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1. Introduction

Among almost contact manifolds Sasakian manifdi@s)motsu manifolds
(called also “a certain class of almost contact nfalis”) and cosymplectic
manifolds have been studied by many authors. In[f1] [3] we find the principal
results about these manifolds.

The purpose of this paper is to obtain a clasalmbst contact manifolds
which will generalize the above manifolds.

After some general results, we have obtained thm&n-Christoffel tensor
in the case of constant-sectional curvature. In the last paragraph we ystad
subclass of this general type which is richer forimation.
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2. Preliminaries

We call analmost contact metric manifold one denoted by ™ for
which:
(1) $°X=-X+n(X)&
(2)n(@)=1
(3) $&=0
(4)n(ex)=0
(5) 94X, 0Y)=g(X,Y)-n(X)n(Y) OX,YDOX(M)
where ¢ is a (1,1)-type tensor field) a 1-form,¢ a vector field (named the
characteristic vector field) and g is the assodi&emannian metric on M.

The 2-fundamental form is:
(6) @(X,Y)=g(X,0Y) OX,YDOX(M)

On an almost contact manifold we define the tensor
(7) N'OGY)=[0X, 0 YT-0[9X,YI- 91X, 0 Y]+ X, Y]+2dn (X, Y) & OX,Y OX(M)

A manifold with an almost contact metric structaerd N=0 is called
normal manifold.

An almost contact manifold witlp=dn is called acontact manifold. A
normal contact manifold is @asakian manifold

If on an almost contact manifold we havelx§)Y=g(X,Y)é-n(Y)X
OX,Y OX(M) the manifold is Sasakian. We also haug=-¢X OXTOX(M).

An almost contact manifold is &enmotsu manifold if (Ox¢$)Y=-
g(X,0Y)EN(Y)0X, Ox&=X-n(X)& OX,YOX(M).

A cosymplectic manifoldis a normal manifold withp andn closed. On a
cosymplectic manifold we havel¢p=0, [x§=0 OXTIX(M).

For every pIM and XOT,M, X orthogonal or§ we define thep-sectional
curvature like K(X¢X) where K is the sectional curvature.

3. A general type of almost contact manifolds

Definition An almost contact manifold 1" is calleda general type of almost
contact manifold (short gt-manifold) if there are a (1, 1)-type den field
W:X(M) - X(M) and a functiorB0F(M) which satisfy the following conditions:

(8) Ox$)Y=g(¥X,Y)&-n(Y)WX DX,Y IX(M)

(9) Ox&=-WoX OXDOX(M)

(10) g¥X,X)=P OXLE, g(X,X)=1
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(11) O¥=0
In what follows for the simplification we write:
(12)n(We)=a
Letin (8) Y=. We obtain:
(13) H0x&=n(WX)&-WX OXOX(M)
Applying ¢ in (13) we obtain:
(14) dW=Wo¢
From (9),(13) we have:
(15) n(WX)&=n(X)W¢ OXLX(M)
For X=¢ in (15) and using (12) we have:
(16) We=ag
and
A7) n(WX)=an(X) OXOX(M)
From (17) we obtain that the contact distributiBa{X | n(x)=0} is
invariant throughv.
From (9) we obtain that
(18) JeE=0
In consequence we have the following:
Theorem 1In a gt-manifold the integral curves ®fre geodesics.
Using (8),(16) we have also:
(19) Deh=0
Now if in (10) X is not unitary we have §&,X)=Bg(X,X) UXT¢ and
puting X=Y1(Y)& we obtain:

(20) g@Y,Y)=B(Y,Y)+(a-B)n*(Y) OYOX(M)
Reciprocally, from (20) we obtain (10).

Lemma 2 On an almost contact manifold®M* which satisfy (8),(9) we have that
(10) is equivalent with g=pg.

Proof We have seen that (10) is equivalent with (20}.duppose that (20) are
valid. Polarizing, we obtain:

(21) g@X,Y)+g(WY,X)=2Bg(X,Y)+2(a-B)n(X)n(Y) OX,Y OX(M)
We have also{xn)Y=0xg(Y,&)-g(0xY,&)=g(Y,Ox&)=g(WX,dY) and
(22) 2 (X,Y)=(Oxn) Y-(Ovn)X=g(¥X,$Y)-g(WY,$pX) OX,Y IX(M)
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Writing (21) for Y- ¢Y we obtain:

(23) Be(X,Y)=g(WX,0Y)-g(WY,dpX) OX,Y OX(M)
From (22),(23) we have that:

(24) ch=Bo

Suppose now that (24) are valid. Going back, weinlf23) and for X ¢Y
we obtain (20). Q. E. D.

From (20) we obtain also a formula which we nexddrl
(25) tr¥=2r3+a
where tr¥ is the trace of the operatit.

From (6),(8) we have:

(26) 3do(X,Y,2)=X Y, 2)-Y @X,2)+Ze(X,Y)-«[X,Y],2)+ «[X,Z],Y)-

@[Y,Z].X)=g(Y.(Ox$)2)-g(X,(Uy$)2)+g(X,(Oz0)2)=n(X)[9(¥Z,Y)-g(¥Y.2)]+
n(Ig(¥X.2)-9(YZ,X)1+n(2)[g(WYY.X)-g(¥X,Y)] UX,Y,Z0X(M)

From (24) we have:

Theorem 3A gt-manifold with=0 hasn closed.
From (26) we obtain:

Theorem 4A gt-manifold with¥’ a symmetric operator hgsclosed.
From (7),(8),(24) we obtain:

(27) N{(X,Y)=0 OX,Y OX(M)

therefore we have:

Theorem 5A gt-manifold is a normal manifold.

4. Examples

1. ForW=I andf3=1 we obtain Sasakian manifolds
2. ForW=¢ andp=0 we have Kenmotsu manifolds

3. For¥=0 andB=0 we have cosymplectic manifolds
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5. Curvature properties

Now we have:
(28) R(X,Y)e=0xOy&-Oy Oz&-Opyy E=an(Y) WX-an (X) WY+o((Cy W)X)-
o((CxP)Y)
Using (9), (16) we have:
(29) OxW)E=X(a)&-adWX+pW?X
For Y=¢ in (28) and using (11),(16),(29) we obtain:
(30) R(XE)E=W*X-a’n(X)g
From (30) we have:
(31) K(X&)=9(R(X£)&,X)=g(W*X,X) OXE, g(X,X)=1
On the other hand, from (21) we obtain:
(32) gWX,X)=-g(WX,WY)+2Bg(¥X,Y)-2a(a-Bn(X)n(Y)
Using now (31),(32) we obtain finally:
(33) K(X,£)=2R%-g(¥X,WX) OXE, g(X,X)=1
Theorem 6A gt-manifold has K(>€)<2B* where XZE, g(X,X)=1
Corollary 7 A gt-manifold withB=0 has K(X§)<0.
We now define a (0,4)-tensor field XM)* — F(M):
(34) A(X,Y,Z,V)=g(dX,¥Z)g(dY,¥V)-g(X,W¥Z)g(Y,®¥V) OX,Y,Z,VOX(M)
We obtain immediately:
(35) A(X,Y,Z,V)=A(Y,X,V,Z)
(36) ADX,dY,Z,V)=AX,Y, dZ,0V)=-A(X,Y,Z,V)
ADX,dY,0Z,0V)=A(X,Y,Z,V)
AGX,Y,ZV)=A(X, dY,Z,V)
AX,Y HZV)=A(X,Y,Z,0V) OX,Y,Z,VE
We also define B{M)* - F(M) a (0,4)-tensor field:
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(37) B(X,Y,Z,V)=A(X,Y,Z,V)-A(X,Y.V,Z)
We have from (35),(36),(37) that:

(38) B(X,Y,Z,V)=B(Y,X,V,2)=-B(Y,X,Z,V)=-B(X,Y,V,Z2)

BOX,Y,Z,d0V)=B(X,Y,Z,V) OX,Y,Z,VE
Using now (8),(9),(34)-(38) we can prove that:

(39) ROX,9Y,0Z,0V)=R(X,Y,Z,V)+B(X,Y,Z,V)-B(V,Z,Y,X)
RX,YHZ,OV)=R(X,Y,Z,V)+B(V,Z,Y,X)
ROX.9Y,Z,V)=R(X,Y,V,Z)+B(X,Y,Z,V)
RXDY,Z,0V)+R(®X,Y,Z,0V)=B(X,Y,V,2) OX,Y,Z,VE

Let suppose now that K(#X)=K=constant. We have:
Theorem 8If a gt-manifold has constagitsectional curvature then:
(40) 4R(X,Y,Z,V)=2B(X,Y,V,2)+B(X,V,Y,2)+B(X,Z,V,Y)+
49(QyW)X-(LxW)Y,n(2)9Y-n(V)$2)+
49(0vW)Z-(0z¥)V.n(X)9Y-n(Y) oX)+

n(V)n(Y)((3a-8B)a(¥X,2)+(2aB-K)g(X,2)+4g(WX,¥2))-
n(Y)N(2)((3a-8B)g(¥X,V)+(2aB-K)g(X,V)+4g(W¥X,¥V))+
n(X)n(2)((a-8p)g(¥Y,V)+(4aB-K)g(Y,V)+4g(¥Y,¥V))-
n(X)n(V)((a-8B)g(WY.2)+(4aB-K)g(Y.2)+4g(WY,W2))+

an(X)n()[29(¥Z,V)-2Bg(Z,V)+2@-B)n(Zn(V)]+

K[9(X,2)g(Y.V)-9(X,V)a(Y.2)+@aX,.2) (Y ,V)-
PX, V) @Y, 2)+20(X,Y)Z,V)] OX,Y,Z,VIOX(M)
with the above notations and R(X,Y,Z,V)=g(R(X,Y)V,Z
Proof From the hypothesis, we have:
(41) R(XHX, X, dX)=Kg(X,X)2 OXOE
For X- X+Y in (41) then X- X-Y in (41) and adding:
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(42)
2R(X.0X,Y,dY)+2R(X.DY,Y, 0X)+R(Y,0X,Y,dX)+R(X,dY,X, dY)=4Kg(X,Y) >+
2Kg(X,X)g(Y,Y) OX,YOE

If in (42) we put Xo X+¢Z then in what we obtained YY+¢V and using
(39):

(43)
2R(X,Z,Y,V)+2R(X,V,Z,Y)+R®X,Y,V,2)=2K[g(X,Y)a(Z,V)+@X,V) )Y, Z)+
®X,2)Q(Y,V)+B(X,Z,V,Y)+B(V,X,Y,2)+B(Y, dX,0V,Z) OX,Y,Z,V OE

If in ((43) we change Y with Z and subtract fro43) we have:

(44) 4R(X,Y,V,2)=2B(X,V,Z,Y)+B(X,Z,V,Y)+B(X,Y,Z,V)+K[g(X,Y)g(Z,V)-
9(X,2)g(Y,V)+20(X,V) Y, 2)+@X, Z) Y, V)-o(X,Y) ®Z, V)] OX,Y,Z,V 0E

If in (44) we replace X with X2(X)&, Y with Y-n(Y)¢, Z with Zn(2)§
and V with V1 (V)¢ we obtain (40). Q.E.D.

If we return now at examples, we obtain the walbkn expressions.

The calculus of the Ricci tensor and the scalauofature using (25) and
(40) is immediate.

About Ricci tensor, let note that on a gt-manifalel have from (30) that:
(45) Ric€,&)=tr¥?*-a?
6. A special general type of almost contact manifd$

Definition We callspecial general type of an almost contact manifoltshort
special gt-manifold) a gt-manifold ¥f* which has in addition:

(46) OxW)Y=(OyW)X OX,Y OX(M)

From section 4 we have that Sasakian manifolds aoslymplectic
manifolds are special gt-manifolds.

Using (11),(29),(46) we have for ¥that
(47) Y(@)E-adWY+pW?Y=0
From (4),(47) we have:
(48) Y(0)=0 thereforen is constant.
(49) W2Y-aWY OSpank)
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From (49) for YZ we obtain that:
(50) W2Y=awy
From (31) we obtain that:
(51) K(X,&)=ap OXE, g(X,X)=1
Using (32),(50) we have:
(52) gWX,WY)=(2B-a)g(¥X,Y)-2a(a-B)n(X)n(Y) OUX,Y LIX(M)

If we have nowa=2f3 from (52) where X=Y< we obtain that=3=0 and
reciprocally ifa=p=0 we have thaa=2p3.

If 3=0 from (52) where X=Y& we obtaina=0 and again from (52) we have
WX=0. From section 4, 3 we have that the manifolcosymplectic.

Theorem 9A special gt-manifold is cosymplectic, if and oifl3=0.

Suppose now that the manifold is not cosymplettierchanging X and Y
in (52) and subtract from it:

(53) (PB-0)[g(WYX,Y)-g(WY,X)]=0 OX,Y OX(M)
From the hypothesis we have th@#@ then

(54) gWX,Y)=g(WY,X) OX,Y OX(M)

therefore¥ is a symmetric operator.

Using the facts that a cosymplectic manifold patosed and the theorem 4,
we conclude:

Theorem 10A special gt-manifold has closed.
We can now reformulate the theorem 8:

Theorem 11If a special gt-manifold which is not cosympledtas constarg-
sectional curvature then:

(55) 4R(X,Y,ZV)=gbX,¥V)g(dY,¥Y2)+g(dX,¥Z2)g(@V,WY)-
200X, YY)g(¢Z,W¥V)+

39(XW2)g(Y,WV)-3g(X,WV)g(Y,W2)+
n(V)n(Y)((2aB-K)g(X,2)+ag(¥X,2))-
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n(Y)n(2)((2aB-K)g(X,V)+ag(¥X,V))+
n(X)n(2)((4aB-K)g(Y,V)-3ag(PY,V))-
n(X)n(V)((4aB-K)g(Y.2)-3ag(WY,2))+
an(X)n(Y)[29(¥Z,V)-2Bg(Z,V)+2(@-B)n(Z)n(V)]+
K[9(X,2)g(Y.V)-9(X,V)a(Y.2)+@a(X,2) (Y ,V)-
OX, V)Y, 2)+20(X,Y)®Z,V)] OX,Y,Z,VOX(M)
where R(X,Y,Z,V)=g(R(X,Y)V,Z) and K is the constapsectional curvature.
From (55) we obtain also:
(56) 2Ric(X,Y)m(X)n(Y)(7a®+(n-6)aB-K(n+1))+g(X,Y)([@B+K(n+1))+
g(@X,Y)(a+3B(n-1)) OX,Y OX(M)
Ric being the Ricci tensor onM".
(57) S=4*+(3n-4)p+3n(n-1p?
where S is the scalar of curvature.
From (57) we obtain immediately:

Theorem 12A special gt-manifold, not cosymplectic, havingstantp-sectional
curvature and of dimension greater than 3 hasipestalar of curvature.

Almost Hermitian manifolds with J-invariant sectional curvature

Let (M,g) a differentiable manifold with the metriensor g. M is named
almost Hermitian if there exists an endomorphismX@) - X(M) of the Lie
algebra of tensor fieldX(M) such that %-I and g is J-invariant that is
9(IX,JY)=g(X,Y)OX,Y OX(M).

In [4] L. Vanhecke defineRK-manifolds like manifolds almost hermitian
with J-invariant curvature Riemann tensor, thatRigX,JY,JZ,JV)=R(X,Y,Z,V)
OX,Y,Z,VIOX(M).

In [3] are definecpara-Kahler manifolds like almost hermitian manifolds
with R(X,Y,JZ,JV)=R(X,Y,Z,V)OX,Y,Z,VOX(M).

A Kahler manifold is an almost Hermitian manifold for which the 2-
fundamental form is closed, whet$X,Y)=g(JX,Y) UX,Y OX(M) and the Nijenhuis
tensor corresponding to J vanishes. In a Kabhler ifoldn we have ([1]):
R(X,JY,Z,V)=R(Y,IX,Z,V)OX,Y,Z,VIOX(M).
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We have, in consequence, that Kéhler manifoldpara-Kéhler which their
turn are RK-manifolds. Let note the sectional ctuxa by the 2-plane (X,Y) in any
point of the manifold with k(X,Y) and K(X,Y)=k(X,Ylp(X,X)g(Y,Y)-g(X,Y)?. We
note also H(X)=k(X,JX) the holomorphic sectionahature corresponding to X. It
is proved in [5] that on a RK-manifold we have R{¥k(JIX,JY),
k(X,JY)=k(JIX,Y), S(X,Y)=S(IX,JY), S(X,JY)+S(IX,Y)=0QX,YIX(M) where S is
the Ricci tensor.

In this paper | shall enlarge the RK-manifoldsssland | shall study some
properties of these manifolds.

2. AlImost RK-manifolds

Definition 1 An almost RK-manifold (short RKA-manifold) is an almost
Hermitian manifold for which K(X,Y)=K(JX,JY]OX,Y OX(M).

Remarks An RK-manifold is an RKA-manifold. Manifolds witbonstant curvature
are also RKA-manifolds.

From the definition follows immediately that:

(1) R(X,Y,V,2)+R(X,Z,V,Y)=R(IX,JY,IV,IZ)+R(IX,IZ,IVY) OX,Y,Z,V OX(M)

If we take an orthonormal basis in M:;,X.,X, and put Y=Z=X and
summing for i, we obtain; S(X,V)=S(IX,JM)X,VUX(M). In consequence, the
property of the Ricci tensor to be invariant at #lioion of J remains valid in RKA-
manifolds.

Let now study the behaviour of RKA-manifolds a¢ time when they admit
some special submanifolds.

Let (M,g)d(M ,g) a submanifold of an almost Hermitian manifold (g).
The Gauss equation is:
(2) R (X,Y,ZV)=R(X,Y,Z,V)- g (h(X,Z),h(Y,V))+g (h(X,V),h(Y,2))
OX,Y,Z,VIOX(M)
Definition 2 A submanifold (M,g)J(M ,g) is calledtotally cuasi-umbilical if the
second fundamental form h is:

h(X,Y)=g(X,Y)H+[ux(X) (Y)+w(IX)(IY)]A OX,Y OX(M)

where H is the mean curvature vector arfdX@)", w being a 1-form on M.

In particular, ifw=0 we obtaintotally umbilical submanifolds and if, in

addition H=0, we haviotally geodesic submanifolds
For totally cuasi-umbilical submanifolds, we have:
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(B)K (X,Y)=K(X,Y)+ g (H,H)Ig*(X,Y)-g(X,X)g(Y,Y)]+
9 (H,A)[200) @(Y)g(X, Y)+26(IX)IY)G(X, Y)-g (X, X) (W (Y)+6F(IY))-
(Y, Y)(@’(X)+P(IX))]- g (A A (X) XIY)-(Y) IX)]* OX,Y OX(M)

Writing (3) for JX and JY and subtract the twaat&ns, we obtain:
(4) K (IX,JY)-K (X,Y)=K(IX,IY)-K(X,Y) OX,YOX(M)
where we have noted with bar all the quantitiedfon

In consequence, we have:
Theorem 1A totally cuasi-umbilical submanifold of an RKA-mifold is an RKA-
manifold.
Corollary 1 A totally umbilical submanifold of an RKA-manifolis an RKA-
manifold.
Corollary 2 A totally geodesic submanifold of an RKA-manifoisl an RKA-
manifold.

The conformal curvature tensor of a manifold is:
(5) C(X,Y,Z,V)=r(X,Y,Z,V)+g(X,V)L(Y,Z)+g(Y,Z)L(X,V) -g(X,Z)L(Y,V)-
a(Y,V)L(X,2) OX,Y,Z,VIOX(M)

where L(X,Y)i(S(X,Y) -_P g(X,Y)j , p being the scalar of curvature.
n-2 2(n-1
Immediately, we obtain that:
(6) C(X,Y,X,Y)-C(IX,JY,IX,IY)=K(X,Y)-K(IX,IY)DIX,Y OX(M)
From (6) follows:
Theorem 2If an RKA-manifold is conformable with another nifatd the second is
also RKA-manifold.
In the same manner, considering the Weyl projectitensor:

P(X,Y)Z=R(X,Y)Z+ni_l(S(X,Z)Y—S(Y,Z)x) and the Yano concircular tensor

K(X,Y)Z=R(X,Y)Z- n(np_l) ((Y.2)X -g(X,2)Y) where n=dim M, we obtain:

Theorem 3 At projective transformations RKA-manifolds applieon RKA-
manifolds.
Theorem 4 At concircular transformations RKA-manifolds apggli on RKA-
manifolds.
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3. RKA-manifolds with punctual constant type

In what follows are necessary some definitions.
Definition 3 Let pdM. A subspace Nof T,M is calledholomorphic subspaceif
J(N,)EN, andantiholomorphic if J(N)O N,
Definition 4 A 2p+1-dimensional subspace is callymk1-coholomorphic planeif
it contains a 2p-holomorphic plane.

It shows in [5] that a 2p+1-coholomorphic planentains a p+1-
antiholomorphic plane andfi<g-1 where dim M=2q.
Definition 5 An almost Hermitian manifold haonstant typein pOM if for any
XOT,M we have:A(X,Y)=A(X,Z) where (X,Y), (X,Z) are antiholomorphic planes
g(Y,Y)=g(Z,2) and A(X,Y)=R(X,Y,X,Y)-R(X,Y,JX,JY). If the manifold has
constant type in every pointid it is calledwith punctual constant type
Definition 6 An almost hermitian manifold M satisfies the axiavh (2p+1)-
coholomorphic spheres if for anyldiiv and any 2p+1-coholomorphic plang, Igf
T,M it exists a 2p+1-dimensional totally umbilicalbgnanifold S in order to mMS
and T,S=N, with p fixed integer andsb=<qg-1, dim M=2q.

In the same manner like in [4] we shall proveftilwing:
Theorem 5Let M an RKA-manifold with punctual constant tygeéM satisfy the
axiom of 2p+1-coholomorphic spheres for some p #&ndim M=6 then the
holomorphic sectional curvature depends only frbengoint.
Proof Let mCJM We consider two orthonormal vectors X,Y ipM in order to
(X,Y) is an antiholomorphic plane. We take now a-2qgoholomorphic plane N
which contains X,Y,JX and JY is normal to,NFrom the axiom of 2p+1-
coholomorphic spheres, it exists a 2p+1-totally ilicdd submanifold S in order to
mOdS and T.S=N,. Let now the Codazzi equation for a totally undali
submanifold:
(7) (R(X,Y)2)"=g(Y,Z)DxH-g(X,Z)DyH OX,Y,ZOX(M)
where D is the connection of the normal fibre berafl S in M.

If in (7) we consider X,JX,Y we obtain (R(X,JX)¥90. But JY is normal to
N, therefore:
(8) R(X,IX,Y,IY)=00X,YOT M with (X,Y) an antiholomorphic plane.
(X+Y,IX-JY) is obvious an antiholomorphic planerthasing (1),(8) follows:
(9) K(X+Y,IX-JY)=H(X)+H(Y)+2K(X,JY)+2K(X,Y)-2A(X,Y)
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Also, from (8) we have:
(10) KX, Y)+K(X,JY)=A(X,Y)+A(X,JY)
We take in (10) X+Y and JX-JY instead of X and Y:
(11) K(X+Y,IX-JY)+K(X+Y,X-Y)=A(X+Y,IX-IY)+A(X+Y,X-Y)
After elementary computations, we have:
(12) K(X+Y,X-Y)=4K(X,Y)
(13) A(X+Y,IX-JY)=4\(X,JY)
(14) A(X+Y,X-Y)=4A(X,Y)
Using (12),(13),(14) in (11) we obtain:
(15) K(X+Y,IX-JY)=-4K(X,Y)+4\(X,JY)+4\(X,Y)
On the other hand we have:
(16) K(X,JY)=3A(X,Y)+A(X,IY)-K(X,Y)
Using now (15),(16) in (9) we obtain:

17) K(X,Y)=%)\(X,JY)+)\(X,Y)-%(H(X)+H(Y))
If we put in (17) JY instead of Y we have:
(18) K(X,JY)=%)\(X,Y)+)\(X,JY)-%(H(X)+H(Y))

From (17) and (18) follows:
(29) A(X,Y)+A(X,IY)=H(X)+H(Y)

If M has constant punctual type, let note him waittwe obtain:
(20) H(X)+H(Y)=2a.

But dim M=6 then H(X)=a. The theorem is completely proved.
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