ECONOMICA

New Methods in Mathematical

Management of Organization

Mathematician Ciprian loan

Bucharest University

Associate Professor Catalin Angelo loan, PhD
“Danubius” University of Galgi
Alin loan

Bucharest University

Abstract: In the first part, we shall unify the principal teions (Wald, Hurwicz, Savage, Laplace)
used in the process of choice the best alternafifter the general theory and few examples who
illustrate the drawbacks of the existing criterion® propose six new choices modalities from other
points of view. In the second part, we shall giveeav solution for the optimal assignation of wosker
on jobs from the point of view of execution totah¢ minimization using the Simplex algorithm which
can solve the problem using computers instead ribevik Little’s solution. In the third, we shall giee
new solution for the optimal assignation of workemnsjobs from the point of view of minimization the
maximal execution time using the simplex algoritiarich can solve the problem using computers
instead the known graphical solution. In part fowe shall give a new solution for the optimal
assignation of workers on jobs using the Simplegodthm which can solve the problem using
computers instead the known graphical solutiorpdrt five, we shall give a new algorithm instead of
Johnson classical in the process of determinatierséquence of pieces execution on two installgtion
without initial deliverance times.

Keywords: games theory, Savage, Simplex, assignation, niation, Electre method

Jel Classification: C70, C35, C30, C15

1. An Unified Theory Concerning Principal Decision Makng
Methods

1.1. Introduction

In the process of decision making we have as wellpancipal methods the
following:
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» Wald's criterion (the maximin criterion)
» Laplace’s criterion

* Hurwicz’s optimist criterion

» Savage’s regret criterion

Each of these criterions becomes with a seriesnocbriveniences because they
broach the problem from a narrow point of view.

For example, let make an analysis of the followpngpblem:

Let a, &, &, & the alternatives andibb,, bs, bs, bs uncontrollable states. The
payoffs for each pair (&) are ¢ and are find out in the following table:

b | b, | bs | by | bs
a|6 |2 8|09
% |0 |3 |8]|2]3
% |0 |5 |5]|1]2
|l |2 |3]|6]|8

If we apply Wald, Hurwicz with 0.1 and Savage wd fimd that the alternative,ds
the best, but the Laplace’s criterion gives usalternative a

For the problem:

by | by | bs | by | bs
a |8 |3 |7 ]2]|1
& |7 |5 |3]1]|5
a |3 |42 ]|1)|9
a |5 |5 |18]2]|3

we will find that Wald, Hurwicz with 0.2 and Lapkgive us the alternative, dut
Savage: a

For the problem:

by | by | bs | by | bs
& |0 |4 12|75
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& |6 |9 |50 2
& |8 |5 |2 |5]|6
a |3 |4 5|43

we will find that Laplace, Hurwicz with 0.6 and $&e give us the alternativg, a
but Wald: a.

For the problem:

by | b, | bs | by | bs
& |3 |7 |6 |83
& |1 |5]9]9]2
& |6 |8 |1 |7]|0
a |0 ]|9]12]0]0

we will find that Laplace, Wald and Savage givethus alternative g but Hurwicz
with 0.7: a.

Another example gives us for each criterion anodfternative:
by | by | bs | by | bs
al| 7| 2|10 6| 2
| 9|10 2| 1| 8
x| 5| 3| 6| 4| 8
a| 5| 6| 9| 2| 6

» Wald's criterion gives uss;a

» Laplace’s criterion gives us a

* Hurwicz’s optimist criterion with 0.6 gives us a
» Savage’s regret criterion gives us a

It is therefore a necessity to broach the problemmftwo points of view: to create a
general criterion applicable on all situations avtdich recover in particular cases
the upper criterions and, on the other hand, tateréeparting from this general
criterion other news.
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1. 2. The general problem and criterion

Let A={a,...,a the set of the alternatives and {Bs...,b} the set of
uncontrollable states. The payoffs for each pain)are ¢, i=1,m ,jzﬁ :

We shall group in what follows the uncontrollabkates in p>=1 subsets of B:
sz{ b

example, in the process of grouping the states #ifedr origin.

sb; } k:J,_p where 0=Kj:<..<j,=n. These subsets can appear, for

RCREE

To each group Gwe assign a risk coefficiendJ[0,1], kzL_p and a weight in

- P
decisionn,J[0,1], k=1,p such thad)_n, =1.
k=1

For each state; lve note with R jzﬁ the potential gain if we know apriority the
occurrence of b

Finally, let group the alternatives A in q subsétg={a, .,,....& }, sz_(q where
0=i¢<i;<..<i=m and for each Hwe assign a coefficient of preferenkgl[0,]],
vzl_q . Even if at the first sight all the alternasvare equals in probability, in fact

the factor of decision has preferences and he #plin the subsets Hwith
coefficients of preferenck,.

We shall define for each row the function:

f(i)=sgr(1— 29 ZRBZn[wK max (c.~R)+(@-e) mn (. -R,)]
= =1 Jy-1 HIss<

k-1 HIss<y

called the expected gain function.

We define the selection group function:
gv)=A, max f@©+(@L-A,) min f@),v=1q

The alternative’s group finally selected is thafd# which

g(r):sgr{l— 2sg Zn: RJZD rg&;{sg{l— 2sg zn: RfJJg(V)J
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The final alternative is that for which the diffece Of(i)-g(r)C, i=i,_, +Li, is

r

minimum.

The table of values and strategiesxandf3 respectively has the following format:

p groups
G
a/3 i / Nk f g
bjk71+l bjk
&, n ] i) fi,.+1)
)]
=3
S | H | A a(v)
(@)]
(o
a, el e, (i)
| . maxg(v)
heatt . / ming(v)
Isvs=q

1.3. Particular cases

We shall present, in what follows, the values of #hected gain function f

corresponding at different values of p ar]djﬁﬁ respectively.

Table 1

(i)

o, max(c,) + (- ,) min(c,)
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1 ZlRf #0 w, Min(R, —¢,) + (- 0,) maxR, -c,)
=
n p
1<p<n ZRJZ =0 zflk(wk ~max (c,) + 1-w,) min (Cis))
=1 k=1 jk-1 +1ss<y Jk-1+1ss<y

1<p<n ZRJZ #0 an(wk min (R, —¢,) +(1-0w,) max (R, _Cis)j
=1

P
=1 Je-a H1sSS Jk- t1ss<

n

n z 12 =0 znkcik
k=1

=1

n ZlRf?‘O >n R, —c)
= k=1

The selection group function is for g=rg=@, i,=1,..., h=m):
g(v)=A, maxf(s)+ 1-A,) min f(s) =Af(v)+(1-A)f(V)=f(v), v= 1m
If g=1 then: =0, i;=m therefore:

g(1)= A, maxf @+ @-A,) min 1

If R;=0, jzﬁ we have that the alternative’s group finalllested is that H
for which:

9(n)= max(g(v))
and if0j=1n such that RO follows:

g(n= -max(-g(v)) = min(g(v))
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1.4. Known criterions like particular cases

1.4.1. Hurwicz’s criterion
For p=1, g=m, R0, jzﬁ we have that: f(i)e, TSX(CiS)-I-(l_wl)TSLn (c )and
g(v)=f(v), v=1,m .

The best alternative is thatfar which g(r):;m’:\x f(v).

The extreme values of; are:

* =0 who lead us to the expected gain function: i]@sﬁ(cis) and after:
g(r)=1r2v§n§f(v)=£pv§n§r£;rn](cvs) - o showing a pessimistic maximum in the
choice of the strategy;

* w=1 who lead us to the expected gain function igg(cis and after:
g(r)=m§n>q<f(v):rgng;(r]rs1§anx(cvs) - o showing an optimistic maximum in the
choice of the strategy.

If the first strategy, corresponding dg=0 is a little realistic (punting on a doubtless
gain), the second is totally irrational,ignoring all the opponent’s actions (hoping
in the weakest choice @).

Example

Let &, & the alternatives o and hQ, b, the uncontrollable states Bf The payoffs
for each pair (gb) are ¢ and are find out in the following table where wibi=0,6
we shall apply the Hurwicz criterion:

b, | b, | ¢=minc, C=maxc, | 0,6G+0,4¢
Fl.n Fl..n
a | 10 20 10 20 16
& | -10 | 100 -10 100 56

The maximum of the quantities in the last columB@s therefore the alternative a
will be the best from the point of view of Hurwisztriterion.
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If we shall carefully analyze the upper table, wallssee thatr will win in the
situation of a if and only if 3 will choose the state,bOn the other handd will
never choose this strategy, because regardlessowhiditadopt, he will lose. Like a
consequence we can say that the Hurwicz's criteifogood when the values
corresponding to the rows of the table will be nearto the other, the differencies
between minimal and maximal values being little.

1.4.2. Wald’s criterion

The Wald's criterion is a particular case of Hurxgc for «y=0. Like in the
preceding criterion, those of Wald neglected mukcthe information, treating only
minimal values on rows.

Example

Let &, & the alternatives aft and h, b, the uncontrollable states pf The payoffs
for each pair (gb) are ¢ and are find out in the following table:

b | b, min c;
Fl..n

& | 0,9 100 0,9
x| 1 2 1

The maximum quantities in the last column is 1yefere the alternative,avill be
the best after Wald.

If we shall examine carrefully the upper table,shall see thatt will gain with one
unit. It is hard to believe that not choose the alternative, &#ecause this can bring
an earning between 0,9 to 100 units.

1.4.3. Laplace’s criterion
For p=n and RO, j:ﬁ we have: f(i)=kzn_; N.Cy - If nk:%, k=1,n then we obtain:
()= %icik . For g=m we have: g(v)=f(v), VEm .
pe=}
The winner group of strategies will befar which g(r)=erv§n>1< a(v).
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The Laplace’s criterion has like drawback the edqredtment of all actions @. In
fact, B looking at the values can prefer one or other fhisnalternatives, who leads
to an inequality in the probabilities upper conside

Example

Let &, & the alternatives aft and h, b, the uncontrollable states pf The payoffs
for each pair (gb) are ¢ and are find out in the following table:

by b, 1 1
=b+=b
2 2"
a | -10 10 0
2 | -10 20 5

The maximum in the last column is 5, therefore dlternative a will be choosed
after Laplace’s criterion.

We can easly see thatafwill choose the alternative,ahe will win if 3 will choose
the strategy H On the other han@ will choose always fpthat brings it, regardless
o 10 units. As a conclusion, the actionspotannot have equal probability, in the
upper case the probability pfto choose pbeing 1 and for fbeing 0.

1.4.4. Savage’s criterion

For p=1, w=0 and R=maxc, jzﬁ, respectively g=m we have:

I<ism

f(i)= rEax(RS -c,) and g(v)=f(v), v=L,m . The winner alternative will be thosg a

for which g(r):LpLg(g(v)).

The Savage’s criterion bring us, at the first sightew point of view.

A number of remarks appear however: Savage definegegret like difference
between how much cam win if he had known apriori the decision @fand how
much he wins in fact. This definition is credibleyt pushes this notion to an
extreme. Maybe, in fact a best regret’s definitiam be an average (with differents
weights or not) of possible gains. Also, finalletlast section of this algorithm uses
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the minimax criterion; therefore like in the prerws criterions it not takes in
calculus all the values on rows.

Example

Let &, & the alternatives aft and h, b, the uncontrollable states pf The payoffs
for each pair (gb) are ¢ and are find out in the following table:

b, b,
= -98 | 101
& 1 1

maxc. 1 101

sism U

The regrets table is:

bl b2 TQX(RS - Cis)

a | 99 0 99
& | O | 100 100

After the minimax criterion we find that the altative a is the best. We can see
that this decision has the highest riskadan win 101 units, but he can loose also 98
units). The alternative,as, in this case a little practical (it guaranteesearning of

1 unit in any situation).

1.5. New criteria

In what follows, we shall suggest a few criteriodeduced from the general
formulas.

1.5.1. Hurwicz-Savage’s criterion

For p=1,0,20 and R= maxc; , jzﬁ , respectively g=m we have:
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f(i)= o, min(R, —c,) +(-w) maxR, -c,) and g(v)=f(v), vl m.
The winner alternative will be. &r which g(r):Lpi(n(g(v)).

This criterion proposes the determination of thst ls¢rategy, assigning a risk factor
w20 in the process of regrets analyzing.

Example

Let &, & the alternatives aft and h, b, the uncontrollable states pf The payoffs
for each pair (gb) are ¢ and are find out in the following table, wheoeg=0,6:

b | b
& 10 | 20
& -10 | 100

maxc 10 | 100

sism U

by | b | c=ming, C=maxc, | 0,6G+0,4¢

Fl..n Fl.n
a| O 80 0 80 48
& | 20 0 0 20 12

From the last column we see that the strategwilh be the best following this
criterion.

We can see that this example is those from Hurwicgterion, the alternative,,a
obtained here, being acceptable in comparasionthitke of Hurwicz.

1.5.2. Weight Laplace’s criterion
_ n p
For p=n and RO, j=1n we have: f(i)>_n,c, with > n, =1. For g=m we have:
k=1 k=1

g(v)=f(v), v=1m .
The winner alternative will be or which g(r):ergx g(v).
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The Weight Laplace’s criterion is a refinementloé tlassical criterion, assigning to
the strategies @, differents probabilities.

The principal problem who arrived here is thathaf thoice modality of the weights
Nk, kzﬁ .

1.5.3. Proportionally weight Laplace’s criterion

— n p
For p=n and RO, j=1,n we have: f(i)>_n,c, with > n, =1.
k=1 k=1

We shall compute firsl&7k=2ctk , k=Ln that is the sum of gains corresponding to
t=1

the k-th column.

If maxv, =minv  then vi=constant, kd,n. In this case, we shall apply the
p=1n p=1n

Laplace’s criterion with all weights equaﬂ]h;:1 .
n

maxv, —v, _
If maxv, >minv,, we shall computeg,=—"—" ——, k=1n and, finally:
p=1n p=1n maxv_—minv
p=1n P p=1n P

For g=m we have: g(v)=f(v), vEMm .

The winner alternative will be &or which g(r)=anax a(v).

The proportionally weight Laplace’s criterion prggoa rational choice oB's
probabilities of action because, how much the \&baresponding to a column ®f
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are less (designitin@’s loses) so much the valueg will be elder and, implicit,
those ofny.

Example

Let a, & the alternatives oft and h, b,, b; the uncontrollable states @f The
payoffs for each pair (&) are ¢ and are find out in the following table:

b | b b
o S I
37373
3
2 | 10| 10 6 2
8 | 15| 20 7 Z

Applying the Laplace criterion we have that thewlative ais the best.

We can easly see thatdfchoose g he win if 3 will choose b or b;. On the other
hand,3 will choose always the strategy that brings a greater gain than or equal
with 10 units.

We shall apply now, the proportionally weight Lag#&s criterion.

We have first: v;=-10-15=-25, v,=10+20=30, v;=6+7=13, from where
ma){V]_,Vz,Vg} =30, mir{vl,\)z,\)s} :-25

We have therefore:

30+25 30-30 30-13 _17
g=—————=1,6)=———=0,65=¥————=—
55 55 55 55
and finally:
17
1 55 55 17
n=—-=—, r’|2:0’ Ne==—==—
1+0+20 72 727
55 55
The table is:
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55/72 0 17/72
b b b
' 2 3 5—5 b,+0b,+ E bs
72 72
=N -10 10 6 -448/72
2 -15 20 7 -706/72

The maximum value in the last column is -448/72df@e the best alternative will
be g - most rationally becaugewill choose h anda will loose less.

1.5.4. Proportionally weight with regrets Laplaceisiterion

For p=n and Rmaxc,, ji=Ln we have: f(i){n:r]k(Rk -¢,) with
Ism k=1
p
>N, =1

k=1

We shall compute the weighti like in the preceding criterion but, in this
case, for the regrets tablefof
First, we shall compute, the regrets= rjﬁ_éax(—cij):-mincu, i=1,m and
<jsn <J<n
after we shall build the regrets tablefpthaving the elementgd-cy-S= Tin C; ~Cik,
<jsn

i=1m, k=1n.

Determining aftervk=2dtk , k:ﬁ that is the sum of gains in the column

t=1

k, we have that ifmaxv, =minv  thenv,=constant, kﬂ . In this case we shall
p=1n p=1n

apply the Laplace’s criterion with equal Weigrrlxs.:E :
n

vV, —minv, L
If maxv, >minv_, we computeg= L , k=1,n and, finally:
p=1n p=1n maxv p minv p
p=1n p=1n

Nk= nsk ,k:ﬁ.We have therefore:

2.,

p=1
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For g=m we find that: g(v)=f(v), v&m .

The winner alternative will be or which g(r):JrSnLn(g(v)).

Example

Let a, & the alternatives oft and b, b, b; the uncontrollable states @f The
payoffs for each pair (&) are ¢ and are find out in the following table:

by | b bs minc,
I<j<n
=Y -10 10 6 -10
& -15 20 7 -15
maxc. | -10 | 20 7
1<ism I

The regrets table ¢ (in terms of gains of) is:

by b, bs
& 0 -20 -16
& 0 -35 -22

We have therefore:
v,=0,v,=-55,v3=-38, from where: mgw,v,,v3}=0, min{v,v,,vs}=-55.

_0+55_ _ —55+55 _—-38+55 17
y€F ———— =V, &= =

T 0+55 0+55 0+55 55

&
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17

1 55 55 17

ni=———-=—, r]2:0’ Ne=—==—

1+O+£ 72 1272
55 55

The regrets table af will be:

5572] 0| 17772
b, | b
I I LA
72 72
3
a| 0 |10] 1 17772
&| 5 | 0] O 275772

The minimum of the last column being 17/72 it fel®that the best strategy is a

1.5.5. Regrets Laplace’s criterion
R n P
For p=n and R maxc; , j=1n , we have: fi)2_n. (R, —c,) with >'n, =1. If we
t=m k=1 k=1
shall choose]kzl, and after, for g=m, we have that: g(v):f(v),l/_m .
n

The winner alternative will be. fr which g(r):Lnin(g(v)).

Example

Let a, & the alternatives oft and b, b, b; the uncontrollable states @f The
payoffs for each pair (&) are ¢ and are find out in the following table:

b, | b bs

& -10 | 10 6
2 -15 | 20 7
maxc, -10 | 20 7
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The regrets table af is:

b, | b, bs 1. 1. 1
=bi+=bt+=Dh.
31 3°3°
a 0 | 10 1 11/3
2 5 | 0 0 5/3

The best alternative from this criterion isbait from the facts exposed upper
this is not acceptable.

1.5.6. The nostalgia criterion

This criterion alludes, in fact, to the final seélen of the alternative. After each of
the exposed criterions we obtain a series of vatdethe function f which in the
absence of regrets is maximized, and in the preseminimized.

In many cases, we can group the alternativea d@fi categories, clases after the
satisfactions offered in the past. We can also grdier example, after the
implement expenses of thosadyertising if the problem study the launching of a
produc).

Thus, we shall associate to each g groups of aliess ofa a coefficient of
importance A, vzl_q. We shall after determine the selection fumctio

g(v)=A, max f@g+@-A,) min f(S), sz_(q acting after like in section 2 that

iy +Isss<i, i, +1sss<i,

is: the alternative’s group finally selected istthiafor which

g(r):sgr{l— 2sg Zn: RfJJ rgvgg{sgr(l— 2sg zn: Rng(v)J

and the final alternative is that for which thefeliencelf(i)-g(r)J, i=i,_, +1i

r

is
minimum.

The groups of alterantives will be determined, iimgiple, arbitrary. We can group,
for example, in good, medium or weak strategiegrafhe sum of gains. The
coeficcientsA, will be determined after the method indicatedha proportionally
weight Laplace’s criterion applied on the rowsloé groups.
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We have therefore the following steps:

We compute firsty,, v:L_(q - the sum of gains of the group v.

If maxv, =minv, thenv,=constant, v4q. In this case, it follows that isn't a
P=1q =14

preference for one of the group, and the algoritfitibe close like those initial.

vV, —minv L

If maxv,>minv,, we compute:g,= e , v=1q and, finally:

p=La P14 maxv, —minv

p=1q p=1q

8 —_
)\V: q - 1V=11q

2.

p=1
Example

Let a, &, &, & the alternatives ai and h, b, b; the uncontrollable states pf The
payoffs for each pair (&) are ¢ and are find out in the following table:

b | b, | bs | minc

i<ism
& 10| 10| o6 6
& -15 | -9 7 -15
& -5 40 | 50| -5
=N 30 -8 6 -8

If we apply the Wald criterion we have that thett@rnative is a

We shall broach in a different way the problem. b on the rows is:
bl b2 b3 n
=

& 10| 10| © 26
& -15 | -9 7 -17
& -5 40 | 50| 85

&y 3 -8 | 6 28
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We shall therefore group the alternativesad a which offer the less prices ang a
with a,. Let therefore: k={a,a} and H={as,as}.

We have nowv;=26-17=9v,=85+28=113 and mgx,v,} =113, mifvy,v,}=9.

9-9 113-9
Because;= =0, &=
11:-9 11:-9

=1 we obtainA;=0 and\,=1.

The selection function is:

o g(1)=A, rEssag(f(s)+ @-x) rpslsrzl f(s)=rpsi§r21 f(s)=min{26,-1%=-17.
* g(2)=A, @gﬁ(f(s)ﬂl—)\z) rgslsr‘} f(s)=r223<f(s) =max 85,28 =85.

The winner group is those for which:
g(r)= max{g(v))=maxg(1).9(2} =85

If we compute now the differencest(i)-g(r)0 i=3,4 we obtain{i(3)-g(2)=85-
85[F0si [f(4)-g(2)=[128-85 =57 from which the best alternative is a

2. The Optimal Assignation of Workers from the Point d View of
Execution Total Time Minimization

2.1. Introduction

The problems of assignation appear usual in thegaof targets allocation in an
institution.

Let considelA={ A,...,A;} the set of workers in an institution abhd{L1,...,L,,} the

set of jobs which must be executed at a specifimemd. In the execution of;Lthe
worker A spend a time equal with @inits (hours, minutes, seconds etc.). Supposing
thet it exists workers which can execute a lot a@lfsj we put the problem of
allocation on jobs such that the total time spegdinthe execution to be minimum.

We shall assign an infinte value {aftA; is not able to execute the joh Also, we
shall understand that the number of workers is lequih those of jobs, in the
opposite case introducing fictional workers or jabth infinte times of execution to
prevent the allocation of them.
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The method of Little suggest the following steps:

Step 1 It is build the table of times (with workers columns and jobs on rows) and
after we shall compute the minimum on each roweAthis we subtract these
values from those of rows, compute the minimum achecolumn and after also, we
shall subtract these from the values on the colurfter this step, on each row or
column is at least one value equal with O.

Step 2 We shall compute the sum of all elementgactied from rows and columns
and noted with S

Step 3 For each element equal with O in the lasletawe shall compute the
quantities p=min {tyk#j} +min{t,Cp#i} or, in other words, the sum of the
elements on the row and column corresponding tanthlequantity. After this, we
shall determine the maximum of that values andagigropriate allocation (s,r). We
shall build a tree graph where the initial knot esnwith the value S We shall
build after a bend where we shall put the actisitigr) and non(s,r) who will come
with the valuesi, andBs=S,+s respectively.

Step 4 We shall erase the row s and the colummd manshall act like in the first
step.

Step 5 We shall compute, 8ke sum of the elements of minimum of rows and
columns and we shall modify the indicatoE=S,+S,.

Step 6 If the simplified table will has only onem@nd column the algorithm will
close. If not it will be choose the minimum betwegpandfs,. If both values will

be equal we shall choose the vatugappropriate to an allocation and not to a reject
of allocation.

Step 7 If the choiced value wag we shall return at the step 3.

Step 8 If the choiced value wfls then we shall consider in the table previously of
step 1: §=w and we shall compute the minimum of row s and roolu, subtract
these form the appropriate row and column and medtithe third step.

We can see that the algorithm is a little hard @éf@e we shall propose in what
follows a new method based on the Simplex algorithm
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2.2. The new method

Let considerA’={A,...,Ay} the set of workers in an institution aht={L,,...,Li}
the set of jobs which must be executed at a speoidiment.

Let therefore A’ - P(L’), f(Ai)={Li1,...,Lik} 0i=1,...,n’ the function who assign to
Ai the jobs:L, ,....L; which he can realize if he has the necessaryifepzion for
at least one job and f(&0O in opposite cases.

We shall restrict the s&t' and we shall consider, from the beginning, thesstilof
those workers for which f(#0 OA;0A. We shall note therefors={ A,...,A;} with
n<n’ (after a possible renotation of workgrd et now @gain after a possible

renotation of workers Uf(Ai)z{Ll,...,Lm} with msm’. If m<m’ we have that the
i=1

jobs Lms1,...,Lyy cannot be executed from any workers, thereforebgikexcludes.
Finally, let considert={L,,...,Ly)} and the new allocation functionAf: P(L).

We shall define a matrix:

where g=1 if the worker Acan execute the joh Bnd 0 in the other cases.

Let now consider the matrix Aef) where:

_ | 1if theworkerA; will nominaten theexecutiorof L,
" |0if theworkerA, will notnominaten theexecutiorof L,

We shall, like in the previous section, build thatrix T=(t) of execution times,
assigningt=c if A; cannot execute;L

In a distinction with Little’s method we shall nejoin restrictions to the number of
workers or jobs.

Let now the matrix B={;a;) who's elements belong to the 4€1} and who has
the following meaninga;g;=1 if A; will nominate to execute;land is also qualified
for this thing andyx;a;=0 in the other cases.
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Because no one can execute two jobs simultaneowsdyhave therefore the

condition: Y a,a, <1 0i=1n.
=

Also, because any job cannot be execute simultahedy two different workers

we have thatd a, o, <1 0j=1m.
i=1

From the above conditions it follows thajogs1 Dizﬁ Djzl_m )
The allocation problem will become:

min(znlzm:tijau)

i=1 =1

Z Lo, <1

o

where M is the number of workers proposed for tkexation.

Before solving the problem, let remark first thiaitiisn’t a maximal allocation the
problem will not have a solution and in other c#sié has at the final we shall
obtain effective the allocation. The value of minim will be the searched total
time.

The problem will be solved in the following mannese start with the value M=n. If
it has not a solution we diminish M with a unit and begin again to solve the new
problem. Because M is a free term in the upper Iprobwe shall reoptimize the
older.

The process is obviously finite because the prolilamalways a solution at least for
M=0: O(ij=0.
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3. The Optimal Assignation of Workers on Jobs from thePoint of View
of Minimization the Maximal Execution Time

3.1. Introduction

The problems of assignation appear usual in thegsof targets allocation in an
institution.

Let considerA’={A,,...,Ay} the set of workers in an institution aht={L,,...,Li}
the set of jobs which must be executed at a spauidiment.

In the execution of jobjlthe worker Acan spend;tunits of time.

Because each worker can has a multiple qualificathmit not all necesary for the
entire set of jobs we put the problem of allocatiomjobs such that the maximum
time spent in the execution to be minimal.

Let therefore &' - P(L’), f(Ai)={Li1 Ll} Oi=1,...,n" the function who assign to
Ai the jobs:L, ,...,.L, which he can realize if he has the necessaryifepzion for
at least one job and f(&U in opposite cases.

We shall restrict the s&' and we shall consider, from the beginning, thesstlof
those workers for which f(#¢C OA;UA. We shall note therefors={ A,,...,A,} with
n<n’ (after a possible renotation of workgrd et now @gain after a possible

renotation of workens Uf(Ai)z{Ll,...,Lm} with msm’. If m<m’ we have that the
i=1
jobs Lip.,...,Lyy cannot be executed from any workers, thereforebgikexcludes.

Finally, let considert.={L4,...,Li;} and the new allocation functionAf- P(L).

We shall define a matrix:

1 Lm
M: a11 alm Al
a a_JA

where g=1 if the worker Acan execute the jol bnd 0 in the other cases.

We shall build the matrix TSff of execution times, assigning=to if A; cannot

execute L
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The graphical method of Ducamp, presented2in proposes a construction of a
simple graph (a decomposition of nodes in two dsjeubsets: workers and jobs)
and after an initial allocation a succesion of ioy@ments based on graphical
observations. This method is good but cannot bly eaplemented on computers.

We shall propose in what follows a new method basethe Simplex algorithm.

3.2. The method of Simplex algorithm

Let now, the matrix M:(afij) where:

ey ifty st
aj= .
Oif t, >t

and A=(a';) where:

j inatimelessthanor equakwith t

t_
~ |0if A; will notassign texecute

o . inatimelessthanor equakwith t

{1if A, will assign texecuté
J

Let now the matrix B-(a%d;) which elements belong t00,1} and who has the
following significancea;a;=1 if A; will be assigned to execute the jopita time
less than or equal with t and he is qualified fos thing, andx';ad;=0 in the other
cases.

Because any worker cannot execute two jobs in Hmestime we shall have:

Za‘uatu <1 DiZE .

=1
Also, because any job cannot be executed in the siame by two different workers

we shall have a'ja'y <1 0j=1m.

i=1
After these conditions follows®a'j<1 Oi=1n O=1m.

The allocation problem becomes (for a maximal tijne
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max(izm:atua‘u)

i=1 j=1

m
Zatijatij <1
=1

n
zatijatij
i=1

atij >0

IN
[y

Let remark first that the problem has always atsmiufor a suitable t.
Let now t=mir{ ttIM, has at least k rows who have an element equallyith
We have obviously: min£t;<t,<..<t.<max .

The algorithm will begin with t=t If the problem will not have a solution, we shall
grow t with one unit until we shall find a maxinalocation.

If we cannot find such allocation, we shall consitet,; and begin again the
problem.

One problem can appear after sloving: what is haggéf the solutions will not be

entire? It is possible, for example, on the i-ttvto be a lot of elements equal with

1 (appropriate to the fact that one worker can eteca few jobs), say k elements,
1

and the optimal solution to contains the variables;, =a'j, =...=a';, :E'

Because the objective function Js, > a‘ja'; it follows that it will not modify if
i=1 j=1

we replace all the cited values with, for examplé;, =1 for a kps<k.

4. The Optimal Assignation of Workers on Jobs

4.1. Introduction

The problems of assignation appear usual in thegsof targets allocation in an
institution.

Let considerA’={A,...,Ay} the set of workers in an institution aht={L,,...,Liy}
the set of jobs which must be executed at a spauifiment.
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Because each worker can has a multiple qualificatheit not all necesary for the
entire set of jobs we put the problem of allocatwnjobs such that they realize too
much if it is possible of them.

Let therefore A’ - P(L"), f(Ai)={Lil,...,Lik} Oi=1,...,n" the function who assign to
Ai the jobs:L, ,...,.L, which he can realize if he has the necessaryifeqpzaion for

at least one job and f(&O in opposite cases.

We shall restrict the s&' and we shall consider, from the beginning, thesstlof
those workers for which f(#0 OA;0A. We shall note therefors={ A,...,A;} with
n<n’ (after a possible renotation of workgrd et now @gain after a possible

renotation of workers Uf(Ai)z{Ll,...,Lm} with msm’. If m<m’ we have that the
i=1

jobs Lms1,...,Lyy cannot be executed from any workers, thereforebgikexcludes.
Finally, let considert.={L4,...,Li;} and the new allocation functionAf- P(L).

We shall define a matrix:

where g=1 if the worker Acan execute the joh Bnd 0 in the other cases.

The graphical method presented 1h proposes a construction of a simple graph (a
decomposition of nodes in two disjoint subsets:k&ms and jobs) and after an initial
allocation a succesion of improvements based omphgral observations. This
method is good but cannot be easly implementedompaters.

We shall propose in what follows a new method basethe Simplex algorithm.

4.2. The method of Simplex algorithm

Let now, the matrix A={;) where:

{1 if theworkerA, will executehejoblL,
oF;

“loif theworkerA, will notexecuteghejoblL,
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and the matrix B=(;g;) with elements in the s¢0,1}. We have that;a;=1 if the
worker A will execute the job Land if he is qualified for this thing arda;=0 if
the worker Awill not execute the job;lor he is not qualified to do this. How any
worker cannot execute two jobs in the same time, hawe the condition:

Y aa, <10=1n.
=

Because a job cannot be executed in the same tynedworkers we have also
that: > & o, <1 Oj=1m . From these conditions we have now thatj=l Ci=1n

i=1
Oj=1m.

The problem becomes now the following linear pragrang:

max(_ > 3 a;)

i=1 j=1

a0, <1
1

D0, <1
i=1
a, =0

Because;j=0 verify the restrictions we have that the probleas always a solution.

One problem can appear after sloving: what is haggpef the solutions will not be

entire? It is possible, for example, on the i-ttvto be a lot of elements equal with

1 (appropriate to the fact that one worker can eteca few jobs), say k elements,
1

and the optimal solution to contains the variables, =o; =..=a :F'

Because the objective function}s > a, o, it follows that it will not modify if we

i=1 j=1

replace all the cited values with, for exammq; =1 for a Epsk.

Example

Let the workers AA,Az and the jobs LL,,Ls which posibility of execution is in
the following table:
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Worker | Jobs
A1 Lils
Az LiLo
As L,
Ll I‘2 L3
O 1 A cxll 12 als
Considering the matrix M 10 Al and A5 a, 0, 0, | we have the
O 1 O A2 a3l a32 033

3

following linear programming problem:

max(all+a13 +a21+a22 +a.’32)
o,+a,<1
a, +0, <1
a, <1
o,,+a, <1
o, +a, <1
a,,<1

13 —

all’a13’a21’a22’a32 20

with the solution:a;5=1, as,=1, a,,=1. We have therefore that; Avill execute the
jOb Ly, Ab— Ly and A— L.

5. The Sequence Of Two Installations Without Initial DCeliverance
Times

5.1. Introduction

The sequence operation in production flows app@athe usual practice for the
installations waiting time decreasing when a lopices use the same technology
line in the same direction.

Let two installations Yand U who process n pieces,P.,P, (n>2) in the same
order (first U and after |J). We shall consider that;land U are available from the
process beginning and the waiting time to comexatetion for Y does not implies
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other prices. In addition we shall suppose thafikees do not have a finish ending
date.

Let note with { the processing time of the j-th piece on theittallation.

The problem consists in a determination of the ggeexecution beginning order
such that the waiting time of the installation @2oe minimum.

Let the matrix T={OM.(R) of the time processing. The classical algorithin o
Johnson consists in the following steps:

Step 1We choose the least element on the first row. Willsggive us the first piece
who will come in execution.

Step 2We cut the previous column and we choose the Eastent on the second
row. This will give us the last piece who will corimeexecution.

Step 3We cut the previous column and we go again afithestep. After this we
will obtain the second piece who will come in ex@m, and after we go again at
the second step and we find the penultimate pirdesa on.

The algorithm will continue till we shall finishlahe pieces.

5.2. The new method

In the proof of Johnson’s algorithm it exists dlditbut essential error. The author
extrapolates a transposition between two consexuttivms to all transpositions.
This is the reason that, even if it claim to obthi@ optimum, it is not true.

The following method will guide us to the optimumathwvith a little harder calculus.

Let therefore the table of time processing and armpation

1 2 .. n
o= [ _ _ JDS,] — the group of permutations of n elements andrdercof

[ PR

pieces, indexed by: P ,P_,...,P

2 In
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Piece/Installaton | P | P | ... | R | ... | P
Ul dill dizl d\kl dinl
U2 dilz dwzz dikz d\nz

We define: ga,...,0:=0 - the pauses before entrence in execution ofepiec
PP, ...P on the installationJUWe have, obviously:
* @=d,, (from the beginning of the procgss
¢ gZ:maX(dill +di21 'dilz -01,0)

* g3:max(di11 +di21 +di31 -d,

I

2 _di22 '91'9210)

k-1 k-1
dip2 _ng ’o)
=1

p=1 p

k
© gemax()d,, -
p=1

n

n n-1 -1
© g=max(}.d ,->d ,->9,.0)
p=1 p=1 =1

p

k k-1
If we note:B, , =>'d,, - > .d,, we have:

= =i
* =B,
«  g=max(B,, -01,0)

«  g=max(B,,, -01-0.0)

[P

k-1
« gEmaxB, ; ->.9,.0)
p=1
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igody

n-1
* grmax(B,_, ->.g,.0)
p=1

The objective function is therefore: zgisn (ng ).
=]

We have by iteration:

k

k-1 k-1 k-1 k-1
2.9,=6+> g, =max(B, , ->.g,,0+ > g,=max(B, ; ,>.9,)
p=1 p=1 p=1 p=1

p=1

n n-1 n-2
BUt:Zlgp :maX(Bil...in ’Zlgp ):maX(Bil...in ’ma‘X(Bil...in_l 1219;) )=
p= p= p=

n-2
max(B, ; ,B, ; .0, )=...=max@®,  ,B

> B, ) from where:
p=1

pod

yees B

I

))-

1o

z=min (g, )=min (max(®, , B,
p=L o n

k k-1
We haveB, ; =>'d ,->d ,=B, , +d  —d ,and much generally:
p=1 p=1
k k-1 S s-1 k k-1
i |k:2d|p1_ dupz :Zdipl_ dip2+zd|1 Zduz_Bnl| +
p=1 p=1 p=1 p=1 p=s+l p=s
k k-1
Zdlpl - d|;]2
p=stl p=s
. 1 2 .. kK .. s .. n
For the permutation o= P i i i 0s, and
P P P P I

z=max@®B, ;,B, ; ,..B;), let consider a transposition ofo:
1 2 ..k .. s ..n

= . .  |US,
[T P PO P

If we note with bar all the quantities concerninge have:
« tzks=>d,,=d,sid,=d,,
+ t=k=>d ,=d, si d ,=d,,

Is
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° t=s:>ai51=dik1 Si aiSZ:dikZ
from where:

° 1St<k:>§i1.“it :Zdipl -3'd. 2 :idipl - dipz =Bi1.“i[

i +di51 _dikl_(d

R i,

.2 _dikz

s-1

— S __ s-1 s
¢ == Bil...is :Zdipl _Zdipz :Zdipl _Zdipz _(disz _dikz):Bil...is -
p=1 p=1 p=1

p=1
(disz _dikz)

Let note now:O(skzdis1 —dik1 and[3s|<=dis2 —dik2 for s>k andog=Bs=0 for k. We

have now:

B, if t<k

B, . *tagift=k
=4B; ., Ty -Byif k<t<s
B, . —Byift=s

iy

B. i ift>s

g

iy

B,

ig.dy

+0g, B:

EREPSET

z=max(B, ,....B, , ,B, ;)=max(B, ....,B, +H0lg

BSk""'Bi +a3k'Bsk, Bil.“is -BSk'Bi yor B i ).

) ) i = T
vl relsin 0y

We must determine the pair (k,s) of pieces which lsé permuted such that, after
the computing ofz to obtain a value less then or equal z.

How this thing leads us at a great number of catauis, we shall act in this way:
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For an arbitrary distribution of pieces, correspgogd to a permutation

1 2 .. kK .. s .. n . . i
0:[, } } i ) JDS{], we shall determine those piece which

PR PV VR R

permute with the first will lead to the minimizatiof z. Suppoes now that this thing
is for the first piece.

Let thereforeP, - the searched piece, who will take the plactheffirst pieceP, .
We have therefore:

z=max(B, ,...,B,; ,B, ;)=max(B, +0s, B, +0sBsy....B, | +0sBs1, B, -
Bsw B

We shall continue this process till we cannot disfinthe value of z. In this
moment, we shall find the permutation with the secpiece and so on.

1l

..B, ).
relsi 1-ln

Let conclude: We build the table where on the reweshave the pieces? ,...P

and on columns aloné_,...P, .
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We shall choose the pied¢& for which: zmin maxa, ; .

s2n t=1n

The next table will contains the new order of pgeadiereR,  will change the place
with P, .

The process will continue till zmzin maxa,; becomes greater then those computed

s2n t=1n

in the preceding table.

This thing suggests the fact that any piece cabrobn the first position without
grow the total time. If the value of z remains dans we can act like in the
precedings steps for each pieces order.

In the next table, we shall act analogously, buttlmn column we shall get only
P, ....P  corresponding to the new permutation.

The process will continue till the last piece.

Example

Piece/lnstallation PR | P | P3| Py
U, 15| 6 8 9
U, 19| 3 | 13| 7

Johnson’s algorithm propose us:

Piece/lnstallation P | P;s| Py
U, 15| 8 9
U, 19 | 13| 7

Piece/Installation R | Ps
U, 15| 8
U, 19 | 13
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with the final order: RBP;Py,P;, therefore the new table will be, in order of
execution:

Piece/Installation B | Ps| P | Py

U, 6 | 8| 15| 9
U, 3 | 13| 19| 7
with times:
B.=6
B;=6+8-3=11

B,=6+8+15-3-13=13
B,=6+8+15+9-3-13-19=3
therefore z=max(BB3,B1,B4)=13.

Our algorithm consists from the following tables:

Table 1

P, P Py
6 3| 8] 13] 9 7
916| -7| 6] 6] 12

P [ B, [15] 19] B,=15 6 8 9
P, | B, | 6 3 | B,=2 18 1 8
P, | Bs| 8 | 13| B,=7 7 13 13
P, Bs| 9] 7] B,=3 3 3 15
max 18 13 15

therefore the piece on the first position is P
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P, P P,
6 3 |15 19| 9 7
2|10 7| 6] 1 6
P, [Bs| 8 | 13| B,=8 6 15 9
P, | B, 6 3 §2:1 11 2 8
P B, | 15] 19] B =13 13 7 20
Pa| Bs| 9 7| B,=3 3 3 9
max 13 15 20
The alternative piece on first position can be P
P P P,
8 13 | 15| 19 9 7
2 | 10| 9| 16| 3 4
P,|B.| 6 | 3| B,=6 8 15 9
P; | Bs 8 13 §3:11 21 36 18
P, | By | 15 | 19 §1:13 13 29 20
P | Bs| 9 7| B,=3 3 3 7
max 21 36 20

therefore the permutation process for the firsitosis closed.

Table 2

Table 3

We go back to the table 1 and continue with theg@n the second position.
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Table 4
Py P,
15| 19| 9 7
9 | -16| 3 -4
P; | B3| 8 | 13| B,=8 8 8
P,[B | 6] 3] B,=1 10 4
P | By | 15| 19| B,=13 -3 12
P,|B:s| 9] 7] B,=3 3 -1
max 10 12
therefore the piece on second position;is P
Table 5
P, P,
6 3 9 7
91 16| 6| 12
P; | Bs | 8 | 13| B,=8 8 8
P.| Bi| 15| 19| B,=10 1 4
P, | B | 6 3 | B,=3 13 3
P, | Bs| 9 7 | B,=3 3 15
max 13 15

From the table 5 we have that the step is closed.

For the piece on third position:
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Py
9 7
3| 4
P; | B | 8 | 13| B,=8 8
P, | By | 15| 19 EZ:]_O 10
P, | B | 6 3 | B,=3 0
P, B.,| 9| 7] B=3 -1
max 10

Table 6

The process is closed. The order will bgPEP,,P, with total time: 10.

If we come again at the table 2 and continue vhth giece on the second position

we have:

Py P,
15 19| 9

7 -6 1

P, | B, | 6 3 | B,=6 6 6
P, | Bs | 8 | 13| B,=11 18 12
P | By | 15| 19| B,=13 7 20
P,|B:s| 9| 7] B,=3 3 9
max 18 20

Because we obtain a value greater than 13 the ssaaéd closed also.

Table 7
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