
ŒCONOMICA 
 

 7

General Economics 

 

The Production Functions from the Point of 
View of 3- Dimensional Geometry 

 
 

Associate Professor Catalin Angelo Ioan, Phd 
Danubius University of Galati 

catalin_angelo_ioan@univ-danubius.ro 
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1. Introduction 

In the theory of production functions, usual all computations and phenomenon are 
studied on projections of the surface, or for a constant level of production. A 
complete analysis can be made only at the entire surface. 

In the economical analysis, the production functions had a long and interesting 
history. 

A production function is defined like P:R+×R+→R+, P=P(K,L) where P is the 
production, K - the capital and L – the labour such that: 

(1) P(0,0)=0; 

(2) P is differentiable of order 2 in any interior point of the production 
set; 

(3) P is a homogenous function of degree 1, that is P(rK,rL)=rP(K,L) 
∀r∈R; 

(4) 
K

P

∂
∂ ≥0, 

L

P

∂
∂ ≥0; 

(5) 
2

2

K

P

∂
∂ ≤0, 

2

2

L

P

∂
∂ ≤0. 

From Euler’s formula for homogenous functions we have: 
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(6) 
L

P

∂
∂

=
L

P
-

L

K

K

P

∂
∂

 

By derivation with L and after with K in (6) we obtain: 

2

2

L

P

∂
∂

=
2L

PL
L
P −

∂
∂

+
L

χ
K

P

∂
∂

-χ
KL

P2

∂∂
∂

=-χ
KL

P2

∂∂
∂

 

KL

P2

∂∂
∂

=
L

1

K

P

∂
∂

-
L

1

K

P

∂
∂

-χ
2

2

K

P

∂
∂

=-χ
2

2

K

P

∂
∂

 

therefore: 

(7) 
2

2

L

P

∂
∂

=-χ
KL

P2

∂∂
∂

 

(8) 
2

2

K

P

∂
∂

=-
χ
1

KL

P2

∂∂
∂

 

(9) 
2

2

L

P

∂
∂

=χ2
2

2

K

P

∂
∂

 

 
2. Some notions of the space differential geometry 

The graph representation of a production function is a surface. 
Let: 

(10) p=
L

P

∂
∂

, q=
K

P

∂
∂

, r=
2

2

L

P

∂
∂

, s=
KL

P2

∂∂
∂

, t=
2

2

K

P

∂
∂

. 

For a constant value of one parameter we obtain a curve on the surface. For 
example: P=P(K,L0) or P=P(K0,L) are both curves on the production surface. They 
are obtained from the intersection of the plane L=L0 or K=K0 with the surface 
P=P(K,L). 

The curvature of a curve is, from an elementary point of view, the degree of 
deviation of the curve relative to a straight line. 

In the study of the surfaces, two quadratic forms are very useful. 

The first fundamental quadratic form of the surface is: 

(11) g=g11dL2+2g12dLdK+g22dK2 

where: g11=1+p2, g12=pq, g22=1+q2. 

The area element is dσ= 2
122211 ggg − dKdL= ∆ dKdL and the surface area A when 

(K,L)∈R (a region in the plane K-O-L) is A=∫∫ σ
R

dKdLd  where ∆=g11g22-g12
2. 

The second fundamental form of the surface is: 
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(12) h=h11dL2+2 h12dLdK+ h22dK2 

where: h11=
22 qp1

r

++
, h12=

22 qp1

s

++
, h22=

22 qp1

t

++
. 

Considering the quantity δ=h11h22-h12
2 we have that: 

• If δ>0 in each point of the surface, we will say that it is elliptical. Such 
surfaces are the hyperboloid with two sheets, the elliptical paraboloid and the 
ellipsoid. 

• If δ<0 in each point of the surface, we will say that it is hyperbolic. Such 
surfaces are the hyperboloid with one sheet and the hyperbolic paraboloid. 

• If δ=0 in each point of the surface, we will say that it is parabolic. Such 
surfaces are the cone surfaces and the cylinder surfaces. 

Considering a surface S and an arbitrary curve through a point P of the surface who 
has the tangent vector v in P, let the plane π determined by the vector v and the 
normal N in P at S. The intersection of π with S is a curve Cn named normal section 
of S. Its curvature is called normal curvature. 

 

Figure-1: The normal section of a curve 

If we have a direction m=
dK

dL
 in the tangent plane of the surface in an arbitrary 

point P we have that the normal curvature is given by: 

(13) k(m)=
2212

2
11

2212
2

11

gmg2mg

hmh2mh

++
++

 

The extreme values k1 and k2 of the function k(m) call the principal curvatures of the 
surface in that point. They satisfy also the equation: 
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(14) (g11g22-g12
2)k2-(g11h22-2g12h12+g22h11)k+(h11h22-h12

2)=0 

The values of m, who give the extremes, call principal directions in that point. 

They also satisfy the equation: 

(15) (g11s-g12r)m
2+(g11t-g22r)m+(g12t-g22s)=0 

The curve 
dK

dL
=m (where m is one of the principal directions) is called line of 

curvature on the surface. On such a curve we have the maximum or minimum 
variation of the value of Q in a neighbourhood of P. 

The quantity K=k1k2 is named the total curvature in the considered point and H=

2

kk 21 +
 is named the mean curvature of the surface in that point. 

We have therefore: 

(16) K=
2
122211

2
122211

ggg

hhh

−
−

=
∆
δ

 and H=
2
122211

112212122211

ggg

hghg2hg

−
+−

 

A surface with K=constant call surface with constant total curvature and if H=0 call 
minimal surface. 

If we consider now in the tangent plane π at the surface in a point P a direction m, if 
h11m

2+2 h12m+h22=0 we will say that m is an asymptotic direction, and the equation: 

0h
dK

dL
h2

dK

dL
h 2212

2

11 =++







 gives the asymptotic curves of the surface in the 

point P. 

 

3. The space differential geometry for production functions 

From (6), (10) we have that: 

(17) g11=1+
2

L

P









∂
∂

=1+ ( )2

2
KqP

L

1 −  

(18) g12=
L

P

∂
∂

K

P

∂
∂

= ( )KqP
L

q −  

(19) g22=1+
2

K

P









∂
∂

=1+q2 

(20) ∆=g11g22-g12
2=1+q2+ ( )2

2
KqP

L

1 −  
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We have also: 1+p2+q2=1+
2

L

P









∂
∂

+
2

K

P









∂
∂

=∆ and: 

(21) h11=
∆
1

2

L

K








t 

(22) h12=-
∆
1

L

K
t 

(23) h22=
∆
1

t 

(24) δ=h11h22-h12
2=0 

From (24) we have that all the points of the surface are parabolic. 

The principal curvatures satisfy the equation: 

(25) 
3

∆ L2k2-t(P2+L2+K2)k=0 

therefore: k1=0, k2=
2

3

222

L

)LKP(t

∆

++
<0. 

The values of m corresponding to k1 and k2 satisfy the equation: 

(26) (Eµ-Fλ)m2+(Eν-Gλ)m+(Fν-Gµ)=0 

If t≠0 then 

( )[ ] [ ] [ ] 0KqPLmKqKP2PLLmKqPPLK 222222 =++−−++−+−  

We have now: 

(27) K=
2

2

FEG−
µ−λν

=0 

therefore the surface is with null constant total curvature and: 

(28) H=
3

2

222

L

)KLP(t

∆

++
. 

In order to have a minimal surface we must have: t=0 therefore 
2

2

K

P

∂
∂

=0 i.e. 
K

P

∂
∂

=f(L) and after: P=f(L)K+g(L) where f,g are differentiable functions of order two. 

The asymptotic directions are, if t≠0: 

(29) 
2

1m
L

K







 − =0 



ŒCONOMICA 
 

 12

therefore: m=
K

L
. But m=

dK

dL
 gives that K=CL with C=constant. 

With notations x1=L, x2=K, let define now the Christoffel symbols of first order: 

(30) ij,k= 








∂
∂

−
∂
∂+

∂
∂

k

ij

j
ik

i

jk

x

g

x

g

x

g

2

1
 

and of second order: 

(31) 
kj

i
=gi1jk,1+gi2jk,2 

where g11=
∆
1

G, g12=-
∆
1

F, g22=
∆
1

E are the components of the inverse matrix of 










2212

1211

gg

gg
. 

We have now: 

(32) 11,1=
L

g

2

1 11

∂
∂

, 11,2=
K

g

2

1

L

g 1112

∂
∂−

∂
∂

, 12,1=
K

g

2

1 11

∂
∂

, 12,2=

L

g

2

1 22

∂
∂

, 

         22,1=
L

g

2

1

K

g 2212

∂
∂−

∂
∂

, 22,2=
K

g

2

1 22

∂
∂

 

(33) 
11

1
=g1111,1+g1211,2=

∆
1


















∂
∂−

∂
∂−

∂
∂

K

g

2

1

L

g
g

L

g
g

2

1 1112
12

11
22 , 

        
11

2
=g2111,1+g2211,2=

∆
1


















∂
∂−

∂
∂+

∂
∂−

K

g

2

1

L

g
g

L

g
g

2

1 1112
11

11
12 , 

        
12

1
=g1112,1+g1212,2=

∆
1










∂
∂−

∂
∂

L

g
g

2

1

K

g
g

2

1 22
12

11
22 , 

        
12

2
=g2112,1+g2212,2=

∆
1










∂
∂+

∂
∂−

L

g
g

2

1

K

g
g

2

1 22
11

11
12 , 

        
22

1
=g1122,1+g1222,2=

∆
1










∂
∂−









∂
∂−

∂
∂

K

g

2

1
g

L

g

2

1

K

g
g 22

12
2212

22 , 

        
22

2
=g2122,1+g2222,2=

∆
1










∂
∂+









∂
∂−

∂
∂−

K

g
g

2

1

L

g

2

1

K

g
g 22

11
2212

12  

From (6)-(10) we can write: 

(34) p=
L

KqP−
, s=-

L

K
t, r=

2

L

K








t 
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We have from (17)-(19): 

(35) 
K

g11

∂
∂

=
( )

2L

KqPKt2 −− , 
L

g11

∂
∂

=
( )

3

2

L

KqPtK2 −
 

(36) 
K

g12

∂
∂

=
( )

L

Kq2Pt −
, 

L

g12

∂
∂

= ( )Kq2P
L

Kt
2

−−  

(37) 
K

g22

∂
∂

=2qt, 
L

g22

∂
∂

=-
L

K
2qt 

From (33)-(37) we obtain: 

(38) 
11

1
=

32

2

L

)KqP(tK

∆
−

, 
11

2
=

22

2

L

tqK

∆
,  

12

1
= -

22L

)KqP(Kt

∆
−

, 

       
12

2
=-

L

Kqt
2∆

, 
22

1
= 

L

t)KqP(
2∆

−
, 

22

2
= 

2

tq

∆
 

A geodesic is in common language the shortest curve between two points. The 
equation of a geodesic is: 

(39) 0
ds

dx

ds

dx

jk

i

ds

xd kj

2

i2

=+  

that is: 

(40) 0
ds

dK

22

1

ds

dK

ds

dL

12

1
2

ds

dL

11

1

ds

Ld
22

2

2

=






++






+  

(41) 0
ds

dK

22

2

ds

dK

ds

dL

12

2
2

ds

dL

11

2

ds

Kd
22

2

2

=






++






+  

After a long computation, we have: 

(42) 0
ds

dK
L

ds

dL
K)KqP(t

ds

Ld
L

2

2

2
3 =







 −−+∆  

(43) 0
ds

dK
L

ds

dL
Ktq

ds

Kd
L

2

2

2
2 =







 −+∆  

Because P=P(K(s),L(s)) we have: 

ds

dP
=

K

P

∂
∂

ds

dK
+

L

P

∂
∂

ds

dL
=q

ds

dK
+

L

KqP−
ds

dL
= 








+






 −
ds

dL
P

ds

dL
K

ds

dK
Lq

L

1
 

therefore: 

(44) q=

ds
dK

L
ds
dL

K

ds
dP

L
ds
dL

P

−

−
 

and also: 
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(45) P-Kq=

ds
dK

L
ds
dL

K

ds
dK

P
ds
dP

K
L

−

−
 

(46) ∆=1+q2+ ( )2

2
KqP

L

1 − =

2

222

ds
dK

L
ds
dL

K

ds
dK

P
ds
dP

K
ds
dP

L
ds
dL

P
ds
dK

L
ds
dL

K








 −








 −+






 −+






 −
 

If we note now: 

(47) A=
ds

dK
L

ds

dL
K −  

(48) B=
ds

dP
L

ds

dL
P −  

(49) C=
ds

dK
P

ds

dP
K −  

the equations (42), (43) become (again after a long calculus): 

(50) [ ] 0
ds

Pd
AC

ds

Kd
BC

ds

Ld
BA

2

2

2

2

2

2
22 =−++  

(51) [ ] 0
ds

Pd
AB

ds

Kd
CA

ds

Ld
BC

2

2

2

2
22

2

2

=−++  

from where: 

ABCA

ACBC
ds

Ld

22

2

2

−+
−

=

BCAB

BAAC
ds

Kd

22

2

2

−
+−

=

22

22

2

2

CABC

BCBA
ds

Pd

+
+

 

or simply: 

(52) 
)BCA(C

ds

Ld

222

2

2

−+
=

)CBA(B
ds

Kd

222

2

2

−+
=

)CBA(A
ds

Pd

222

2

2

++
 

The equations of geodesics are: L=L(s), K=K(s) where s is the element of arc on the 
curves. 
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