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1 Introduction 

Let consider a consumer who has the income V and is faced with the choice of n goods B1,...,Bn with 
initial prices p1,...,pn. Following a relocating of the market we will consider the new prices of goods 
B1,...,Bn as: 1'p ,..., n'p . Let also be an utility function U:SC→R+ where SC is the space of consumption 
goods relative to those given. 

Considering the budget zone ZB={(x 1,...,xn)∈SC∑
=

n

1i
ii xp ≤V} the problem of determining the 

consumption basket so that the utility be maximum becomes: 
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In the conditions that the function U is concave, and SC is a convex set, it is shown ([1], [3], [4]) that 
the optimal solution of the problem is situated on the border area of the budget, that is it satisfies:
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Applying the Lagrange multiplier method results in the end: 
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with the solution: 
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called Marshall demand. 

Considering now the same problem in the direction of the minimization of the allocated income to 
meet a given level of utility, the problem is: 
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where u  is the desired utility. 

Finally, it is shown that the Hicks  demand satisfies: 
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with the solution: 
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Now consider, in terms of changing prices that, first, the consumer will change the demand in order to 
preserve his original utility level. The compensated demand (Hicks type) will satisfies the problem: 
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where u  is the initial level of the utility. 

 Let the solution: 
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and V’=∑
=

n

1i
ii x~'p  - the income needed to purchase the goods basket respectively, ( ) ux~,...,x~U n1 = .  
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We will call the passage from the initial basket of goods (x1,...,xn) at ( )n1 x~,...,x~  - Hicks substitution 

effect (short - Hs) and we have: ∆Hs,i= ix~ -xi, i= n,1 . 

The second phase arises from the fact that if V’≠V (V – the initial income), the consumer will change 
again the demand vector (corresponding to its actual income), in proportion to that previously 
preserved its utility. In this case, the problem of the uncompensated demand is: 
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with the solution: 
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In this case, we have: V=∑
=

n

1i
ii x

~~'p , ( )n1 x
~~,...,x

~~U  – the obtained utility. We will call the transition from 

intermediate goods basket ( )n1 x~,...,x~  at ( )n1 x
~~,...,x

~~
 - Hicks revenue effect (short - Hv) and we have: 

∆Hv,i= ix
~~ - ix~ , i= n,1 . 

The total effect of these two phases is: 

∆H,i=∆Hs,i+∆Hv,i= ix~ -xi+ ix
~~ - ix~ = ix

~~ -xi, i= n,1  

 

2 Conditions for the Existence of the Cobb-Douglas Utility Function 

Let a utility function of Cobb-Douglas type: n1
n1n1 x...Ax)x,...,U(x αα=  with A, αi>0, i= n,1 . 

The conditions of existence of a utility function ([4]) imply the C2 – differentiability and its concavity. 

Computing the partial derivatives of first and second order for the function n1
n1n1 x...Ax)x,...,U(x αα=  

we obtain: 

ix

U

∂
∂

= n1ni1
n1n

1
i1i xx...x...Ax αα

−
−αα −α = U

x i

iα
 ∀i= n,1  

ji

2

xx

Q

∂∂
∂

= nji1
n

1
j

1
i1ji x...x...x...Ax α−α−αααα = U

xx ji

ji αα
 ∀i≠j=  

2
i

2

x

Q

∂
∂

= ni1
n

2
i1ii x...x...Ax)1( α−αα−αα =

( )
U

x

1
2
i

ii −αα
 ∀i= n,1  

The Hessian matrix is: 

n,1
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The principal diagonal minors are therefore: 
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For the function’s concavity we must have: ∆k≤0 ∀k= n,1 , k=odd and ∆k≥0 ∀k= n,1 , k=even. 

Therefore: ∑
=

α−
k

1i
i1 ≥0 so: ∑

=
α

k

1i
i ≤1 ∀k= n,1 . How ∑

=
α

k

1i
i ≤∑

=
α

n

1i
i ≤1 the only condition of concavity of 

the function remains: ∑
=

α
n

1i
i ≤1, αi>0 ∀i= n,1 . 

 

3 The Analysis of the Hicks Effect for a Cobb-Douglas Utility 

Let now consider a consumer who has the income V and is faced with the choice of n goods B1,...,Bn 
with initial prices p1, ...,pn which are further adjusted to: 1'p ,..., n'p . 

We will note: θk=
k

k

p

'p
, k= n,1  - the index of the good k price change. 

Let now a Cobb-Douglas utility function: n1
n1n1 x...Ax)x,...,U(x αα=  with A, αi>0, i= n,1 , ∑

=
α

n

1i
i ≤1. 

We will note, first: α=∑
=

α
n

1i
i , σk= α

αk , k= n,1 . We have, obviously: ∑
=

σ
n

1k
k =1. 

Calculating the marginal utilities, we get: Um,k= 
nk1

n
1

k1k x...x...Ax α−ααα =
k

k

x

Uα
 from where: 
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so, finally: 
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If we denote: 
V

pk =βk – the share of the good k price in the disposable income V, we have: 

k

k
kx

β
σ= , k= n,1  

The utility corresponding to this consumption distribution is: 
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Let us now consider the change in assets for each Bk, k= n,1 , the income remaining constant. From 

the above relations, we obtain for: γk=
V

'p k , k= n,1 : 
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k
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and the appropriate utility: 
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where δk=
'V

'p k , V’ being the new income which will ensure the utility U1. 

We therefore have: 
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or, in terms of income: 
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The new income will be: 
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With this income, we have: 
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The Hicks substitution effect is thus: 
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Considering now the initial income V instead of V' we obtain: 

∆2Hxk=xkf-xk2H=
k

k

k
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δ
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γ
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 θ−
γ
σ ∏
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σ
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which means The Hicks income effect. 

Denoting for simplicity: Γ=∏
=

σθ
n

1i
i

i  we have therefore: 
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We define, in the following, the ratios: 
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 - the part of the total change in consumption due to the income effect; 
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If we note: λk=∏
≠
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Let also the function: g(θk)= 1kkk
kkkkk

1
kkk −θλ+θσλ−θσλ σσ−σ

. 

From the expression of g, we get easily: )(glim k
0k

θ
→θ

=∞, g(1)=λk-1, )(glim k
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θ
∞→θ

=∞. 

But since: )('g kθ = ( )( )kk
2

kkk 11k θ−−σθσλ −σ  we get that: 

• θk∈(0,1)⇒ )('g kθ <0 so g is strictly decreasing. In this case: g(θk)∈(λk-1,∞). 

• θk∈(1,∞)⇒ )('g kθ >0 so g is strictly increasing. In this case: g(θk)∈(λk-1,∞). 

If λk≥1 then g(θk)>0 therefore 
k

f

θ∂
∂ >0 that is f is increasing with respect to θk. 
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k

θθ
∞→θ

=1 

Like a conclusion, in the conditions that ∏
≠
=

σθ
n

ki
1i

i
i =constant≥1, we have: 

f(θ1,..., θn)∈(0,1-λkσk) ∀θk∈(0,1) 

f(θ1,..., θn)∈(1-λkσk,1) ∀θk∈(1,∞) 

If now: λk<1 then as g(1)=λk-1<0 follows that f will change the monotony. 

Let ϕ an arbitrary root of g(θk)=0 that is: 01kkk
kkk

1
kk =−ϕλ+ϕσλ−ϕσλ σσ−σ

. 

It is easy to see that the equation has two roots: ϕ1∈(0,1) and ϕ2∈(1,∞). 

Therefore, we have: 

• θk∈(0,ϕ1)⇒g(θk)>0⇒
k

f

θ∂
∂ >0⇒f is strictly increasing, so 

f(θ1,...,θn)∈ 
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1
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 ∀θk∈(0,ϕ1) 

• θk∈(ϕ1,ϕ2)⇒g(θk)<0⇒
k

f

θ∂
∂ <0⇒f is strictly decreasing, so 
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f(θ1,...,θn)∈ 
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 ∀θk∈(ϕ1,ϕ2) 

• θk∈(ϕ2,∞)⇒g(θk)>0⇒
k
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∂ >0⇒f is strictly increasing, so 

f(θ1,...,θn)∈ 
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k

 ∀θk∈(ϕ2,∞) 

With the simplified notations: λk=λ, σk=σ, let the equation: 

01)(g 1 =−λϕ+λσϕ−λσϕ=ϕ σσ−σ , σ∈(0,1), ϕ,λ∈(0,∞) 

 We have: 

( )( )ϕ−−σλσϕ=ϕ −σ 11)('g 2  

( ) ( ) ( )( )ϕ−σ−−σϕ−σλσ=ϕ −σ 121)("g 3  

If 1
1

1
1

1

2 >
−σ
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−σ
−σ>ϕ  then )("g ϕ <0. 

If 1
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1
1

1

2 >
−σ

−=
−σ
−σ<ϕ  then )("g ϕ >0. 

After these, we have: 

• ϕ∈(0,1)⇒ g is strictly decreasing and convex 

• ϕ∈(1,∞)⇒ g is strictly increasing and convex on 
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 ∞
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2
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We have but: )(glim
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=∞. On the other hand: 
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1
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1
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−

→σ
=1. Considering the 

function: h(y)=
y

y

1
1

−









+  with y>0, we have h(y)<1 and )y(hlim

0y→
=1. Therefore: 









−σ
−σ

1

2
g < 

2λ-1<1. 

For the determination of ϕ1∈(0,1) we will apply the Newton's method, taking into account that on the 
interval (0,1) the function g is strictly decreasing and convex. So we choose the point x0 sufficiently 
close to 0 so that: g(x0)g”(x0)>0. 

We get therefore: 
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Finally: ϕ1= n
n
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∞→

. 

For the determination of ϕ2∈(1,∞) we have two cases: 

If 
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1

2
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1

2
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If 
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We therefore have: 
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If 
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2
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1

2

−σ
−σ
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After the above relationships, we get, finally: 

• αk – the part of the total change in consumption due to the substitution effect belongs to: 

o (0,1-λkσk) ∀θk∈(0,1) if λk≥1; 

o (1-λkσk,1) ∀θk∈(1,∞) if λk≥1; 

o 










ϕ−
ϕ−ϕλ σ

1

11k

1
,0

k

 ∀θk∈(0,ϕ1) if λk<1; 

o 
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 ∀θk∈(ϕ1,ϕ2) if λk<1; 

o 










ϕ−
ϕ−ϕλ σ
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1 2

22k
k

 ∀θk∈(ϕ2,∞) if λk<1. 

• βk – the part of the total change in consumption due to the income effect belongs to: 

o (λkσk,1) ∀θk∈(0,1) if λk≥1; 

o (0,λkσk) ∀θk∈(1,∞) if λk≥1; 

o 










ϕ−
ϕλ− σ

1,
1

1

1

1k
k

 ∀θk∈(0,ϕ1) if λk<1; 
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o 










ϕ−
ϕλ−

ϕ−
ϕλ− σσ

2

2k

1

1k

1

1
,

1

1 kk

 ∀θk∈(ϕ1,ϕ2) if λk<1; 

o 










ϕ−
ϕλ− σ

2

2k

1

1
,0

k

 ∀θk∈(ϕ2,∞) if λk<1. 

• rk – the ratio between the income and substitution effect belongs to: 

o 







∞

σλ−
σλ

,
1 kk

kk  ∀θk∈(0,1) if λk≥1; 

o 








σλ−
σλ

kk

kk

1
,1  ∀θk∈(1,∞) if λk≥1; 

o 









∞

ϕ−ϕλ
ϕλ−

σ

σ

,
1

11k

1k

k

k

 ∀θk∈(0,ϕ1) if λk<1; 

o 










ϕ−ϕλ
ϕλ−

ϕ−ϕλ
ϕλ−

σ

σ

σ

σ

22k

2k

11k

1k

k

k

k

k 1
,

1
 ∀θk∈(ϕ1,ϕ2) if λk<1; 

o 










ϕ−ϕλ
ϕλ−

σ

σ

22k

2k

k

k1
,1  ∀θk∈(ϕ2,∞) if λk<1. 

 

4 Conclusions 

The analysis of the effect of income and substitution for the case of n goods is essential in 
determining the effect of price changes on consumption movement. 

The present demarche, establishes the limits of variation of the two effects and the relationship 
between them, when price changes on all the goods and not just on two as in the classical theory. 
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