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Abstract: In the first part, we shall unify the principal criterions (Wald, Hurwicz, Savage, Laplace) 
used in the process of choice the best alternative. After the general theory and few examples who 
illustrate the drawbacks of the existing criterions, we propose six new choices modalities from other 
points of view. In the second part, we shall give a new solution for the optimal assignation of workers 
on jobs from the point of view of execution total time minimization using the Simplex algorithm which 
can solve the problem using computers instead the known Little’s solution. In the third, we shall give a 
new solution for the optimal assignation of workers on jobs from the point of view of minimization the 
maximal execution time using the simplex algorithm which can solve the problem using computers 
instead the known graphical solution. In part four, we shall give a new solution for the optimal 
assignation of workers on jobs using the Simplex algorithm which can solve the problem using 
computers instead the known graphical solution. In part five, we shall give a new algorithm instead of 
Johnson classical in the process of determination the sequence of pieces execution on two installations 
without initial deliverance times. 
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1. An Unified Theory Concerning Principal Decision Making 
Methods 

 

1.1. Introduction 

In the process of decision making we have as well as principal methods the 
following: 
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• Wald’s criterion (the maximin criterion) 

• Laplace’s criterion 

• Hurwicz’s optimist criterion 

• Savage’s regret criterion 

Each of these criterions becomes with a series of inconveniences because they 
broach the problem from a narrow point of view. 

For example, let make an analysis of the following problem: 

Let a1, a2, a3, a4 the alternatives and b1, b2, b3, b4, b5 uncontrollable states. The 
payoffs for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 b3 b4 b5 

a1 6 2 8 0 9 

a2 0 3 8 2 3 

a3 0 5 5 1 2 

a4 1 2 3 6 8 

If we apply Wald, Hurwicz with 0.1 and Savage we will find that the alternative a4 is 
the best, but the Laplace’s criterion gives us the alternative a1. 

For the problem: 

 b1 b2 b3 b4 b5 

a1 8 3 7 2 1 

a2 7 5 3 1 5 

a3 3 4 2 1 9 

a4 5 5 8 2 3 

we will find that Wald, Hurwicz with 0.2 and Laplace give us the alternative a4, but 
Savage: a2. 

For the problem: 

 b1 b2 b3 b4 b5 

a1 0 4 1 7 5 
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a2 6 9 5 0 2 

a3 8 5 2 5 6 

a4 3 4 5 4 3 

we will find that Laplace, Hurwicz with 0.6 and Savage give us the alternative a3, 
but Wald: a4. 

For the problem: 

 b1 b2 b3 b4 b5 

a1 3 7 6 8 3 

a2 1 5 9 9 2 

a3 6 8 1 7 0 

a4 0 9 2 0 0 

we will find that Laplace, Wald and Savage give us the alternative a1, but Hurwicz 
with 0.7: a2. 

 Another example gives us for each criterion another alternative: 

 b1 b2 b3 b4 b5 

a1 7 2 10 6 2 

a2 9 10 2 1 8 

a3 5 3 6 4 8 

a4 5 6 9 2 6 

• Wald’s criterion gives us a3 

• Laplace’s criterion gives us a2 

• Hurwicz’s optimist criterion with 0.6 gives us a1 

• Savage’s regret criterion gives us a4 

It is therefore a necessity to broach the problem from two points of view: to create a 
general criterion applicable on all situations and which recover in particular cases 
the upper criterions and, on the other hand, to create departing from this general 
criterion other news. 
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1. 2. The general problem and criterion 

Let A={a1,…,am} the set of the alternatives and B={b1,…,bn} the set of 

uncontrollable states. The payoffs for each pair (ai,bj) are cij, i= m,1 , j= n,1 . 

We shall group in what follows the uncontrollable states in p>=1 subsets of B: 

Gk={ 1j 1k
b +−

,...,
kj

b }, k= p,1  where 0=j0<j1<...<jp=n. These subsets can appear, for 

example, in the process of grouping the states after their origin. 

To each group Gk we assign a risk coefficient ωk∈[0,1], k= p,1  and a weight in 

decision ηk∈[0,1], k= p,1  such that ∑
=

η
p

1k
k =1. 

For each state bj we note with Rj, j= n,1  the potential gain if we know apriority the 

occurrence of bj. 

Finally, let group the alternatives A in q subsets: Hv={ 1i 1v
a +−

,...,
via }, v= q,1  where 

0=i0<i1<...<iq=m and for each Hv we assign a coefficient of preference λv∈[0,1], 
v= q,1 . Even if at the first sight all the alternatives are equals in probability, in fact 

the factor of decision has preferences and he split A in the subsets Hv with 

coefficients of preference λv. 

We shall define for each row the function: 
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called the expected gain function. 

 We define the selection group function: 

g(v)= )s(fmin)1()s(fmax
v1vv1v is1iv
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The final alternative is that for which the difference f(i)-g(r), i= r1r i,1i +−  is 

minimum. 

The table of values and strategies of α and β respectively has the following format: 

 

  p groups   

 

α/β 

... Gk ... 

f g  ... ωk / ηk ... 

 ... 1j 1k
b +−

 ... 
kj

b  ... 

 ... ... ... ... ... ... ... ... ... ... 

q 
gr

ou
ps

 

Hv λv 

1i 1v
a +−

 
... j,1i 1k1v

c ++ −−

 
... k1v j,1ic +−

 
... 

)1i(f 1v +−

 

g(v) ... ... ... ... ... ... ... 

via  ... 1j,i 1kv
c +−

 
... 

kv j,ic  ... )i(f v  

 ... ... ... ... ... ... ... ... ... ... 

 
 ... 1j 1k

R +−
 ... 

kj
R  ...  

)v(gmax
qv1 ≤≤

/ )v(gmin
qv1 ≤≤

 

 

1.3. Particular cases 

We shall present, in what follows, the values of the expected gain function f 

corresponding at different values of p and Rj, j= n,1  respectively. 

Table 1 

p Rj f(i) 

1 ∑
=

n

1j

2
jR =0 )c(min)1()c(max isns11is

ns1
1 ≤≤≤≤

ω−+ω  
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1 ∑
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The selection group function is for q=m (i0=0, i1=1,..., im=m): 

g(v)= )s(fmin)1()s(fmax
vsvv

vsv
v ≤≤≤≤

λ−+λ =λvf(v)+(1-λv)f(v)=f(v), v= m,1  

If q=1 then: i0=0, i1=m therefore: 

g(1)= )s(fmin)1()s(fmax
ms11

ms1
1 ≤≤≤≤

λ−+λ  

If Rj=0, j= n,1  we have that the alternative’s group finally selected is that Hr 

for which: 

g(r)= ( ))v(gmax
qv1 ≤≤

 

and if ∃ j= n,1  such that Rj≠0 follows: 

g(r)= ( ) ( ))v(gmin)v(gmax
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1.4. Known criterions like particular cases 

 

1.4.1. Hurwicz’s criterion 

For p=1, q=m, Rj=0, j= n,1  we have that: f(i)= )c(min)1()c(max isns11is
ns1

1 ≤≤≤≤
ω−+ω  and 

g(v)=f(v), v= m,1 . 

The best alternative is that ar for which g(r)= )v(fmax
mv1 ≤≤

. 

The extreme values of ω1 are: 

• ω1=0 who lead us to the expected gain function: f(i)= )c(min isns1 ≤≤
 and after: 

g(r)= )v(fmax
mv1 ≤≤

= )c(minmax vsns1mv1 ≤≤≤≤
 - α showing a pessimistic maximum in the 

choice of the strategy; 

• ω1=1 who lead us to the expected gain function f(i)= )c(max is
ns1 ≤≤

 and after: 

g(r)= )v(fmax
mv1 ≤≤

= )c(maxmax vs
ns1mv1 ≤≤≤≤

 - α showing an optimistic maximum in the 

choice of the strategy. 

If the first strategy, corresponding to ω1=0 is a little realistic (punting on a doubtless 

gain), the second is totally irrational, α ignoring all the opponent’s actions (hoping 

in the weakest choice of β). 

 

Example 

Let a1, a2 the alternatives of α and b1, b2 the uncontrollable states of β. The payoffs 

for each pair (ai,bj) are cij and are find out in the following table where with ω1=0,6 
we shall apply the Hurwicz criterion: 

 b1 b2 ci= ijn,...,1j
cmin

=
 Ci= ij

n,...,1j
cmax

=
 0,6Ci+0,4ci 

a1 10 20 10 20 16 

a2 -10 100 -10 100 56 

The maximum of the quantities in the last column is 56, therefore the alternative a2 
will be the best from the point of view of Hurwicz’s criterion. 
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If we shall carefully analyze the upper table, we shall see that α will win in the 

situation of a2 if and only if β will choose the state b2. On the other hand, β will 

never choose this strategy, because regardless what α will adopt, he will lose. Like a 
consequence we can say that the Hurwicz’s criterion is good when the values 
corresponding to the rows of the table will be near on to the other, the differencies 
between minimal and maximal values being little. 

 

1.4.2. Wald’s criterion 

The Wald’s criterion is a particular case of Hurwicz’s for ω1=0. Like in the 
preceding criterion, those of Wald neglected much of the information, treating only 
minimal values on rows. 

Example 

Let a1, a2 the alternatives of α and b1, b2 the uncontrollable states of β. The payoffs 
for each pair (ai,bj) are cij and are find out in the following table: 

 

 b1 b2 ijn,...,1j
cmin

=
 

a1 0,9 100 0,9 

a2 1 2 1 

The maximum quantities in the last column is 1, therefore the alternative a2 will be 
the best after Wald. 

If we shall examine carrefully the upper table, we shall see that α will gain with one 

unit. It is hard to believe that α not choose the alternative a1, because this can bring 
an earning between 0,9 to 100 units. 

1.4.3. Laplace’s criterion 

For p=n and Rj=0, j= n,1  we have: f(i)=∑
=

η
n

1k
ikk c . If ηk=

n

1
, k= n,1  then we obtain: 

f(i)= ∑
=

n

1k
ikc

n

1
. For q=m we have: g(v)=f(v), v=m,1 . 

The winner group of strategies will be ar for which g(r)= )v(gmax
mv1 ≤≤

. 
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The Laplace’s criterion has like drawback the equal treatment of all actions of β. In 

fact, β looking at the values can prefer one or other from his alternatives, who leads 
to an inequality in the probabilities upper considered. 

 

Example 

Let a1, a2 the alternatives of α and b1, b2 the uncontrollable states of β. The payoffs 
for each pair (ai,bj) are cij and are find out in the following table: 

 

 b1 b2 

2

1
b1+

2

1
b2 

a1 -10 10 0 

a2 -10 20 5 

The maximum in the last column is 5, therefore the alternative a2 will be choosed 
after Laplace’s criterion. 

We can easly see that if α will choose the alternative a2, he will win if β will choose 

the strategy b2. On the other hand, β will choose always b1 that brings it, regardless 

α 10 units. As a conclusion, the actions of β cannot have equal probability, in the 

upper case the probability of β to choose b1 being 1 and for b2 being 0. 

 

1.4.4. Savage’s criterion 

For p=1, ω1=0 and Rj= ij
mi1

cmax
≤≤

, j= n,1 , respectively q=m we have: 

f(i)= )cR(max iss
ns1

−
≤≤

 and g(v)=f(v), v= m,1 . The winner alternative will be those ar 

for which g(r)= ( ))v(gmin
mv1 ≤≤

. 

The Savage’s criterion bring us, at the first sight, a new point of view. 

A number of remarks appear however: Savage defines the regret like difference 

between how much can α win if he had known apriori the decision of β and how 
much he wins in fact. This definition is credible, but pushes this notion to an 
extreme. Maybe, in fact a best regret’s definition can be an average (with differents 
weights or not) of possible gains. Also, finally the last section of this algorithm uses 
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the minimax criterion; therefore like in the precedings criterions it not takes in 
calculus all the values on rows. 

 

Example 

Let a1, a2 the alternatives of α and b1, b2 the uncontrollable states of β. The payoffs 
for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 

a1 -98 101 

a2 1 1 

ij
mi1

cmax
≤≤

 1 101 

The regrets table is: 

 

 b1 b2 )cR(max issns1
−

≤≤
 

a1 99 0 99 

a2 0 100 100 

After the minimax criterion we find that the alternative a1 is the best. We can see 
that this decision has the highest risk (α can win 101 units, but he can loose also 98 
units). The alternative a2 is, in this case a little practical (it guarantees an earning of 
1 unit in any situation). 

 

1.5. New criteria 

In what follows, we shall suggest a few criterions deduced from the general 
formulas. 

 

1.5.1. Hurwicz-Savage’s criterion 

For p=1, ω1≠0 and Rj= ij
mi1

cmax
≤≤

, j= n,1 , respectively q=m we have: 
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f(i)= )cR(max)1()cR(min iss
ns1

1issns11 −ω−+−ω
≤≤≤≤

 and g(v)=f(v), v= m,1 . 

The winner alternative will be ar for which g(r)= ( ))v(gmin
mv1 ≤≤

. 

This criterion proposes the determination of the best strategy, assigning a risk factor 

ω1≠0 in the process of regrets analyzing. 

 

Example 

Let a1, a2 the alternatives of α and b1, b2 the uncontrollable states of β. The payoffs 

for each pair (ai,bj) are cij and are find out in the following table, where ω1=0,6: 

 b1 b2 

a1 10 20 

a2 -10 100 

ij
mi1

cmax
≤≤

 10 100 

 

 b1 b2 ci= ijn,...,1j
cmin

=
 Ci= ij

n,...,1j
cmax

=
 0,6Ci+0,4ci 

a1 0 80 0 80 48 

a2 20 0 0 20 12 

From the last column we see that the strategy a1 will be the best following this 
criterion. 

We can see that this example is those from Hurwicz’s criterion, the alternative a1, 
obtained here, being acceptable in comparasion with those of Hurwicz. 

 

1.5.2. Weight Laplace’s criterion 

For p=n and Rj=0, j= n,1  we have: f(i)=∑
=

η
n

1k
ikk c  with ∑

=

η
p

1k
k =1. For q=m we have: 

g(v)=f(v), v= m,1 . 

The winner alternative will be ar for which g(r)= )v(gmax
mv1 ≤≤

. 
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The Weight Laplace’s criterion is a refinement of the classical criterion, assigning to 

the strategies of β, differents probabilities. 

The principal problem who arrived here is that of the choice modality of the weights 

ηk, k= n,1 . 

 

1.5.3. Proportionally weight Laplace’s criterion 

For p=n and Rj=0, j= n,1  we have: f(i)=∑
=

η
n

1k
ikk c  with ∑

=

η
p

1k
k =1. 

We shall compute first: νk=∑
=

m

1t
tkc , k= n,1  that is the sum of gains corresponding to 

the k-th column. 

If p
n,1p

p
n,1p

minmax ν=ν
==

 then νk=constant, k= n,1 . In this case, we shall apply the 

Laplace’s criterion with all weights equal: ηk=
n

1
. 

If p
n,1p

p
n,1p

minmax ν>ν
==

, we shall compute: εk=
p

n,1p
p

n,1p

kp
n,1p

minmax

max

ν−ν

ν−ν

==

= , k= n,1  and, finally: 

ηk=

∑
=

ε

ε
n

1p
p

k ,k= n,1 . We have therefore: ηk=

∑
∑∑

∑∑

∑∑

∑∑

=

====

===

====

===

−

−

−

−

n

1p
m

1t
ts

n,1s

m

1t
ts

n,1s

m

1t
tp

m

1t
ts

n,1s

m

1t
ts

n,1s

m

1t
ts

n,1s

m

1t
tk

m

1t
ts

n,1s

cmincmax

ccmax

cmincmax

ccmax

, k= n,1 . 

For q=m we have: g(v)=f(v), v=m,1 . 

The winner alternative will be ar for which g(r)= )v(gmax
mv1 ≤≤

. 

The proportionally weight Laplace’s criterion propose a rational choice of β’s 

probabilities of action because, how much the values corresponding to a column of β 
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are less (designiting β’s loses) so much the values εk will be elder and, implicit, 

those of ηk. 

 

Example 

Let a1, a2 the alternatives of α and b1, b2, b3 the uncontrollable states of β. The 
payoffs for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 b3 

3

1
b1+

3

1
b2+

3

1
b

3 

a1 -10 10 6 2 

a2 -15 20 7 4 

Applying the Laplace criterion we have that the alternative a2 is the best. 

We can easly see that if α choose a2, he win if β will choose b2 or b3. On the other 

hand, β will choose always the strategy b1 that brings a greater gain than or equal 
with 10 units. 

We shall apply now, the proportionally weight Laplace’s criterion. 

We have first: ν1=-10-15=-25, ν2=10+20=30, ν3=6+7=13, from where 

max{ν1,ν2,ν3}=30, min{ν1,ν2,ν3}=-25. 

We have therefore: 

ε1=
55

2530+
=1, ε2=

55

3030−
=0, ε3=

55

17

55

1330 =−
 

and finally: 

η1=

55

17
01

1

++
=

72

55
, η2=0, η3=

55

72
55

17

=
72

17
 

The table is: 
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 55/72 0 17/72  

 b1 b2 b3 

72

55
b1+0⋅b2+

72

17
b3 

a1 -10 10 6 -448/72 

a2 -15 20 7 -706/72 

The maximum value in the last column is -448/72 therefore the best alternative will 

be a1 - most rationally because β will choose b1 and α will loose less. 

 

1.5.4. Proportionally weight with regrets Laplace’s criterion 

For p=n and Rj= ij
mi1

cmax
≤≤

, j= n,1  we have: f(i)=∑
=

−η
n

1k
ikkk )cR(  with 

∑
=

η
p

1k
k =1.  

We shall compute the weights ηk like in the preceding criterion but, in this 

case, for the regrets table of β. 

First, we shall compute, the regrets: Si= )c(max ij
nj1

−
≤≤

=- ijnj1
cmin

≤≤
, i= m,1  and 

after we shall build the regrets table of β, having the elements dik=-cik-Si= ijnj1
cmin

≤≤
-cik, 

i= m,1 , k= n,1 . 

Determining after: νk=∑
=

m

1t
tkd , k= n,1  that is the sum of gains in the column 

k, we have that if p
n,1p

p
n,1p

minmax ν=ν
==

 then νk=constant, k= n,1 . In this case we shall 

apply the Laplace’s criterion with equal weights: ηk=
n

1
. 

If p
n,1p

p
n,1p

minmax ν>ν
==

, we compute: εk=
p

n,1p
p

n,1p

p
n,1p

k

minmax

min

ν−ν

ν−ν

==

= , k= n,1  and, finally: 

ηk=

∑
=

ε

ε
n

1p
p

k ,k= n,1 . We have therefore: 
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ηk=

∑
∑∑

∑∑

∑∑

∑∑

=

====

===

====

===

−

−

−

−

n

1p
m

1t
ts
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m

1t
ts
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m

1t
ts
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1t
ts
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m
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ts
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m

1t
ts
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m

1t
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dmindmax

dmind

dmindmax

dmind

, k= n,1  

For q=m we find that: g(v)=f(v), v=m,1 . 

The winner alternative will be ar for which g(r)= ( ))v(gmin
mv1 ≤≤

. 

Example 

Let a1, a2 the alternatives of α and b1, b2, b3 the uncontrollable states of β. The 
payoffs for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 b3 ijnj1
cmin

≤≤
 

a1 -10 10 6 -10 

a2 -15 20 7 -15 

ij
mi1

cmax
≤≤

 -10 20 7  

The regrets table of β (in terms of gains of α) is: 

 b1 b2 b3 

a1 0 -20 -16 

a2 0 -35 -22 

We have therefore: 

ν1=0, ν2=-55, ν3=-38, from where: max{ν1,ν2,ν3}=0, min{ν1,ν2,ν3}=-55. 

ε1=
550

550

+
+

=1, ε2=
550

5555

+
+−

=0, ε3=
550

5538

+
+−

=
55

17
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η1=

55

17
01

1

++
=

72

55
, η2=0, η3=

55

72
55

17

=
72

17
 

The regrets table of α will be: 

 55/72 0 17/72  

 b1 b2 b3 

72

55
b1+0⋅b2+

72

17
b

3 

a1 0 10 1 17/72 

a2 5 0 0 275/72 

The minimum of the last column being 17/72 it follows that the best strategy is a1. 

 

1.5.5. Regrets Laplace’s criterion 

For p=n and Rj= ij
mi1

cmax
≤≤

, j= n,1 , we have: f(i)=∑
=

−η
n

1k
ikkk )cR(  with ∑

=

η
p

1k
k =1. If we 

shall choose ηk=
n

1
, and after, for q=m, we have that: g(v)=f(v), v=m,1 .  

The winner alternative will be ar for which g(r)= ( ))v(gmin
mv1 ≤≤

. 

 

Example 

Let a1, a2 the alternatives of α and b1, b2, b3 the uncontrollable states of β. The 
payoffs for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 b3 

a1 -10 10 6 

a2 -15 20 7 

ij
mi1

cmax
≤≤

 -10 20 7 

 



ŒCONOMICA 
 

 41

The regrets table of α is: 

 b1 b2 b3 

3

1
b1+

3

1
b2+

3

1
b3 

a1 0 10 1 11/3 

a2 5 0 0 5/3 

The best alternative from this criterion is a2 but from the facts exposed upper 
this is not acceptable. 

 

1.5.6. The nostalgia criterion 

This criterion alludes, in fact, to the final selection of the alternative. After each of 
the exposed criterions we obtain a series of values of the function f which in the 
absence of regrets is maximized, and in the presence - minimized. 

In many cases, we can group the alternatives of α in categories, clases after the 
satisfactions offered in the past. We can also group, for example, after the 
implement expenses of those (advertising if the problem study the launching of a 
product). 

Thus, we shall associate to each q groups of alternatives of α a coefficient of 

importance λv, v= q,1 . We shall after determine the selection function: 

g(v)= )s(fmin)1()s(fmax
v1vv1v is1iv

is1i
v ≤≤+≤≤+ −−

λ−+λ , v= q,1  acting after like in section 2 that 

is: the alternative’s group finally selected is that Hr for which 

g(r)=
































−


















− ∑∑

=≤≤=

)v(gRsgn21sgnmaxRsgn21sgn
n

1j

2
j

qv1

n

1j

2
j  

and the final alternative is that for which the difference f(i)-g(r), i= r1r i,1i +−  is 

minimum. 

The groups of alterantives will be determined, in principle, arbitrary. We can group, 
for example, in good, medium or weak strategies after the sum of gains. The 

coeficcients λv will be determined after the method indicated in the proportionally 
weight Laplace’s criterion applied on the rows of the groups. 
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We have therefore the following steps: 

We compute first: νv, v= q,1  - the sum of gains of the group v. 

If p
q,1p

p
q,1p

minmax ν=ν
==

 then νv=constant, v= q,1 . In this case, it follows that isn’t a 

preference for one of the group, and the algorithm will be close like those initial. 

If p
q,1p

p
q,1p

minmax ν>ν
==

, we compute: εv=
p

q,1p
p

q,1p

p
q,1p

v

minmax

min

ν−ν

ν−ν

==

= , v= q,1  and, finally: 

λv=

∑
=

ε

ε
q

1p
p

v , v= q,1 . 

Example 

Let a1, a2, a3, a4 the alternatives of α and b1, b2, b3 the uncontrollable states of β. The 
payoffs for each pair (ai,bj) are cij and are find out in the following table: 

 b1 b2 b3 ijmi1
cmin

≤≤
 

a1 10 10 6 6 

a2 -15 -9 7 -15 

a3 -5 40 50 -5 

a4 30 -8 6 -8 

If we apply the Wald criterion we have that the best alternative is a1. 

We shall broach in a different way the problem. The sum on the rows is: 

 b1 b2 b3 
∑

=

n

1j
ijc  

a1 10 10 6 26 

a2 -15 -9 7 -17 

a3 -5 40 50 85 

a4 3 -8 6 28 
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We shall therefore group the alternatives a1 and a2 which offer the less prices and a3 

with a4. Let therefore: H1={a1,a2} and H2={a3,a4}. 

We have now: ν1=26-17=9, ν2=85+28=113 and max{ν1,ν2}=113, min{ν1,ν2}=9. 

Because ε1=
9113

99

−
−

=0, ε2=
9113

9113

−
−

=1 we obtain: λ1=0 and λ2=1. 

The selection function is: 

• g(1)= )s(fmin)1()s(fmax
2s11

2s1
1 ≤≤≤≤

λ−+λ = )s(fmin
2s1 ≤≤

=min{26,-17}=-17.  

• g(2)= )s(fmin)1()s(fmax
4s32

4s3
2 ≤≤≤≤

λ−+λ = )s(fmax
4s3 ≤≤

=max{85,28}=85. 

The winner group is those for which: 

g(r)= ( ))v(gmax
qv1 ≤≤

=max{g(1),g(2)}=85  

If we compute now the differences: f(i)-g(r) i=3,4 we obtain: f(3)-g(2)=85-

85=0 şi f(4)-g(2)=28-85=57 from which the best alternative is a3. 

 

2. The Optimal Assignation of Workers from the Point of View of 
Execution Total Time Minimization 

 

2.1. Introduction 

The problems of assignation appear usual in the process of targets allocation in an 
institution. 

Let consider A={A1,...,An} the set of workers in an institution and L={L1,...,Lm} the 
set of jobs which must be executed at a specific moment. In the execution of Lj, the 
worker Ai spend a time equal with tij units (hours, minutes, seconds etc.). Supposing 
thet it exists workers which can execute a lot of jobs we put the problem of 
allocation on jobs such that the total time spending in the execution to be minimum. 

We shall assign an infinte value to tij if A i is not able to execute the job Lj. Also, we 
shall understand that the number of workers is equal with those of jobs, in the 
opposite case introducing fictional workers or jobs with infinte times of execution to 
prevent the allocation of them. 



ACTA UNIVERSITATIS DANUBIUS                                                       Nr. 1/2008 
 

 44

The method of Little suggest the following steps: 

Step 1 It is build the table of times (with workers on columns and jobs on rows) and 
after we shall compute the minimum on each row. After this we subtract these 
values from those of rows, compute the minimum on each column and after also, we 
shall subtract these from the values on the columns. After this step, on each row or 
column is at least one value equal with 0. 

Step 2 We shall compute the sum of all elements subtracted from rows and columns 
and noted with S1. 

Step 3 For each element equal with 0 in the last table, we shall compute the 

quantities µij=min {tikk≠j}+min{tpjp≠i} or, in other words, the sum of the 
elements on the row and column corresponding to the null quantity. After this, we 
shall determine the maximum of that values and the appropriate allocation (s,r). We 
shall build a tree graph where the initial knot comes with the value S1. We shall 
build after a bend where we shall put the activities (s,r) and non(s,r) who will come 

with the values αsr and βsr=S1+µsr respectively. 

Step 4 We shall erase the row s and the column r and we shall act like in the first 
step. 

Step 5 We shall compute S2 like sum of the elements of minimum of rows and 

columns and we shall modify the indicator αsr=S1+S2. 

Step 6 If the simplified table will has only one row and column the algorithm will 

close. If not it will be choose the minimum between αsr and βsr. If both values will 

be equal we shall choose the value αsr appropriate to an allocation and not to a reject 
of allocation. 

Step 7 If the choiced value was αsr we shall return at the step 3. 

Step 8 If the choiced value was βsr then we shall consider in the table previously of 

step 1: tsr=∞ and we shall compute the minimum of row s and column r, subtract 
these form the appropriate row and column and return at the third step. 

We can see that the algorithm is a little hard therefore we shall propose in what 
follows a new method based on the Simplex algorithm. 
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2.2. The new method 

Let consider A’={A1,...,An’} the set of workers in an institution and L’={L1,...,Lm’} 
the set of jobs which must be executed at a specific moment. 

Let therefore f:A’→P(L’ ), f(A i)={ }
k1 ii L,...,L  ∀i=1,...,n’ the function who assign to 

A i the jobs: 
k1 ii L,...,L  which he can realize if he has the necessary qualification for 

at least one job and f(Ai)=∅ in opposite cases. 

We shall restrict the set A' and we shall consider, from the beginning, the subset of 

those workers for which f(Ai)≠∅ ∀A i∈A. We shall note therefore A={A1,...,An} with 

n≤n’ (after a possible renotation of workers). Let now (again after a possible 

renotation of workers): U
n

1i
i )A(f

=

={L1,...,Lm} with m≤m’. If m<m’ we have that the 

jobs Lm+1,...,Lm’ cannot be executed from any workers, therefore will be excludes. 

Finally, let consider: L={L1,...,Lm} and the new allocation function: f:A→P(L). 

We shall define a matrix: 

M=

n

1

nm1n

m111

m1

A

...

A

a...a

.........

a...a

L...L  
















 

where aij=1 if the worker Ai can execute the job Lj and 0 in the other cases. 

Let now consider the matrix A=(αij) where: 

αij=




ji

ji

L ofexecution  in the nominatenot   willA worker  theif 0

L ofexecution  in the nominate  willA worker  theif 1
 

We shall, like in the previous section, build the matrix T=(tij) of execution times, 

assigning tij=∞ if A i cannot execute Lj. 

In a distinction with Little’s method we shall not enjoin restrictions to the number of 
workers or jobs. 

Let now the matrix B=(αijaij) who’s elements belong to the set {0,1} and who has 

the following meaning: αijaij=1 if Ai will nominate to execute Lj and is also qualified 

for this thing and αijaij=0 in the other cases. 
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Because no one can execute two jobs simultaneously, we have therefore the 

condition: ∑
=

α
m

1j
ijija ≤1 ∀i= n,1 . 

Also, because any job cannot be execute simultaneously by two different workers 

we have that: ∑
=

α
n

1i
ijija ≤1 ∀j= m,1 . 

From the above conditions it follows that: aijαij≤1 ∀i= n,1  ∀j= m,1 . 

The allocation problem will become: 



















≥α

=α

≤α

≤α

α

∑∑

∑

∑

∑∑

= =

=

=

= =

0

Ma

1a

1a

)tmin(

ij

n

1i

m

1j
ijij

n

1i
ijij

m

1j
ijij

n

1i

m

1j
ijij

 

where M is the number of workers proposed for the execution. 

Before solving the problem, let remark first that if it isn’t a maximal allocation the 
problem will not have a solution and in other case if it has at the final we shall 
obtain effective the allocation. The value of minimum will be the searched total 
time. 

The problem will be solved in the following manner: we start with the value M=n. If 
it has not a solution we diminish M with a unit and we begin again to solve the new 
problem. Because M is a free term in the upper problem we shall reoptimize the 
older. 

The process is obviously finite because the problem has always a solution at least for 

M=0: αij=0. 
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3. The Optimal Assignation of Workers on Jobs from the Point of View 
of Minimization the Maximal Execution Time 

 

3.1. Introduction 

The problems of assignation appear usual in the process of targets allocation in an 
institution. 

Let consider A’={A1,...,An’} the set of workers in an institution and L’={L1,...,Lm’} 
the set of jobs which must be executed at a specific moment. 

In the execution of job Lj the worker Ai can spend tij units of time. 

Because each worker can has a multiple qualification, but not all necesary for the 
entire set of jobs we put the problem of allocation on jobs such that the maximum 
time spent in the execution to be minimal. 

Let therefore f:A’→P(L’ ), f(A i)={ }
k1 ii L,...,L  ∀i=1,...,n’ the function who assign to 

A i the jobs: 
k1 ii L,...,L  which he can realize if he has the necessary qualification for 

at least one job and f(Ai)=∅ in opposite cases. 

We shall restrict the set A' and we shall consider, from the beginning, the subset of 

those workers for which f(Ai)≠∅ ∀A i∈A. We shall note therefore A={A1,...,An} with 

n≤n’ (after a possible renotation of workers). Let now (again after a possible 

renotation of workers): U
n

1i
i )A(f

=

={L1,...,Lm} with m≤m’. If m<m’ we have that the 

jobs Lm+1,...,Lm’ cannot be executed from any workers, therefore will be excludes. 

Finally, let consider: L={L1,...,Lm} and the new allocation function: f:A→P(L). 

We shall define a matrix: 

M=

n

1

nm1n

m111

m1

A

...

A

a...a

.........

a...a

L...L  
















 

where aij=1 if the worker Ai can execute the job Lj and 0 in the other cases. 

We shall build the matrix T=(tij) of execution times, assigning tij=∞ if A i cannot 
execute Lj. 
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The graphical method of Ducamp, presented in [2], proposes a construction of a 
simple graph (a decomposition of nodes in two disjoint subsets: workers and jobs) 
and after an initial allocation a succesion of improvements based on graphical 
observations. This method is good but cannot be easly implemented on computers. 

We shall propose in what follows a new method based on the Simplex algorithm. 

 

3.2. The method of Simplex algorithm 

Let now, the matrix Mt=(at
ij) where: 

at
ij=




>
≤

t tif 0

t tif a

ij

ijij  

and At=(αt
ij) where: 

αt
ij=




 with tequalor  than less  timeain  jL execute assign tonot   williA if 0

 with tequalor  than less  timeain  jL execute assign to  williA if 1
 

Let now the matrix Bt=(αt
ija

t
ij) which elements belong to {0,1} and who has the 

following significance: αt
ija

t
ij=1 if Ai will be assigned to execute the job Lj in a time 

less than or equal with t and he is qualified for this thing, and αt
ija

t
ij=0 in the other 

cases. 

Because any worker cannot execute two jobs in the same time we shall have: 

∑
=

α
m

1j

ij
t

ij
ta ≤1 ∀i= n,1 . 

Also, because any job cannot be executed in the same time by two different workers 

we shall have: ∑
=

α
n

1i

ij
t

ij
ta ≤1 ∀j= m,1 . 

After these conditions follows: at
ijαt

ij≤1 ∀i= n,1  ∀j= m,1 . 

The allocation problem becomes (for a maximal time t): 
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














≥α

≤α

≤α

α

∑

∑

∑∑

=

=

= =

0

1a

1a

)amax(

ij
t

n

1i

ij
t

ij
t

m

1j

ij
t

ij
t

n

1i

m

1j

ij
t

ij
t

 

Let remark first that the problem has always a solution for a suitable t. 

Let now tk=min{tM t has at least k rows who have an element equal with 1}. 

We have obviously: min tij≤t1≤t2≤...≤tn≤max tij. 

The algorithm will begin with t=tn. If the problem will not have a solution, we shall 
grow t with one unit until we shall find a maximal allocation. 

If we cannot find such allocation, we shall consider t=tn-1 and begin again the 
problem. 

One problem can appear after sloving: what is happened if the solutions will not be 
entire? It is possible, for example, on the i-th row to be a lot of elements equal with 
1 (appropriate to the fact that one worker can execute a few jobs), say k elements, 

and the optimal solution to contains the variables: 
k

1
... k21 ij

t
ij

t
ij

t =α==α=α . 

Because the objective function is ∑∑
= =

α
n

1i

m

1j

ij
t

ij
ta  it follows that it will not modify if 

we replace all the cited values with, for example: 1pij
t =α  for a 1≤p≤k. 

 

4. The Optimal Assignation of Workers on Jobs 

 

4.1. Introduction 

The problems of assignation appear usual in the process of targets allocation in an 
institution. 

Let consider A’={A1,...,An’} the set of workers in an institution and L’={L1,...,Lm’} 
the set of jobs which must be executed at a specific moment. 
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Because each worker can has a multiple qualification, but not all necesary for the 
entire set of jobs we put the problem of allocation on jobs such that they realize too 
much if it is possible of them. 

Let therefore f:A’→P(L’ ), f(A i)={ }
k1 ii L,...,L  ∀i=1,...,n’ the function who assign to 

A i the jobs: 
k1 ii L,...,L  which he can realize if he has the necessary qualification for 

at least one job and f(Ai)=∅ in opposite cases. 

We shall restrict the set A' and we shall consider, from the beginning, the subset of 

those workers for which f(Ai)≠∅ ∀A i∈A. We shall note therefore A={A1,...,An} with 

n≤n’ (after a possible renotation of workers). Let now (again after a possible 

renotation of workers): U
n

1i
i )A(f

=

={L1,...,Lm} with m≤m’. If m<m’ we have that the 

jobs Lm+1,...,Lm’ cannot be executed from any workers, therefore will be excludes. 

Finally, let consider: L={L1,...,Lm} and the new allocation function: f:A→P(L). 

We shall define a matrix: 

M=

n

1

nm1n

m111

m1

A

...

A

a...a

.........

a...a

L...L  
















 

where aij=1 if the worker Ai can execute the job Lj and 0 in the other cases. 

The graphical method presented in [1] proposes a construction of a simple graph (a 
decomposition of nodes in two disjoint subsets: workers and jobs) and after an initial 
allocation a succesion of improvements based on graphical observations. This 
method is good but cannot be easly implemented on computers. 

We shall propose in what follows a new method based on the Simplex algorithm. 

 

4.2. The method of Simplex algorithm 

Let now, the matrix A=(αij) where: 

αij=




ji

ji

L job  theexecutenot   willA worker  theif 0

L job  theexecute  willA worker  theif 1
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and the matrix B=(αijaij) with elements in the set {0,1}. We have that αijaij=1 if the 

worker Ai will execute the job Lj and if he is qualified for this thing and αijaij=0 if 
the worker Ai will not execute the job Lj or he is not qualified to do this. How any 
worker cannot execute two jobs in the same time, we have the condition: 

∑
=

α
m

1j
ijija ≤1 ∀i= n,1 . 

Because a job cannot be executed in the same time by two workers we have also 

that: ∑
=

α
n

1i
ijija ≤1 ∀j= m,1 . From these conditions we have now that: aijαij≤1 ∀i= n,1  

∀j= m,1 . 

The problem becomes now the following linear programming: 
















≥α

≤α

≤α

α

∑

∑

∑∑

=

=

= =

0

1a

1a

)amax(

ij

n

1i
ijij

m

1j
ijij

n

1i

m

1j
ijij

 

Because αij=0 verify the restrictions we have that the problem has always a solution. 
One problem can appear after sloving: what is happened if the solutions will not be 
entire? It is possible, for example, on the i-th row to be a lot of elements equal with 
1 (appropriate to the fact that one worker can execute a few jobs), say k elements, 

and the optimal solution to contains the variables: 
k

1
...

k21 ijijij =α==α=α . 

Because the objective function is ∑∑
= =

α
n

1i

m

1j
ijija  it follows that it will not modify if we 

replace all the cited values with, for example: 1
pij =α  for a 1≤p≤k. 

 

Example 

Let the workers A1,A2,A3 and the jobs L1,L2,L3 which posibility of execution is in 
the following table: 
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Worker Jobs 

A1 L1,L3 

A2 L1,L2 

A3 L2 

Considering the matrix M=

3

2

1

321

A

A

A

010

011

101

LLL
















 and A=

















ααα
ααα
ααα

333231

232221

131211

 we have the 

following linear programming problem: 



















≥ααααα
≤α

≤α+α
≤α+α

≤α
≤α+α
≤α+α

α+α+α+α+α

0,,,,

1

1

1

1

1

1

)max(

3222211311

13

3222

2111

32

2221

1311

3222211311

 

with the solution: α13=1, α32=1, α21=1. We have therefore that A1 will execute the 
job L3, A2 – L1 and A3 – L2. 

 

5. The Sequence Of Two Installations Without Initial Deliverance 
Times 

 

5.1. Introduction 

The sequence operation in production flows appears in the usual practice for the 
installations waiting time decreasing when a lot of pieces use the same technology 
line in the same direction. 

Let two installations U1 and U2 who process n pieces P1,…,Pn (n≥2) in the same 
order (first U1 and after U2). We shall consider that U1 and U2 are available from the 
process beginning and the waiting time to come in execution for U2 does not implies 
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other prices. In addition we shall suppose that the pieces do not have a finish ending 
date. 

Let note with tij the processing time of the j-th piece on the i-th installation. 

The problem consists in a determination of the pieces execution beginning order 
such that the waiting time of the installation U2 to be minimum. 

Let the matrix T=(tij)∈M2n(R) of the time processing. The classical algorithm of 
Johnson consists in the following steps: 

Step 1 We choose the least element on the first row. This will give us the first piece 
who will come in execution. 

Step 2 We cut the previous column and we choose the least element on the second 
row. This will give us the last piece who will come in execution. 

Step 3 We cut the previous column and we go again at the first step. After this we 
will obtain the second piece who will come in execution, and after we go again at 
the second step and we find the penultimate piece and so on. 

The algorithm will continue till we shall finish all the pieces. 

 

5.2. The new method 

In the proof of Johnson’s algorithm it exists a little but essential error. The author 
extrapolates a transposition between two consecutive terms to all transpositions. 
This is the reason that, even if it claim to obtain the optimum, it is not true. 

The following method will guide us to the optimum but with a little harder calculus. 

Let therefore the table of time processing and a permutation 

σ= 








n21 i...ii

n...21
∈Sn – the group of permutations of n elements and an order of 

pieces, indexed by σ: 
n21 iii P,...,P,P : 
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Piece/Installation 
1i

P  
2i

P  … 
ki

P  … 
ni

P  

U1 1i1
d  1i2

d  … 1i k
d  … 1in

d  

U2 2i1
d  2i 2

d  … 2i k
d  … 2i n

d  

We define: g1,g2,…,gn≥0 - the pauses before entrence in execution of pieces 

n21 iii P,...,P,P  on the installation U2. We have, obviously: 

• g1= 1i1
d  (from the beginning of the process) 

• g2=max( 1i1
d + 1i2

d - 2i1
d -g1,0) 

• g3=max( 1i1
d + 1i2

d + 1i3
d - 2i1

d - 2i2
d -g1-g2,0) 

… 

• gk=max( ∑∑∑
−

=

−

==

−−
1k

1p
p

1k

1p
2i

k

1p
1i gdd

pp
,0) 

… 

• gn=max( ∑∑∑
−

=

−

==

−−
1n

1p
p

1n

1p
2i

n

1p
1i gdd

pp
,0) 

If we note: 
k1 i...iB = ∑∑

−

==

−
1k

1p
2i

k

1p
1i pp

dd  we have: 

• g1=
1i

B  

• g2=max(
21iiB -g1,0) 

• g3=max(
321 iiiB -g1-g2,0) 

… 

• gk=max( ∑
−

=

−
1k

1p
pi...i gB

k1
,0) 

… 
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• gn=max( ∑
−

=

−
1n

1p
pi...i gB

n1
,0) 

The objective function is therefore: z=
nS

min
∈σ

 (∑
=

n

1k
kg ). 

We have by iteration: 

∑
=

k

1p
pg =gk+∑

−

=

1k

1p
pg = max( ∑

−

=

−
1k

1p
pi...i gB

k1
,0)+ ∑

−

=

1k

1p
pg =max(

k1 i...iB ,∑
−

=

1k

1p
pg ). 

But:∑
=

n

1p
pg =max(

n1 i...iB ,∑
−

=

1n

1p
pg )=max(

n1 i...iB ,max(
1n1 i...iB

−
,∑

−

=

2n

1p
pg ))= 

max(
n1 i...iB ,

1n1 i...iB
−

,∑
−

=

2n

1p
pg )=...=max(

n1 i...iB ,
1n1 i...iB

−
,...,

1i
B ) from where: 

z=min (∑
=

n

1p
pg )=

nS
min

∈σ
 (max(

n1 i...iB ,
1n1 i...iB

−
,...,

1i
B )). 

We have 
k1 i...iB = ∑∑

−

==

−
1k

1p
2i

k

1p
1i pp

dd =
1k1 i...iB

−
+ 2i1i 1kk

dd
−

−  and much generally: 

k1 i...iB = ∑∑
−

==

−
1k

1p
2i

k

1p
1i pp

dd = ∑∑
−

==

−
1s

1p
2i

s

1p
1i pp

dd + ∑∑
−

=+=

−
1k

sp
2i

k

1sp
1i pp

dd =
s1 i...iB +

∑∑
−

=+=

−
1k

sp
2i

k

1sp
1i pp

dd  

For the permutation σ= 








nsk21 i...i...i...ii

n...s...k...21
∈Sn and 

z=max(
n1 i...iB ,

1n1 i...iB
−

,...,
1i

B ), let consider a transposition of σ: 

τ= 








nks21 i...i...i...ii

n...s...k...21
∈Sn. 

If we note with bar all the quantities concerning τ we have: 

• t≠k,s⇒ 1i t
d = 1i t

d  şi 2i t
d = 2i t

d  

• t=k⇒ 1i k
d = 1is

d  şi 2i k
d = 2is

d  
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• t=s ⇒ 1is
d = 1i k

d  şi 2is
d = 2i k

d  

from where: 

• 1≤t<k⇒
t1 i...iB = ∑∑

−

==

−
1t

1p
2i

t

1p
1i pp

dd = ∑∑
−

==

−
1t

1p
2i

t

1p
1i pp

dd =
t1 i...iB  

• t=k⇒
k1 i...iB = ∑∑

−

==

−
1k

1p
2i

k

1p
1i pp

dd = ∑∑
−

==

−
1k

1p
2i

k

1p
1i pp

dd + 1i1i ks
dd − =

k1 i...iB +

1i1i ks
dd −  

• k<t<s⇒
t1 i...iB = ∑∑

−

==

−
1t

1p
2i

t

1p
1i pp

dd = ∑∑
−

==

−
1t

1p
2i

t

1p
1i pp

dd + 1i1i ks
dd − -

( 2i2i ks
dd − )= 

t1 i...iB + 1i1i ks
dd − -( 2i2i ks

dd − ) 

• t=s⇒
s1 i...iB = ∑∑

−

==

−
1s

1p
2i

s

1p
1i pp

dd = ∑∑
−

==

−
1s

1p
2i

s

1p
1i pp

dd -( 2i2i ks
dd − )=

s1 i...iB -

( 2i2i ks
dd − ) 

• t>s⇒
t1 i...iB = ∑∑

−

==

−
1t

1p
2i

t

1p
1i pp

dd = ∑∑
−

==

−
1t

1p
2i

t

1p
1i pp

dd =
t1 i...iB  

Let note now: αsk= 1i1i ks
dd −  and βsk= 2i2i ks

dd −  for s>k and αsk=βsk=0 for s≤k. We 

have now: 

t1 i...iB =















>
=β−

<<βα+
=α+

<

s tif B

s tif B

stk if -B

k tif B

k tif B

t1

t1

t1

t1

t1

i...i

ski...i

skski...i

ski...i

i...i

 

z=max(
1i

B ,...,
1n1 i...iB

−
,

n1 i...iB )=max(
1i

B ,...,
1k1 i...iB

−
,

k1 i...iB +αsk,
1k1 i...iB

+
+αsk-

βsk,...,
1s1 i...iB

−
+αsk-βsk, 

s1 i...iB -βsk,
1s1 i...iB

+
,...,

n1 i...iB ). 

We must determine the pair (k,s) of pieces which will be permuted such that, after 
the computing of z  to obtain a value less then or equal z. 

How this thing leads us at a great number of calculations, we shall act in this way: 
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For an arbitrary distribution of pieces, corresponding to a permutation 

σ= 








nsk21 i...i...i...ii

n...s...k...21
∈Sn, we shall determine those piece which 

permute with the first will lead to the minimization of z. Suppoes now that this thing 
is for the first piece. 

Let therefore 
si

P  - the searched piece, who will take the place of the first piece 
1i

P . 

We have therefore: 

z=max(
1i

B ,...,
1n1 i...iB

−
,

n1 i...iB )=max(
1i

B +αs1,
21iiB +αs1-βs1,...,

1s1 i...iB
−

+αs1-βs1,
s1 i...iB -

βsk, 
1s1 i...iB

+
,...,

n1 i...iB ). 

We shall continue this process till we cannot diminish the value of z. In this 
moment, we shall find the permutation with the second piece and so on. 

Let conclude: We build the table where on the rows we have the pieces: 
1i

P ,...,
ni

P  

and on columns alone: 
2i

P ,...,
ni

P . 
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Fig.1 
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We shall choose the piece 
ki

P  for which: z=
n,2s

min
= stii

n,1t
amax

=
. 

The next table will contains the new order of pieces where 
1i

P  will change the place 

with 
ki

P . 

The process will continue till z=
n,2s

min
= stii

n,1t
amax

=
 becomes greater then those computed 

in the preceding table. 

This thing suggests the fact that any piece cannot be on the first position without 
grow the total time. If the value of z remains constant, we can act like in the 
precedings steps for each pieces order. 

In the next table, we shall act analogously, but on the column we shall get only 

3i
P ,...,

ni
P  corresponding to the new permutation. 

The process will continue till the last piece. 

 

Example 

Piece/Installation P1 P2 P3 P4 

U1 15 6 8 9 

U2 19 3 13 7 

 

Johnson’s algorithm propose us: 

Piece/Installation P1 P3 P4 

U1 15 8 9 

U2 19 13 7 

 

Piece/Installation P1 P3 

U1 15 8 

U2 19 13 
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with the final order: P2,P3,P1,P4, therefore the new table will be, in order of 
execution: 

 

Piece/Installation P2 P3 P1 P4 

U1 6 8 15 9 

U2 3 13 19 7 

with times: 

B2=6 

B3=6+8-3=11 

B1=6+8+15-3-13=13 

B4=6+8+15+9-3-13-19=3 

therefore z=max(B2,B3,B1,B4)=13. 

 

Our algorithm consists from the following tables: 

Table 1 

 P2 P3 P4 

6 3 8 13 9 7 

-9 16 -7 6 -6 12 

P1 B1 15 19 
1B =15 6 8 9 

P2 B2 6 3 
2B =2 18 1 8 

P3 B3 8 13 
3B =7 7 13 13 

P4 B4 9 7 
4B =3 3 3 15 

max 18 13 15 

 

therefore the piece on the first position is P3. 

 



ŒCONOMICA 
 

 61

Table 2 

 P2 P1 P4 

6 3 15 19 9 7 

-2 10 7 -6 1 6 

P3 B3 8 13 
3B =8 6 15 9 

P2 B2 6 3 
2B =1 11 2 8 

P1 B1 15 19 
1B =13 13 7 20 

P4 B4 9 7 
4B =3 3 3 9 

max 13 15 20 

 

The alternative piece on first position can be P2. 

Table 3 

 P3 P1 P4 

8 13 15 19 9 7 

2 10 9 16 3 4 

P2 B2 6 3 
2B =6 8 15 9 

P3 B3 8 13 
3B =11 21 36 18 

P1 B1 15 19 
1B =13 13 29 20 

P4 B4 9 7 
4B =3 3 3 7 

max 21 36 20 

therefore the permutation process for the first position is closed. 

We go back to the table 1 and continue with the piece on the second position. 
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Table 4 

 P1 P4 

15 19 9 7 

9 -16 3 -4 

P3 B3 8 13 
3B =8 8 8 

P2 B2 6 3 
2B =1 10 4 

P1 B1 15 19 
1B =13 -3 12 

P4 B4 9 7 
4B =3 3 -1 

max 10 12 

therefore the piece on second position is P1. 

 

Table 5 

 P2 P4 

6 3 9 7 

-9 16 -6 12 

P3 B3 8 13 
3B =8 8 8 

P1 B1 15 19 
2B =10 1 4 

P2 B2 6 3 
1B =-3 13 3 

P4 B4 9 7 
4B =3 3 15 

max 13 15 

From the table 5 we have that the step is closed. 

For the piece on third position: 
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Table 6 

 P4 

9 7 

3 -4 

P3 B3 8 13 
3B =8 8 

P1 B1 15 19 
2B =10 10 

P2 B2 6 3 
1B =-3 0 

P4 B4 9 7 
4B =3 -1 

max 10 

The process is closed. The order will be: P3,P1,P2,P4 with total time: 10. 

If we come again at the table 2 and continue with the piece on the second position 
we have: 

 

Table 7 

 P1 P4 

15 19 9 7 

7 -6 1 6 

P2 B2 6 3 
2B =6 6 6 

P3 B3 8 13 
3B =11 18 12 

P1 B1 15 19 
1B =13 7 20 

P4 B4 9 7 
4B =3 3 9 

max 18 20 

 

Because we obtain a value greater than 13 the process will closed also. 
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