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1. Introduction 
 

Among almost contact manifolds Sasakian manifolds, Kenmotsu manifolds 
(called also “a certain class of almost contact manifolds”) and cosymplectic 
manifolds have been studied by many authors. In [1], [2], [3] we find the principal 
results about these manifolds. 
 The purpose of this paper is to obtain a class of almost contact manifolds 
which will generalize the above manifolds. 
 After some general results, we have obtained the Riemann-Christoffel tensor 

in the case of constant ϕ-sectional curvature. In the last paragraph we study a 
subclass of this general type which is richer in information. 
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2. Preliminaries 
 

We call an almost contact metric manifold, one denoted by M2n+1 for 
which: 
(1) ϕ2X=-X+η(X)ξ 

(2) η(ξ)=1 

(3) ϕξ=0 

(4) η(ϕX)=0 

(5) g(ϕX,ϕY)=g(X,Y)-η(X)η(Y) ∀X,Y∈X(M) 

where ϕ is a (1,1)-type tensor field, η a 1-form, ξ a vector field (named the 
characteristic vector field) and g is the associated Riemannian metric on M. 
 The 2-fundamental form is: 

(6) φ(X,Y)=g(X,ϕY) ∀X,Y∈X(M) 
 On an almost contact manifold we define the tensor: 
(7) N1(X,Y)=[ϕX,ϕY]-ϕ[ϕX,Y]-ϕ[X,ϕY]+ϕ2[X,Y]+2dη(X,Y)ξ ∀X,Y∈X(M) 
 A manifold with an almost contact metric structure and N1=0 is called 
normal manifold. 

 An almost contact manifold with φ=dη is called a contact manifold. A 
normal contact manifold is a Sasakian manifold. 
 If on an almost contact manifold we have: (∇Xϕ)Y=g(X,Y)ξ-η(Y)X 

∀X,Y∈X(M) the manifold is Sasakian. We also have ∇Xξ=-ϕX ∀X∈X(M). 

 An almost contact manifold is a Kenmotsu manifold if (∇Xϕ)Y=-

g(X,ϕY)ξ-η(Y)ϕX, ∇Xξ=X-η(X)ξ ∀X,Y∈X(M). 

 A cosymplectic manifold is a normal manifold with φ and η closed. On a 

cosymplectic manifold we have: ∇Xϕ=0, ∇Xξ=0 ∀X∈X(M). 

 For every p∈M and X∈TpM, X orthogonal on ξ we define the ϕ-sectional 

curvature like K(X,ϕX) where K is the sectional curvature. 
 
3. A general type of almost contact manifolds 
 
Definition  An almost contact manifold M2n+1 is called a general type of almost 
contact manifold (short gt-manifold) if there are a (1, 1)-type tensor field 
Ψ:X(M)→X(M) and a function β∈F(M) which satisfy the following conditions: 

(8) (∇Xϕ)Y=g(ΨX,Y)ξ-η(Y)ΨX ∀X,Y∈X(M) 

(9) ∇Xξ=-ΨϕX ∀X∈X(M) 

(10) g(ΨX,X)=β ∀X⊥ξ, g(X,X)=1 
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(11) ∇ξΨ=0 
 In what follows for the simplification we write: 
(12) η(Ψξ)=α 

 Let in (8) Y=ξ. We obtain: 

(13) -ϕ∇Xξ=η(ΨX)ξ-ΨX ∀X∈X(M) 

 Applying ϕ in (13) we obtain: 

(14) ϕΨ=Ψϕ 
 From (9),(13) we have: 
(15) η(ΨX)ξ=η(X)Ψξ ∀X∈X(M) 

 For X=ξ in (15) and using (12) we have: 

(16) Ψξ=αξ 
and 
(17) η(ΨX)=αη(X) ∀X∈X(M) 

 From (17) we obtain that the contact distribution D={Xη(X)=0} is 

invariant through Ψ. 
 From (9) we obtain that 
(18) ∇ξξ=0 
 In consequence we have the following: 
Theorem 1 In a gt-manifold the integral curves of ξ are geodesics. 
 Using (8),(16) we have also: 
(19) ∇ξϕ=0 

 Now if in (10) X is not unitary we have g(ΨX,X)=βg(X,X) ∀X⊥ξ and 

puting X=Y-η(Y)ξ we obtain: 

(20) g(ΨY,Y)=β(Y,Y)+(α-β)η2(Y) ∀Y∈X(M) 

 Reciprocally, from (20) we obtain (10). 

Lemma 2 On an almost contact manifold M2n+1 which satisfy (8),(9) we have that 
(10) is equivalent with dη=βφ. 

Proof We have seen that (10) is equivalent with (20). Let suppose that (20) are 
valid. Polarizing, we obtain: 

(21) g(ΨX,Y)+g(ΨY,X)=2βg(X,Y)+2(α-β)η(X)η(Y) ∀X,Y∈X(M) 

 We have also (∇Xη)Y=∇Xg(Y,ξ)-g(∇XY,ξ)=g(Y,∇Xξ)=g(ΨX,ϕY) and 

(22) 2dη(X,Y)=(∇Xη)Y-(∇Yη)X=g(ΨX,ϕY)-g(ΨY,ϕX) ∀X,Y∈X(M) 
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 Writing (21) for Y→ϕY we obtain: 

(23) 2βφ(X,Y)=g(ΨX,ϕY)-g(ΨY,ϕX) ∀X,Y∈X(M) 

 From (22),(23) we have that: 

(24) dη=βφ 

 Suppose now that (24) are valid. Going back, we obtain (23) and for X→ϕY 
we obtain (20). Q. E. D. 

 From (20) we obtain also a formula which we need later: 

(25) tr Ψ=2nβ+α 

where tr Ψ is the trace of the operator Ψ. 

 From (6),(8) we have: 

(26) 3dφ(X,Y,Z)=Xφ(Y,Z)-Yφ(X,Z)+Zφ(X,Y)-φ([X,Y],Z)+ φ([X,Z],Y)-

φ([Y,Z],X)=g(Y,(∇Xϕ)Z)-g(X,(∇Yϕ)Z)+g(X,(∇Zϕ)Z)=η(X)[g(ΨZ,Y)-g(ΨY,Z)]+ 

η(Y)[g(ΨX,Z)-g(ΨZ,X)]+η(Z)[g(ΨY,X)-g(ΨX,Y)] ∀X,Y,Z∈X(M) 

 From (24) we have: 

Theorem 3 A gt-manifold with β=0 has η closed. 

 From (26) we obtain: 

Theorem 4 A gt-manifold with Ψ a symmetric operator has φ closed. 

 From (7),(8),(24) we obtain: 

(27) N1(X,Y)=0 ∀X,Y∈X(M) 

therefore we have: 

Theorem 5 A gt-manifold is a normal manifold. 

 

4. Examples 

 

1. For Ψ=I and β=1 we obtain Sasakian manifolds 

2. For Ψ=ϕ and β=0 we have Kenmotsu manifolds 

3. For Ψ=0 and β=0 we have cosymplectic manifolds 
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5. Curvature properties 

 

 Now we have: 

(28) R(X,Y)ξ=∇X∇Yξ-∇Y∇Zξ-∇[X,Y] ξ=αη(Y)ΨX-αη(X)ΨY+ϕ((∇YΨ)X)-

ϕ((∇XΨ)Y) 

 Using (9), (16) we have: 

(29) (∇XΨ)ξ=X(α)ξ-αϕΨX+ϕΨ2X 

 For Y=ξ in (28) and using (11),(16),(29) we obtain: 

(30) R(X,ξ)ξ=Ψ2X-α2η(X)ξ 

 From (30) we have: 

(31) K(X,ξ)=g(R(X,ξ)ξ,X)=g(Ψ2X,X) ∀X⊥ξ, g(X,X)=1 

 On the other hand, from (21) we obtain: 

(32) g(Ψ2X,X)=-g(ΨX,ΨY)+2βg(ΨX,Y)-2α(α-β)η(X)η(Y) 

 Using now (31),(32) we obtain finally: 

(33) K(X,ξ)=2β2-g(ΨX,ΨX) ∀X⊥ξ, g(X,X)=1 

Theorem 6 A gt-manifold has K(X,ξ)≤2β2 where X⊥ξ, g(X,X)=1 

Corollary 7 A gt-manifold with β=0 has K(X,ξ)≤0. 

 We now define a (0,4)-tensor field A:X(M)4→F(M): 

(34) A(X,Y,Z,V)=g(ϕX,ΨZ)g(ϕY,ΨV)-g(X,ΨZ)g(Y,ΨV) ∀X,Y,Z,V∈X(M) 

 We obtain immediately: 

(35) A(X,Y,Z,V)=A(Y,X,V,Z) 

(36) A(ϕX,ϕY,Z,V)=A(X,Y, ϕZ,ϕV)=-A(X,Y,Z,V) 

        A(ϕX,ϕY,ϕZ,ϕV)=A(X,Y,Z,V) 

        A(ϕX,Y,Z,V)=A(X, ϕY,Z,V) 

        A(X,Y,ϕZ,V)=A(X,Y,Z,ϕV) ∀X,Y,Z,V⊥ξ 

 We also define B:X(M)4→F(M) a (0,4)-tensor field: 
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(37) B(X,Y,Z,V)=A(X,Y,Z,V)-A(X,Y,V,Z) 

 We have from (35),(36),(37) that: 

(38) B(X,Y,Z,V)=B(Y,X,V,Z)=-B(Y,X,Z,V)=-B(X,Y,V,Z) 

        B(ϕX,Y,Z,ϕV)=B(X,Y,Z,V) ∀X,Y,Z,V⊥ξ 

 Using now (8),(9),(34)-(38) we can prove that: 

(39) R(ϕX,ϕY,ϕZ,ϕV)=R(X,Y,Z,V)+B(X,Y,Z,V)-B(V,Z,Y,X) 

        R(X,Y,ϕZ,ϕV)=R(X,Y,Z,V)+B(V,Z,Y,X) 

        R(ϕX,ϕY,Z,V)=R(X,Y,V,Z)+B(X,Y,Z,V) 

        R(X,ϕY,Z,ϕV)+R(ϕX,Y,Z,ϕV)=B(X,Y,V,Z) ∀X,Y,Z,V⊥ξ 

 Let suppose now that K(X,ϕX)=K=constant. We have: 

Theorem 8 If a gt-manifold has constant ϕ-sectional curvature then: 

(40) 4R(X,Y,Z,V)=2B(X,Y,V,Z)+B(X,V,Y,Z)+B(X,Z,V,Y)+ 

          4g((∇YΨ)X-(∇XΨ)Y,η(Z)ϕY-η(V)ϕZ)+ 

          4g((∇VΨ)Z-(∇ZΨ)V,η(X)ϕY-η(Y)ϕX)+ 

          η(V)η(Y)((3α-8β)g(ΨX,Z)+(2αβ-K)g(X,Z)+4g(ΨX,ΨZ))- 

          η(Y)η(Z)((3α-8β)g(ΨX,V)+(2αβ-K)g(X,V)+4g(ΨX,ΨV))+ 

          η(X)η(Z)((α-8β)g(ΨY,V)+(4αβ-K)g(Y,V)+4g(ΨY,ΨV))- 

        η(X)η(V)((α-8β)g(ΨY,Z)+(4αβ-K)g(Y,Z)+4g(ΨY,ΨZ))+ 

        αη(X)η(Y)[2g(ΨZ,V)-2βg(Z,V)+2(α-β)η(Z)η(V)]+ 

        K[g(X,Z)g(Y,V)-g(X,V)g(Y,Z)+φ(X,Z)φ(Y,V)- 

        φ(X,V)φ(Y,Z)+2φ(X,Y)φ(Z,V)] ∀X,Y,Z,V∈X(M) 

with the above notations and R(X,Y,Z,V)=g(R(X,Y)V,Z). 

Proof From the hypothesis, we have: 

(41) R(X,ϕX,X,ϕX)=Kg(X,X) 2 ∀X⊥ξ 

 For X→X+Y in (41) then X→X-Y in (41) and adding: 
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(42) 
2R(X,ϕX,Y,ϕY)+2R(X,ϕY,Y,ϕX)+R(Y,ϕX,Y,ϕX)+R(X,ϕY,X,ϕY)=4Kg(X,Y)2+ 

2Kg(X,X)g(Y,Y) ∀X,Y⊥ξ 

 If in (42) we put X→X+ϕZ then in what we obtained Y→Y+ϕV and using 
(39): 

(43) 
2R(X,Z,Y,V)+2R(X,V,Z,Y)+R(ϕX,Y,ϕV,Z)=2K[g(X,Y)g(Z,V)+φ(X,V)φ(Y,Z)+ 

φ(X,Z)φ(Y,V)+B(X,Z,V,Y)+B(V,X,Y,Z)+B(Y, ϕX,ϕV,Z) ∀X,Y,Z,V⊥ξ 

 If in ((43) we change Y with Z and subtract from (43) we have: 

(44) 4R(X,Y,V,Z)=2B(X,V,Z,Y)+B(X,Z,V,Y)+B(X,Y,Z,V)+K[g(X,Y)g(Z,V)-

g(X,Z)g(Y,V)+2φ(X,V)φ(Y,Z)+φ(X,Z)φ(Y,V)-φ(X,Y)φ(Z,V)] ∀X,Y,Z,V⊥ξ 

 If in (44) we replace X with X-2η(X)ξ, Y with Y-η(Y)ξ, Z with Z-η(Z)ξ 

and V with V-η(V)ξ we obtain (40). Q.E.D. 

 If we return now at examples, we obtain the well-known expressions. 

 The calculus of the Ricci tensor and the scalar of curvature using (25) and 
(40) is immediate. 

 About Ricci tensor, let note that on a gt-manifold we have from (30) that: 

(45) Ric(ξ,ξ)=trΨ2-α2 

6. A special general type of almost contact manifolds 

Definition  We call special general type of an almost contact manifold (short 
special gt-manifold) a gt-manifold M2n+1 which has in addition: 

(46) (∇XΨ)Y=(∇YΨ)X ∀X,Y∈X(M) 

 From section 4 we have that Sasakian manifolds and cosymplectic 
manifolds are special gt-manifolds. 

 Using (11),(29),(46) we have for X=ξ that 

(47) Y(α)ξ-αϕΨY+ϕΨ2Y=0 

 From (4),(47) we have: 

(48) Y(α)=0 therefore α is constant. 

(49) Ψ2Y-αΨY∈Span(ξ) 
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 From (49) for Y=ξ we obtain that: 

(50) Ψ2Y=αΨY 

 From (31) we obtain that: 

(51) K(X,ξ)=αβ ∀X⊥ξ, g(X,X)=1 

 Using (32),(50) we have: 

(52) g(ΨX,ΨY)=(2β-α)g(ΨX,Y)-2α(α-β)η(X)η(Y) ∀X,Y∈X(M) 

 If we have now α=2β from (52) where X=Y=ξ we obtain that α=β=0 and 

reciprocally if α=β=0 we have that α=2β. 

 If β=0 from (52) where X=Y=ξ we obtain α=0 and again from (52) we have 

ΨX=0. From section 4, 3 we have that the manifold is cosymplectic. 

Theorem 9 A special gt-manifold is cosymplectic, if and only if β=0. 

 Suppose now that the manifold is not cosymplectic. Interchanging X and Y 
in (52) and subtract from it: 

(53) (2β-α)[g(ΨX,Y)-g(ΨY,X)]=0 ∀X,Y∈X(M) 

 From the hypothesis we have that 2β≠α then 

(54) g(ΨX,Y)=g(ΨY,X) ∀X,Y∈X(M) 

therefore Ψ is a symmetric operator. 

 Using the facts that a cosymplectic manifold has φ closed and the theorem 4, 
we conclude: 

Theorem 10 A special gt-manifold has φ closed. 

 We can now reformulate the theorem 8: 

Theorem 11 If a special gt-manifold which is not cosymplectic has constant ϕ-
sectional curvature then: 

(55) 4R(X,Y,Z,V)=g(ϕX,ΨV)g(ϕY,ΨZ)+g(ϕX,ΨZ)g(ϕV,ΨY)-

2g(ϕX,ΨY)g(ϕZ,ΨV)+ 

          3g(X,ΨZ)g(Y,ΨV)-3g(X,ΨV)g(Y,ΨZ)+ 

          η(V)η(Y)((2αβ-K)g(X,Z)+αg(ΨX,Z))- 
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          η(Y)η(Z)((2αβ-K)g(X,V)+αg(ΨX,V))+ 

          η(X)η(Z)((4αβ-K)g(Y,V)-3αg(ΨY,V))- 

          η(X)η(V)((4αβ-K)g(Y,Z)-3αg(ΨY,Z))+ 

        αη(X)η(Y)[2g(ΨZ,V)-2βg(Z,V)+2(α-β)η(Z)η(V)]+ 

        K[g(X,Z)g(Y,V)-g(X,V)g(Y,Z)+φ(X,Z)φ(Y,V)- 

        φ(X,V)φ(Y,Z)+2φ(X,Y)φ(Z,V)] ∀X,Y,Z,V∈X(M) 

where R(X,Y,Z,V)=g(R(X,Y)V,Z) and K is the constant ϕ-sectional curvature. 

 From (55) we obtain also: 

(56) 2Ric(X,Y)=η(X)η(Y)(7α2+(n-6)αβ-K(n+1))+g(X,Y)(αβ+K(n+1))+  

g(ϕX,Y)(α+3β(n-1)) ∀X,Y∈X(M) 

 Ric being the Ricci tensor on M2n+1. 

(57) S=4α2+(3n-4)αβ+3n(n-1)β2 

where S is the scalar of curvature. 

From (57) we obtain immediately: 

Theorem 12 A special gt-manifold, not cosymplectic, having constant ϕ-sectional 
curvature and of dimension greater than 3 has positive scalar of curvature. 

Almost Hermitian manifolds with J-invariant sectional curvature 
 Let (M,g) a differentiable manifold with the metric tensor g. M is named 
almost Hermitian if there exists an endomorphism J:X(M)→X(M) of the Lie 
algebra of tensor fields X(M) such that J2=-I and g is J-invariant that is 
g(JX,JY)=g(X,Y) ∀X,Y∈X(M). 
 In [4] L. Vanhecke defines RK-manifolds like manifolds almost hermitian 
with J-invariant curvature Riemann tensor, that is R(JX,JY,JZ,JV)=R(X,Y,Z,V) 
∀X,Y,Z,V∈X(M). 
 In [3] are defined para-Kähler manifolds like almost hermitian manifolds 
with R(X,Y,JZ,JV)=R(X,Y,Z,V) ∀X,Y,Z,V∈X(M). 
 A Kähler manifold is an almost Hermitian manifold for which the 2-

fundamental form is closed, where Φ(X,Y)=g(JX,Y) ∀X,Y∈X(M) and the Nijenhuis 
tensor corresponding to J vanishes. In a Kähler manifold we have ([1]): 
R(X,JY,Z,V)=R(Y,JX,Z,V) ∀X,Y,Z,V∈X(M). 
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 We have, in consequence, that Kähler manifolds are para-Kähler which their 
turn are RK-manifolds. Let note the sectional curvature by the 2-plane (X,Y) in any 
point of the manifold with k(X,Y) and K(X,Y)=k(X,Y)[g(X,X)g(Y,Y)-g(X,Y) 2]. We 
note also H(X)=k(X,JX) the holomorphic sectional curvature corresponding to X. It 
is proved in [5] that on a RK-manifold we have k(X,Y)=k(JX,JY), 
k(X,JY)=k(JX,Y), S(X,Y)=S(JX,JY), S(X,JY)+S(JX,Y)=0 ∀X,Y∈X(M) where S is 
the Ricci tensor. 
 In this paper I shall enlarge the RK-manifolds class and I shall study some 
properties of these manifolds. 
2. Almost RK-manifolds 
Definition 1 An almost RK-manifold (short RKA-manifold ) is an almost 
Hermitian manifold for which K(X,Y)=K(JX,JY) ∀X,Y∈X(M). 
Remarks An RK-manifold is an RKA-manifold. Manifolds with constant curvature 
are also RKA-manifolds. 
 From the definition follows immediately that: 

(1) R(X,Y,V,Z)+R(X,Z,V,Y)=R(JX,JY,JV,JZ)+R(JX,JZ,JV,JY) ∀X,Y,Z,V∈X(M) 
 If we take an orthonormal basis in M: X1,...,Xn and put Y=Z=Xi and 
summing for i, we obtain; S(X,V)=S(JX,JV) ∀X,V∈X(M). In consequence, the 
property of the Ricci tensor to be invariant at the action of J remains valid in RKA-
manifolds. 
 Let now study the behaviour of RKA-manifolds at the time when they admit 
some special submanifolds. 

 Let (M,g)⊂( M ,g ) a submanifold of an almost Hermitian manifold (M ,g ). 

The Gauss equation is: 

(2) R (X,Y,Z,V)=R(X,Y,Z,V)- g (h(X,Z),h(Y,V))+g (h(X,V),h(Y,Z)) 

∀X,Y,Z,V∈X(M) 

Definition 2 A submanifold (M,g)⊂( M ,g ) is called totally cuasi-umbilical if the 

second fundamental form h is: 

h(X,Y)=g(X,Y)H+[ω(X)ω(Y)+ω(JX)ω(JY)]A ∀X,Y∈X(M) 

where H is the mean curvature vector and A∈X(M)⊥, ω being a 1-form on M. 

In particular, if ω=0 we obtain totally umbilical submanifolds and if, in 
addition H=0, we have totally geodesic submanifolds. 

For totally cuasi-umbilical submanifolds, we have: 
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(3)K (X,Y)=K(X,Y)+ g (H,H)[g2(X,Y)-g(X,X)g(Y,Y)]+ 

g (H,A)[2ω(X)ω(Y)g(X,Y)+2ω(JX)ω(JY)g(X,Y)-g(X,X)(ω2(Y)+ω2(JY))-

g(Y,Y)(ω2(X)+ω2(JX))]- g (A,A)[ ω(X)ω(JY)-ω(Y)ω(JX)]2 ∀X,Y∈X(M) 

 Writing (3) for JX and JY and subtract the two relations, we obtain: 

(4) K (JX,JY)-K (X,Y)=K(JX,JY)-K(X,Y) ∀X,Y∈X(M) 
where we have noted with bar all the quantities on M. 
 In consequence, we have: 
Theorem 1 A totally cuasi-umbilical submanifold of an RKA-manifold is an RKA-
manifold. 
Corollary 1 A totally umbilical submanifold of an RKA-manifold is an RKA-
manifold. 
Corollary 2 A totally geodesic submanifold of an RKA-manifold is an RKA-
manifold. 
 The conformal curvature tensor of a manifold is: 
(5) C(X,Y,Z,V)=r(X,Y,Z,V)+g(X,V)L(Y,Z)+g(Y,Z)L(X,V) -g(X,Z)L(Y,V)- 
g(Y,V)L(X,Z) ∀X,Y,Z,V∈X(M) 

where L(X,Y)= 








−
ρ−

−
)Y,X(g

)1n(2
)Y,X(S

2n

1
, ρ being the scalar of curvature. 

 Immediately, we obtain that: 

(6) C(X,Y,X,Y)-C(JX,JY,JX,JY)=K(X,Y)-K(JX,JY) ∀X,Y∈X(M) 
 From (6) follows: 
Theorem 2 If an RKA-manifold is conformable with another manifold the second is 
also RKA-manifold. 
 In the same manner, considering the Weyl projective tensor: 

P(X,Y)Z=R(X,Y)Z+ ( )X)Z,Y(SY)Z,X(S
1n

1 −
−

 and the Yano concircular tensor 

K(X,Y)Z=R(X,Y)Z- ( )Y)Z,X(gX)Z,Y(g
)1n(n

−
−

ρ
 where n=dim M, we obtain: 

Theorem 3 At projective transformations RKA-manifolds applied on RKA-
manifolds. 
Theorem 4 At concircular transformations RKA-manifolds applied on RKA-
manifolds. 
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3. RKA-manifolds with punctual constant type 
 In what follows are necessary some definitions. 
Definition 3 Let p∈M. A subspace Np of TpM is called holomorphic subspace if 
J(Np)⊂Np and antiholomorphic if J(Np)⊂ ⊥

pN . 

Definition 4 A 2p+1-dimensional subspace is called 2p+1-coholomorphic plane if 
it contains a 2p-holomorphic plane. 
 It shows in [5] that a 2p+1-coholomorphic plane contains a p+1-

antiholomorphic plane and 1≤p≤q-1 where dim M=2q. 

Definition 5 An almost Hermitian manifold has constant type in p∈M if for any 

X∈TpM we have: λ(X,Y)=λ(X,Z) where (X,Y), (X,Z) are antiholomorphic planes, 

g(Y,Y)=g(Z,Z) and λ(X,Y)=R(X,Y,X,Y)-R(X,Y,JX,JY). If the manifold has 

constant type in every point p∈M it is called with punctual constant type. 
Definition 6 An almost hermitian manifold M satisfies the axiom of (2p+1)-

coholomorphic spheres if for any m∈M and any 2p+1-coholomorphic plane Nm of 

TpM it exists a 2p+1-dimensional totally umbilical submanifold S in order to m∈S 

and TmS=Nm with p fixed integer and 2≤p≤q-1, dim M=2q. 
 In the same manner like in [4] we shall prove the following: 
Theorem 5 Let M an RKA-manifold with punctual constant type. If M satisfy the 
axiom of 2p+1-coholomorphic spheres for some p and if dim M≥6 then the 
holomorphic sectional curvature depends only from the point. 
Proof Let m∈M We consider two orthonormal vectors X,Y in TpM in order to 
(X,Y) is an antiholomorphic plane. We take now a 2p+1-coholomorphic plane Nm 
which contains X,Y,JX and JY is normal to Nm. From the axiom of 2p+1-
coholomorphic spheres, it exists a 2p+1-totally umbilical submanifold S in order to 

m∈S and TmS=Nm. Let now the Codazzi equation for a totally umbilical 
submanifold: 
(7) (R(X,Y)Z)⊥=g(Y,Z)DXH-g(X,Z)DYH ∀X,Y,Z∈X(M) 
where D is the connection of the normal fibre bundle of S in M. 

If in (7) we consider X,JX,Y we obtain (R(X,JX)Y)⊥=0. But JY is normal to 
Nm therefore: 
(8) R(X,JX,Y,JY)=0 ∀X,Y∈TmM with (X,Y) an antiholomorphic plane. 
(X+Y,JX-JY) is obvious an antiholomorphic plane then, using (1),(8) follows: 
(9) K(X+Y,JX-JY)=H(X)+H(Y)+2K(X,JY)+2K(X,Y)-2λ(X,Y) 
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Also, from (8) we have: 
(10) K(X,Y)+K(X,JY)=λ(X,Y)+λ(X,JY) 
 We take in (10) X+Y and JX-JY instead of X and Y: 
(11) K(X+Y,JX-JY)+K(X+Y,X-Y)=λ(X+Y,JX-JY)+λ(X+Y,X-Y) 
 After elementary computations, we have: 
(12) K(X+Y,X-Y)=4K(X,Y) 
(13) λ(X+Y,JX-JY)=4λ(X,JY) 

(14) λ(X+Y,X-Y)=4λ(X,Y) 
 Using (12),(13),(14) in (11) we obtain: 

(15) K(X+Y,JX-JY)=-4K(X,Y)+4λ(X,JY)+4λ(X,Y) 
 On the other hand we have: 
(16) K(X,JY)=λ(X,Y)+λ(X,JY)-K(X,Y) 
 Using now (15),(16) in (9) we obtain: 

(17) K(X,Y)=
2

1 λ(X,JY)+λ(X,Y)- ( ))Y(H)X(H
4

1 +  

 If we put in (17) JY instead of Y we have: 

(18) K(X,JY)=
2

1 λ(X,Y)+λ(X,JY)- ( ))Y(H)X(H
4

1 +  

 From (17) and (18) follows: 
(19) λ(X,Y)+λ(X,JY)=H(X)+H(Y) 

 If M has constant punctual type, let note him with α, we obtain: 

(20) H(X)+H(Y)=2α. 

 But dim M≥6 then H(X)=α. The theorem is completely proved. 
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