of natural movement corresponding to Prahova County are the following:

Table 187. The natural movement of Prahova County population during 2007-2008

Source: INSSE
Table 188. The natural movement of Prahova County population during 2009-2010

$\begin{aligned} & \text { 프́ } \\ & \sum \end{aligned}$		$\begin{aligned} & \ddot{\ddot{0}} \\ & 0 \\ & \ddot{\#} \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$			O 0 0 0 0 1		${ }_{i}^{\text {프ँ }}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	
ian,09	619	993	-374	159	21	8	ian,10	596	918	-322	140	32	5
feb, 09	635	812	-177	213	154	3	feb,10	568	846	-278	145	79	5
mar,09	631	985	-354	134	196	5	mar, 10	614	962	-348	98	126	9
apr,09	571	845	-274	209	208	6	apr,10	540	792	-252	331	137	10
mai,09	581	827	-246	324	131	2	mai,10	567	821	-254	279	83	3
iun, 09	640	812	-172	428	182	9	iun,10	613	819	-206	178	87	0
iul,09	765	738	27	728	129	5	iul,10	623	718	-95	689	40	4
aug,09	731	758	-27	784	141	10	aug,10	676	790	-114	616	86	6
sept,09	768	708	60	709	161	5	sept, 10	631	750	-119	594	63	8
oct, 09	753	845	-92	581	53	8	oct,10	553	826	-273	420	194	4
nov,09	585	815	-230	257	48	5	nov, 10	637	808	-171	170	152	6
dec,09	628	974	-346	129	57	4	dec,10	579	913	-334	114	166	7

Source: INSSE

Table 189. The natural movement of Prahova County population during 2011-2012

플	$\begin{aligned} & \frac{\infty}{\#} \\ & \frac{2}{0} \\ & \frac{y}{2} \end{aligned}$	$\begin{aligned} & \text { U} \\ & 0 \\ & \tilde{W} \\ & 0 \\ & 0 \\ & \AA \\ & \hline \end{aligned}$			$\begin{aligned} & \text { on } \\ & \text { O} \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\text { Deaths under } 1 \text { year }$	\sum_{i}^{E}		$$			$\begin{aligned} & \text { \% } \\ & 0.0 \\ & \vdots \\ & \vdots \\ & \hline 0 \end{aligned}$	$\text { Deaths under } 1 \text { year }$
ian,11	548	927	-379	122	14	7	ian,12	538	919	-381	125	24	6
feb,11	492	833	-341	147	158	5	feb, 12	529	1029	-500	124	143	2
mar,11	527	962	-435	87	162	6	mar, 12	484	981	-497	108	82	4
apr,11	432	865	-433	169	142	4	apr,12	449	855	-406	222	97	7
mai,11	529	821	-292	210	190	2	mai,12	584	827	-243	205	133	5
iun,11	567	733	-166	361	95	5	iun,12	509	817	-308	391	81	8
iul,11	537	778	-241	617	163	7	iul,12	615	847	-232	529	62	7
aug,11	676	747	-71	593	104	5	aug, 12	653	747	-94	648	97	7
sept, 11	577	687	-110	569	65	0	sept,12	560	670	-110	682	77	3
oct,11	591	801	-210	374	65	7	oct,12	600	792	-192	399	57	4
nov,11	505	767	-262	162	74	10	nov, 12	501	814	-313	188	71	5
$\mathrm{dec}, 11$	517	875	-358	114	133	9	dec, 12	456	859	-403	115	90	4

Source: INSSE
Table 190. The natural movement of Prahova County population during 2013-2014

\sum_{\sum}^{E}	$\begin{aligned} & \stackrel{\infty}{\hbar} \\ & \frac{\pi}{0} \\ & \stackrel{y y}{n} \end{aligned}$	$\begin{aligned} & \text { ت} \\ & 0 \\ & \ddot{\#} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & \vdots \\ & \vdots \\ & \hline 0 \end{aligned}$		\sum_{\sum}^{5}		$\begin{aligned} & \text { U్} \\ & 0 \\ & \ddot{\#} \\ & 0 \\ & 0 \\ & \underset{O}{0} \end{aligned}$			$\begin{aligned} & \text { an } \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \\ & \hline \end{aligned}$	$\text { леә } \mathcal{I} \text { ләрun sqłeә } \mathbb{I}$
ian,13	564	864	-300	98	11	4	ian,14	568	900	-332	114	11	7
feb,13	444	834	-390	130	85	5	feb,14	459	847	-388	148	93	1
mar, 13	454	903	-449	151	139	4	mar,14	463	915	-452	139	94	5
apr,13	507	905	-398	102	112	2	apr,14	535	791	-256	162	125	1
mai, 13	473	742	-269	171	147	3	mai,14	503	802	-299	280	104	1
iun, 13	460	794	-334	461	72	2	iun,14	534	690	-156	362	110	2
iul,13	626	725	-99	494	67	3	iul,14	682	722	-40	614	149	11
aug, 13	588	689	-101	762	107	5	aug,14	583	700	-117	757	53	5
sept, 13	580	767	-187	485	60	4	sept,14	602	785	-183	547	50	6
oct,13	628	887	-259	419	69	5	oct, 14	586	865	-279	419	59	9
nov, 13	492	775	-283	211	64	4	nov, 14	497	788	-291	238	106	3
dec,13	475	895	-420	137	70	2	dec,14	460	964	-504	132	86	2

Source: INSSE

Table 191. The population trends of Prahova County during 2007-2014

Year	Population	Year	Population
2007	840017	2011	830370
2008	838485	2012	826511
2009	836146	2013	821879
2010	833823	2014	817954

Source: INSSE

Figure 342
From figure 342 we can see a sinusoidal evolution of the indicator. Except months aug 2007, iul 2009, sept 2009 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: $\mathrm{y}=-$ $1.490721649 \mathrm{x}+655.55$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=-$ $0.017722463 x+823.2449561$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=-1.472999186 \mathrm{x}+-167.6949561$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

For the set of values above, the median indicator for "Live births" is 584, for "Deceased" is 818 and for "Natural increase": -255 . This means that the probability
that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births": $(432,532.75,583.5,631,768)$, for "Deceased": $(670,765,817.5,874.25,1029)$ and for "Natural increase": $(-504,-$ $332.5,-255,-146.25,60)$.
The arithmetic mean and the standard deviation for "Live births" are: $(583,77.18)$, for "Deceased": $(822,80.71)$ and for "Natural increase": $(-239,128.15)$. This means that with a probability greather than 0.68 "Live births" are in the range [506,660], for "Deceased" in $[741,903]$ and for "Natural increase" in [-367,-111].

Percentiles length indicators analysis (Figure 343) show that, indeed the concentration is around the middle of the data.

The length of pe rcentiles for Natural increase during 2007 2014

Figure 343
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/ 10000 inh . as in the figure 344.

Figure 344
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=-0.015716766 x+7.779971491$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=0.002910404 x+9.760824561$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.

Regression analysis relative to indicator "Natural increase/ 10000 inh." gives us an equation: $y=-0.018633003 x+-1.980361842$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 7, for "Deceased/10000 inh." is 10 and for "Natural increase/10000 inh.": -3. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births/10000 inh.": (5.2,6.4525,6.995,7.57,9.18), for "Deceased/10000 inh.": (8.01,9.115,9.835,10.4875,12.45) and for "Natural increase/10000 inh.": (-6.16,-$4.0225,-3.08,-1.7425,0.72)$.

The arithmetic mean and the standard deviation for "Live births/10000 inh." are: $(7,0.9)$, for "Deceased/10000 inh.": $(10,0.98)$ and for "Natural increase/10000 inh.": ($-3,1.55$). This means that with a probability greather than 0.68 "Live
births/10000 inh." are in the range [6,8], for "Deceased/10000 inh." in [9,11] and for "Natural increase/10000 inh." in [-5,-1].
Percentiles length indicators analysis (Figure 345) show that, indeed the concentration is around the middle of the data.

Figure 345
A comparison of the indicator "Live births" with the national level shows that it is worse than the national, being better only in 5.21% cases. For "Deceased" the indicator is worse than the national, being better only in 10.42% cases. Finally, for "Natural increase", the indicator is worse than the national, being better only in 4.17% cases.

Figure 346
Regression analysis relative to indicator "Marriages" gives us an equation: $\mathrm{y}=-$ $1.940626696 x+456.4953947$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.

Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=-$ $0.60462561 x+135.9493421$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
For the set of values above, the median indicator for "Marriages" is 298 and for "Divorces" is 97. Also, the distribution of quartiles is for "Marriages": ($87,150.25,297.5,553.25,1024$) and for "Divorces": $(11,68.5,97,141.25,307)$. The arithmetic mean and the standard deviation for "Marriages" are: $(362,234.63)$ and for "Divorces": $(107,53.57)$. This means that with a probability greather than 0.68 "Marriages" are in the range [127,597] and for "Divorces" in [53,161].
Percentiles length indicators analysis (Figure 347) show that, indeed the concentration is around the middle of the data.

Figure 347
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh. as in the figure 348.

Figure 348
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.021872423 x+5.417583333$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=-0.006878663 x+1.614969298$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": (1.05,1.8325,3.54,6.73,12.21) and for "Divorces/10000 inh.": $(0.13,0.82,1.17,1.695,3.66)$. The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(4,2.81)$ and for "Divorces/10000 inh.": $(1,0.64)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range [1,7] and for "Divorces/10000 inh." in [0,2].

Percentiles length indicators analysis (Figure 349) show that, indeed the concentration is around the middle of the data.

Figure 349
A comparison of the indicator "Marriages" with the national level shows that it is worse than the national, being better only in 31.25% cases. For "Divorces" the indicator is about the same with the national, being better in 46.88% cases.

Figure 350
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.026146229 x+6.611842105$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year" is 5 and the distribution of quartiles is for "Deaths under 1 year": $(0,3.75,5,7,11)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(5,2.59)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range $[2,8]$.

Percentiles length indicators analysis (Figure 351) show that, indeed the concentration is around the middle of the data.

Figure 351

Figure 352
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.002965003 \mathrm{x}+0.786094298$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": $(0,0.4525,0.6,0.85,1.34)$. The arithmetic mean and the standard deviation for "Deaths under 1 year/ 100000 inh." are: $(1,0.31)$ which means that with a probability greather than 0.68 "Deaths under 1 year/100000 inh." are in the range [1,1].

A comparison of the indicator "Deaths under 1 year" with the national level shows that it is better than the national, being better in 69.79% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 192. The evolution of Prahova County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	15689	-
2008	17154	9.34
2009	16784	-2.16
2010	14466	-13.81
2011	15628	8.03
2012	15350	-1.78
2013	18076	17.76
2014	22170	22.65

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.
Searching dependence annual variations of "Live births" from GDP, we find that there is a dependence of Live births from GDP offset by 1 year and the regression equation is: $0.4717 \mathrm{dGDP}+3.813$. Searching dependence annual variations of "Deceased" from GDP, we find that there is a dependence of Deceased from GDP offset by 2 years and the regression equation is:-0.2596dGDP+-0.6757. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

2.33. Analysis of Natural Movement of Salaj County Population

Statistics of natural movement corresponding to Salaj County are the following:

Table 193. The natural movement of Salaj County population during 2007-2008

Source: INSSE
Table 194. The natural movement of Salaj County population during 2009-2010

Source: INSSE

Table 195. The natural movement of Salaj County population during 2011-2012

$\begin{aligned} & \text { I } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{\pi}{n} \\ & 0 \\ & 0 \\ & y \end{aligned}$	ت O. 0 0 0			$\begin{aligned} & 00 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{\#} \\ & \stackrel{0}{\circ} \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 00 \\ & 0.0 \\ & \vdots \\ & \text { B } \end{aligned}$	
ian, 11	197	297	-100	36	41	2	ian,12	197	265	-68	40	33	2
feb,11	203	289	-86	46	35	0	feb, 12	192	280	-88	54	34	4
mar,11	196	279	-83	29	32	3	mar,12	197	303	-106	36	32	2
apr,11	193	238	-45	46	24	0	apr,12	205	255	-50	57	35	3
mai,11	209	279	-70	140	30	3	mai,12	253	244	9	115	29	3
iun,11	194	211	-17	102	20	6	iun,12	178	234	-56	100	29	2
iul,11	205	207	-2	172	14	4	iul, 12	252	257	-5	169	30	2
aug,11	242	221	21	229	19	4	aug,12	262	230	32	235	24	2
sept, 11	229	222	7	169	20	5	sept, 12	202	207	-5	187	22	1
oct,11	193	261	-68	119	23	1	oct, 12	203	221	-18	138	32	1
nov,11	201	236	-35	48	39	3	nov,12	217	252	-35	58	27	2
dec, 11	193	297	-104	27	30	0	dec,12	191	285	-94	37	34	4

Source: INSSE
Table 196. The natural movement of Salaj County population during 2013-2014

$\sum_{i}^{\text {N }}$			Natural increase						$\begin{aligned} & \text { U్ } \\ & \text { : } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ơ } \\ & 0 . \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	
ian, 13	227	285	-58	53	43	0	ian,14	209	273	-64	40	24	3
feb,13	157	256	-99	39	32	3	feb,14	189	246	-57	62	23	2
mar, 13	184	261	-77	65	35	3	mar, 14	203	257	-54	56	32	1
apr,13	196	262	-66	51	25	2	apr,14	185	254	-69	56	27	3
mai,13	217	251	-34	113	28	3	mai,14	176	237	-61	179	18	3
iun,13	179	195	-16	145	23	2	iun,14	217	235	-18	110	23	2
iul, 13	256	244	12	168	20	1	iul,14	256	236	20	164	31	3
aug, 13	262	210	52	251	11	2	aug,14	265	205	60	250	20	2
sept,13	238	224	14	134	14	1	sept,14	234	231	3	132	12	3
oct,13	207	275	-68	126	21	2	oct, 14	194	252	-58	131	27	1
nov, 13	195	238	-43	67	22	2	nov, 14	190	244	-54	56	19	3
dec,13	225	308	-83	28	29	2	dec,14	188	280	-92	25	18	0

Source: INSSE

Table 197. The population trends of Salaj County during 2007-2014

Year	Population	Year	Population
2007	255794	2011	252234
2008	254828	2012	251166
2009	254246	2013	250344
2010	253210	2014	249405

Source: INSSE

Figure 353
From figure 353 we can see a sinusoidal evolution of the indicator. Except months aug 2007, sept 2007, iul 2008, iul 2009, aug 2009, sept 2009, aug 2010, sept 2010, aug 2011, sept 2011, mai 2012, aug 2012, iul 2013, aug 2013, sept 2013, iul 2014, aug 2014, sept 2014 the natural increase was negative.

Regression analysis relative to indicator "Live births" gives us an equation: y=$0.05846446 x+215.1063596$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.
Regression analysis relative to indicator "Deceased" gives us an equation: $\mathrm{y}=$ $0.238435974 x+267.9287281$ where x is the number of month (Jan, 2007=1), therefore a downward trend.

Regression analysis relative to indicator "Natural increase" gives us an equation: $\mathrm{y}=0.179971514 \mathrm{x}+-52.82236842$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

For the set of values above, the median indicator for "Live births" is 208, for "Deceased" is 255 and for "Natural increase": -54 . This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.

Also, the distribution of quartiles is for "Live births": $(157,193.75,208,229,265)$, for "Deceased": $(195,235.75,254.5,279,318)$ and for "Natural increase": $(-131,-72,-$ 54,-12,60).

The arithmetic mean and the standard deviation for "Live births" are: $(212,24.04)$, for "Deceased": $(256,28.83)$ and for "Natural increase": $(-44,41.97)$. This means that with a probability greather than 0.68 "Live births" are in the range [188,236], for "Deceased" in [227,285] and for "Natural increase" in [-86,-2].
Percentiles length indicators analysis (Figure 354) show that, indeed the concentration is around the middle of the data.

Figure 354
Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Live births/10000 inh., Deceased/10000 inh. and Natural increase/10000 inh. as in the figure 355.

Figure 355
Regression analysis relative to indicator "Live births/ 10000 inh." gives us an equation: $y=0.000207406 x+8.391607456$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.
Regression analysis relative to indicator "Deceased/ 10000 inh." gives us an equation: $y=-0.006422273 x+10.45689693$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Natural increase/ 10000 inh." gives us an equation: $y=0.006600312 x+-2.064802632$ where x is the number of month (Jan, $2007=1$), therefore an upward trend.

For the set of values above, the median indicator for "Live births/10000 inh." is 8 , for "Deceased/10000 inh." is 10 and for "Natural increase/10000 inh.": -2. This means that the probability that the indicator has a value less than the median is equal to the probability that it has a higher value than this.
Also, the distribution of quartiles is for "Live births/10000 inh.": (6.27,7.665,8.205,9.0725,10.63), for "Deceased/10000 inh.": $(7.79,9.35,10.125,11.03,12.43)$ and for "Natural increase/ 10000 inh.": (-5.12,-2.8175,-2.115,-0.47,2.41).

The arithmetic mean and the standard deviation for "Live births/ 10000 inh." are: $(8,0.95)$, for "Deceased/10000 inh.": $(10,1.12)$ and for "Natural increase/10000 inh.": (-2,1.66). This means that with a probability greather than 0.68 "Live
births/10000 inh." are in the range [7,9], for "Deceased/10000 inh." in [9,11] and for "Natural increase/10000 inh." in [-4,0].
Percentiles length indicators analysis (Figure 356) show that, indeed the concentration is around the middle of the data.

Figure 356
A comparison of the indicator "Live births" with the national level shows that it is better than the national, being better in 88.54% cases. For "Deceased" the indicator is worse than the national, being better only in 9.38% cases. Finally, for "Natural increase", the indicator is about the same with the national, being better in 59.38% cases.

Figure 357
Regression analysis relative to indicator "Marriages" gives us an equation: $y=-$ $0.640816603 \mathrm{x}+148.9546053$ where x is the number of month (Jan, 2007=1), therefore a pronounced downward trend.
Regression analysis relative to indicator "Divorces" gives us an equation: $\mathrm{y}=0.004252577 \mathrm{x}+25.65833333$ where x is the number of month (Jan, 2007=1), therefore an upward trend.

For the set of values above, the median indicator for "Marriages" is 108 and for "Divorces" is 26. Also, the distribution of quartiles is for "Marriages": (24,55.5,107.5,169.75,336) and for "Divorces": $(3,20,25.5,32,50)$. The arithmetic mean and the standard deviation for "Marriages" are: $(118,70.96)$ and for "Divorces": $(26,8.67)$. This means that with a probability greather than 0.68 "Marriages" are in the range [47,189] and for "Divorces" in [17,35].
Percentiles length indicators analysis (Figure 358) show that, indeed the concentration is around the middle of the data.

Figure 358

Taking into account the population dynamics during the analyzed period we have the following evolution of the indicators: Marriages/10000 inh. and Divorces/ 10000 inh . as in the figure 359.

Figure 359
Regression analysis relative to indicator "Marriages/ 10000 inh." gives us an equation: $y=-0.023821148 x+5.815221491$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend.

Regression analysis relative to indicator "Divorces/ 10000 inh." gives us an equation: $y=0.000438416 x+1.002070175$ where x is the number of month (Jan, $2007=1$), therefore a very small upward trend.

For the set of values above, the median indicator for "Marriages/10000 inh." is 4 and for "Divorces/ 10000 inh." is 1. Also, the distribution of quartiles is for "Marriages/10000 inh.": $(0.95,2.225,4.265,6.7525,13.14)$ and for "Divorces/10000 inh.": ($0.12,0.7875,1.01,1.255,1.97$). The arithmetic mean and the standard deviation for "Marriages/10000 inh." are: $(5,2.8)$ and for "Divorces/10000 inh.": $(1,0.34)$. This means that with a probability greather than 0.68 "Marriages/ 10000 inh." are in the range $[2,8]$ and for "Divorces/ 10000 inh." in $[1,1]$.

Percentiles length indicators analysis (Figure 360) show that, indeed the concentration is around the middle of the data.

Figure 360
A comparison of the indicator "Marriages" with the national level shows that it is about the same with the national, being better in 47.92% cases. For "Divorces" the indicator is better than the national, being better in 66.67% cases.

Figure 361
Regression analysis relative to indicator "Deaths under 1 year" gives us an equation: $y=-0.00695198 x+2.743421053$ where x is the number of month (Jan, $2007=1$), therefore a very small downward trend. For the set of values above, the median indicator for "Deaths under 1 year" is 2 and the distribution of quartiles is for "Deaths under 1 year": $(0,1,2,3,7)$. The arithmetic mean and the standard deviation for "Deaths under 1 year" are: $(2,1.45)$ which means that with a probability greather than 0.68 "Deaths under 1 year" are in the range [1,3]. Percentiles length indicators analysis (Figure 362) show that, indeed the concentration is around the middle of the data.

Figure 362

Figure 363
Regression analysis relative to indicator "Deaths under 1 year/100000 inh." gives us an equation: $\mathrm{y}=-0.002456253 \mathrm{x}+1.070274123$ where x is the number of month (Jan, 2007=1), therefore a very small downward trend.

For the set of values above, the median indicator for "Deaths under 1 year/100000 inh." is 1 and the distribution of quartiles is for "Deaths under 1 year/100000 inh.": ($0,0.4,0.8,1.2,2.75$). The arithmetic mean and the standard deviation for "Deaths under 1 year/ 100000 inh." are: $(1,0.57)$ which means that with a probability greather than 0.68 "Deaths under 1 year/ 100000 inh." are in the range [0,2].
A comparison of the indicator "Deaths under 1 year" with the national level shows that it is worse than the national, being better only in 35.42% cases.

A final analysis examines dependence aforementioned indicators of regional GDP variation.

Table 198. The evolution of Salaj County GDP during 2007-2014

Year	GDP (in mil. lei 2007)	Variation (\%)
2007	3751	-
2008	3829	2.08
2009	3690	-3.63
2010	3552	-3.73
2011	3418	-3.79
2012	3566	4.33
2013	3720	4.32
2014	3921	5.41

Source: INSSE and own calculations
In what follows, we shall investigate if there is a dependency between GDP variation (noted with dGDP) and the aforementioned indicators.
Searching dependence annual variations of "Live births" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deceased" from GDP, we find that there is a dependence of Deceased from GDP offset by 2 years and the regression equation is:-0.3439dGDP+-2.1961. Searching dependence annual variations of "Natural increase" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Marriages" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Divorces" from GDP, we find that there is not a dependence of the variation of GDP. Searching dependence annual variations of "Deaths under 1 year" from GDP, we find that there is not a dependence of the variation of GDP.

Bibliography

Ioan, Gina \& Ioan, Cătălin Angelo (2017). Macroeconomics. Galati: Zigotto Publishers.
Ioan, Cătălin Angelo (2011). Mathematics. Galati: Zigotto Publishers.
Voineagu, Vergil; Mitrut, Constantin \& Isaic-Maniu, Alexandru (2003). Statistics. Bucharest: Universitara Publishers.

[^0]: ${ }^{1}$ Associate Professor, PhD, Danubius University of Galati, Romania, Department of Economics, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.

