

ISSN: 1582-8859

Testing The Foreign Exchange Market Efficiency For Euro / Albanian Lekë During The Period 01 January 2002 – 31 December 2012

Ornela Shalari

University of Tirana, Faculty of Economy, Mathematics, Statistics & Applied Informatics Department

Saranda Branch

ornelashalari@gmail.com

Areti Stringa

University of Tirana, Faculty of Economy, Mathematics, Statistics & Applied Informatics Department

aretistringa@hotmail.com

Abstract. The main purpose of the study is to test the foreign exchange market efficiency for euro / Albanian lekë during the period 01 January 2002 - 31 December 2012 in Albanian currency market.

The results of this study include:

- 1. The informational efficiency is rejected for daily exchange rate euro / Albanian lekë during the period January 2004 December 2012 at the 99.99% level of confidence.
- 2. The Albanian foreign exchange market was inefficient regarding to the relative changes in the daily nominal exchange rate euro / Albanian lekë during the period January 2004 December 2012 at the 99.99% level of confidence.
- 3. The Albanian foreign exchange market was inefficient regarding to the monthly exchange rate euro / Albanian lekë during the period January 2002 December 2012 at the 99.7% level of confidence.
- 4. The Albanian foreign exchange market was inefficient regarding to the relative changes in the monthly exchange rate euro / Albanian lekë during the period January 2002 December 2012 at the 99.8 % level of confidence.

Issue 1(32)/2013

These findings are noteworthy because it has long been through of that the movements the euro / Albanian lekë nominal exchange rates must be a fair game.

Keywords: exchange rate, euro, Albanian lekë, foreign exchange market efficiency, fair game.

JEL Classification: C12; F31; G14

1 Introduction

The efficient market hypothesis relies on the efficient exploitation of information by economic actors. Foreign exchange market efficiency as well as fair game exchange rate process are important considerations for all currency market participants. Fama (1984) states that a foreign exchange market is efficient if fully reflect all available information. A weaker-form efficient market, proposed by Jensen (1978), states that a foreign exchange market is efficient if the marginal benefit of information is greater than the marginal cost of collecting information. The role of foreign exchange market is to ensure that information is available to all participants. Different methods and data frequencies can be used to investigate the efficiency of foreign exchange markets. In this paper we use the Levich's method (1989) to test the informational efficiency hypothesis for the Euro against Albanian Lekë during the period January 2002 – December 2012 in Albania's currency market.

The rest of the paper is organized as follows: Section 2 presents the literature review, Section 3 contains the mathematical apparatus, Section 4 provides the investigation of daily exchange rate euro / Albanian lekë; Section 5 presents the statistical analysis of monthly exchange rate euro / Albanian lekë; Section 6 concludes the paper (encloses the paper with conclusions).

2 Literature Review

There are three types of currency market efficiency: weak form efficiency, semi-strong form efficiency, and strong form efficiency. Weak form efficiency requires that exchange rates move randomly, at least in the short term. Semi-strong efficiency and strong efficiency both refer to the disclosure of information. Semi-strong efficiency requires that exchange rates reflect all published information; strong form efficiency requires that exchange rate reflect all public and private information (or inside, hidden information). The strong form of the efficient market hypothesis encompasses both semi-strong and weak forms of the efficiency. Especially, foreign exchange market efficiency implies zero serial correlation in exchange rate changes (fluctuations). If exchange rates were influenced by private (inside, hidden) information, then currency market participants would feel that the exchange market is unfair, as they would lose profits to other participants who had such information, see Madura and Fox (2007), p 84. The efficient market hypothesis, also referred as "informational efficiency", asserts that currency market is "informationally efficient", see Hallwood and MacDonald (1994). The efficient market hypothesis requires that currency market participants have rational expectations, and there is no transaction cost that averts them from buying or selling assets, see Giannellis and Papadopoulos (2009). Robert Lucas Jr. (1975) interpreted the rational expectations hypothesis as an assumption that available information is optimally utilized by every participant in forming expectations. Lucas supposed that individual agents or firms develop their forecasts by minimizing the square mean of the forecast error, conditional on the information available to them.

HH

EuroEconomica

Issue 1(32)/2013

ISSN: 1582-8859

Foreign exchange market may or may not be efficient and some participants may or may not be rational. Either situation is acceptable to most of academics or practitioners. Whether or not a foreign exchange market is efficient has been extensively investigated, using different econometric techniques. Grossman and Stiglitz (1980), and Slezak (2003) argue that perfect information ally efficient markets are impossible because if markets are perfectly efficient then the profit from trading on information would be equal to zero, while the cost of gathering and trading on information is positive. Fama (1984) investigates the efficiency in nine currencies against US dollar and shows the efficient market hypothesis is rejected, because of a time-dependent risk premium. Hakkio and Rush (1989) test the efficiency hypothesis for the UK pound and the Deutsche mark. They find a consistency with efficient market hypothesis. Wu and Chen (1998) test the foreign exchange market efficiency for nine OECD countries and they find the support of the efficiency. Zivot (2000) tests the foreign exchange market efficiency for British pound, Japanese yen, and Canadian dollar against US dollar. He strongly rejects the efficiency hypothesis in all exchange rates, at 96% level of confidence. Aroskar, Sarkar, and Swanson (2004) investigate the impact of the European financial market crisis on foreign exchange market hypothesis during pre-crisis, crisis, and post-crisis periods. They show that foreign exchange market inefficiency is strong in specific periods. Lee and Sodoikhuu (2012) report the validity (acceptance) of the weak-form efficient market hypothesis for foreign exchange markets in Japan, South Korea, and Philippines, but the rejection in Taiwan. In conclusion, several studies provide mixed evidence in efficient market hypothesis.

There might be three reasons why the currency markets are inefficient (Azad, 2009). First, the exchange rates in these markets do not quickly adjust to new information. Second, the exchange rates in these markets are not set at the equilibrium (Bayes-Nash-Harsanyi equilibrium) level, see Smith, Jefferis, and Ryoo (2002). Third the emergence of a parallel black market, due to the existence of exchange rate controls, and divergence between the equilibrium exchange rate and the official exchange rate, see Diamandis, Kouretas, and Zarangas (2007). If a foreign exchange market is inefficient, a mathematical model that best predicts the exchange rate movements can be developed. Therefore, an inefficient foreign exchange market provides opportunities for profitable foreign exchange transactions (Madura and Fox, 2007). Further, in an inefficient currency market the Monetary Authority (Central Bank) can approximate the optimal strategy to influence exchange rates, to reduce the exchange rate validity, and to evaluate the consequences of economic policies. Participants in the inefficient foreign exchange market can devise and use various trading rules or techniques to make abnormal profits from transactions.

3 Mathematical Apparatus

Historically, there exists a very close link between efficient market hypothesis and martingales. Nominal and real exchange rates are well approximated by a discrete martingale. Academic economists have accumulated a mountain of evidence in the last twenty years to the effect that the mean exchange rates at the 1 or 3 month horizons follow a martingale. The forecast of exchange rates has never been significantly better that the martingale, see Meese and Rogoff (1983), Frankel (1993), Frankel and Rose (1995), MacDonald (1999), etc. Let us briefly explain the concept "discrete martingale". Consider a complete probability space (Ω , F, P) equipped with an increasing family $\{F_t\}$, $t \in N$, of sub – σ algebras of F, called a filtration. In other words, (Ω , F, P, F_t), $t \in N$, denotes a filtered probability space. A real valued stochastic process X(t), integrable and adapted to $\{F_t\}$ is said to be a discrete martingale if the conditional expectation satisfies the condition

 $E[X(t) | F_s] = X(s), P - a.s., \forall s, t \in N and s \le t.$

$\mathcal{C}\mathcal{C}$

EuroEconomica

ISSN: 1582-8859

Of course, the filtration $\{F_t\}$ is very important in this definition. When we want to stress this fact, we will speak of F_t – martingale. Any stochastic process X(t) is adapted to its natural filtration. $F_t^0 = \sigma(X(s), s \le t)$, and $\{F_t^0\}$ is the minimal filtration to which X(t) is adapted. In other words, $\{F_t^0\}$ is the minimal σ - algebra containing all sets of the form $\{w \in \Omega \mid X(1) \in B_1, X(2) \in B_2, ..., X(t) \in Bt\}$, where $B_1, B_2, ..., B_t \subset R$ are arbitrary Borel sets. To say that X(t) is adapted to $\{F_t\}$ is to say that $F_t^0 \subset F_t$, $\forall t \in N$. Heuristically speaking, the σ - algebra F_t^0 is the collection of all random events which may occur before or at the time t, in other words F_t^0 is the set of all possible pasts up to time t. One often thinks of F_t^0 as the history of the stochastic process X(t) up to time t, or as the information set available at time t. Note that F_t^0 is complete: all sets of P-measure zero are included in $F_t^0 \in F_t^0 \subset F_t$ for s < t, and $F_t^0 \subset F$, $\forall t \in N$.

We need the following statements:

<u>Theorem 1</u>

If a stochastic process X(t) is F_t^0 – martingale, then E [X(t)] = constant, $\forall t \in N$.

Theorem 2

If a stochastic process is not F_t^0 – martingale, then it is not also F_t – martingale.

Definition: (according to Jerome L. Stein and N.N. Vorobiev).

A stochastic process with discrete time X(t), $t \in N$, is said to be a fair game if the process Z(t) = X(t+1) - X(t), $t \in N$, admits normal distribution with expectation zero, for all $t \in N$. $Z(t) \sim N$ ($\mu_t = 0, \sigma_t^2$), see Gihman and Skorohod (1974 - 1979), Revuz and Yor (1991), Lipster and Shiryaev (1996), Shiryaev (2002), and Stein(2012) for an advanced treatement of martingale and fair game processes. The Kolmogorv – Smirnov test, like the Chi-squared test, can be used for any probability distribution. The Kolmogorov – Smirnov – Lilliefors test, however, is a supremum distance test specifically designed to test normal distribution. The Shapiro – Wilk test for normality compares a random sample against the normal distribution. The Shapiro – Wilk test is of regression type and exhibits sensitivity to non-normality over a wide range of alternative distributions. The Shapiro – Wilk test is also sensitive to both skewness (asymmetry) and kurtosis (excess of the probability density function). The Shapiro – Wilk test provides a generally more accurate measure of non-normality that Kolmogorov – Smirnov – Lilliefors test, Cramer- Von Mises test, Durbin test, Chi-squared test, or b₁ test, see Hogg (2009), Field (2009). The Shapiro – Wilk test seems great: in one easy procedure it tells us whether a given random sample is selected from a normal population.

4 Investigation Of The Daily Exchange Rate Euro / Albanian Lekë

We are primarily concerned on the day-to-day fluctuations in the spot exchange rate

Equation 1: The successive differences of the spot exchange rate

$$X(t) = s(t+1) - s(t), \qquad t \in N$$

where s(t) denotes the spot exchange rate at time t

A contemporary method of testing foreign exchange market efficiency is to test the profitability of filter rule. Consider a filter rule

$$\varepsilon(t) = \begin{cases} -1, & \text{for a buy decision at time } t, \\ 1, & \text{for a sell decision at time } t, \end{cases}$$

FINANCIAL RELATIONS

ISSN: 1582-8859

and accumulated wealth W(t) resulting from the { $\varepsilon(t)$ } strategy :

$$W(t) = W(t-1) + \varepsilon(t) \mathbb{E}[x(t)], \qquad t \ge 2,$$
$$W(1) = x(1)$$

It is obvious that

$$\mathbb{E}\left[W(t) \mid F_{t-1}^{0}\right] = W(t-1) + \varepsilon(t) \mathbb{E}\left[x(t)\right]$$

and

$$x(t) = \varepsilon(t) \left[W(t) - W(t-1) \right], \quad t \ge 2.$$

If s(t) is a martingale, then

$$E[x(t)] = 0$$
 and $E[W(t)|F_{t-1}^0] = W(t-1), t \ge 2.$

Hence, every filter rule $\varepsilon(t)$ converts the martingale s(t) into the martingale W(t).

If W(t) is a martingale, then no filter rule $\varepsilon(t)$ will be profitable in average. If W(t) is not a martingale, then there exist filter rules which will be profitable in average.

We use the following concept of the **foreign exchange market efficiency**, introduced by Levich (1989). This concept corresponds to the weak efficiency.

Definition

The foreign exchange market is **efficient** if s(t) follows a **fair game** process. In other words, the foreign exchange market is efficient if X(t) follows a normal distribution with expectation equal to zero. The **normal distribution** of the day-to-day fluctuations in spot exchange rate provides the participants equal chance to profit in foreign exchange market. If the foreign exchange market is **efficient** (in Levich's sense), then X(t) follows no pattern that might be exploited to **produce** profits.

We develop a statistical analysis of the daily changes in the spot exchange rate X(t) as well as of the relative daily changes in the spot exchange rate:

Equation 2: The relative changes in the spot exchange rate

$$r(t) = \frac{s(t+1) - s(t)}{s(t)}$$

Let us describe the exchange rate arrangements in Albania:

Currency	: Albanian lekë,
Exchange rate structure	: Unitary,
Classification	: Free floating,
Monetary authority	: Bank of Albania,

see IMF Annual Report on Exchange Arrangement and Exchange Restrictions, 2011. The Bank of Albania calculates and announces the daily exchange rates for US dollar, euro, and other major currencies. Albanian Government transactions are conducted rarely at exchange rates.

Exchange tax	: No
Exchange subsidy	: No
Forward exchange market	: No

The data set consists of daily nominal exchange rate, quoted in term of Albanian lekë, for euro during the 1 January 2002 - 31 December 2012 in Albanian's exchange market. The data source is **Bank of**

130

FINANCIAL RELATIONS

Issue 1(32)/2013

ISSN: 1582-8859

Albania (<u>http://wwwbankofalbania.org</u>). Table 1 lists summary statistics for the X(t). We use SPSS (version 2009), see Field (2009).

Table 1: Statistical	parameters for	X(t) during the	period 01 January	2004 - 31	December 201
----------------------	----------------	-----------------	-------------------	-----------	--------------

Sample size	n = 2244
Sample mean	0.002487
95% confidence interval for mean	-0.010377;0.015350
Median	-0.000000
Variance	0.097
Standard deviation	0.3107259
Coefficient of variation	124.94
Maximum	2.2000
Minimum	-1.9400
Range	4.1400
Interquartile range	0.2400
Skewness	0.109
Kurtosis	6.878

Test the hypothesis

 H_0 : The successive differences (changes) of the daily nominal exchange rate euro / Albanian lekë over the period 01 January 2004 – 31 December 2012 follow a normal distribution.

 H_1 : The successive differences of the daily nominal exchange rate euro / Albanian lekë over the specified period follow a non normal distribution.

We apply Kolmogorov – Smirnov – Lilliefors test as well as the Shapiro – Wilk test for normality. The observed value of the KSL test is 0.110 and the observed value of the SW test is 0.905.

Decision Rule

Reject the null hypothesis H_0 at the confidence level 99.99%. In other words, at the confidence 99.99%, the Albanian foreign exchange market was inefficient and the daily nominal exchange rate process s(t) was an unfair game, during the period 1 January 2004 – 31 December 2012.

Now, we consider the relative daily changes in the nominal exchange rate, denoted by r(t), quoted in terms of Albanian lekë, for euro during the period 01 January 2004 – 31 December 2012 in Albania's exchange market. Table 2 lists summary statistics for the r(t). We use SPSS (version 2009), see Field (2009).

Table 2: Statistical parameters for r(t) during the period 1 January 2004 – 31 December 2012

Sample size	n = 2244
Sample mean	0.000020
95% confidence interval for mean	-0.000080; 0.000120
Median	-0.000000

131

FINANCIAL RELATIONS

Issue 1(32)/2013

ISSN: 1582-8859

Variance	0.000
Standard deviation	0.0024086
Coefficient of variation	120.43
Maximum	0.0161
Minimum	-0.0141
Range	0.0302
Interquartile range	0.0019
Skewness	0.158
Kurtosis	6.430

Test the hypothesis

 H_0 : The relative daily changes r(t) in the nominal exchange rate euro / Albanian lekë over the period 1 January 2004 – 31 December 2012 follow a normal distribution.

 H_1 : The relative daily changes r(t) in the nominal exchange rate euro / Albanian lekë over the specified period follow a non-normal distribution.

We use KSL as well as SW test for normality. The observed value of the KSL test is 0.111 and the observed value of the SW test is 0.906.

Decision Rule

At the confidence level 99.99%, reject the null hypothesis H_0 . That is, the Albanian foreign exchange market was inefficient regarding to the relative changes in the daily nominal exchange rate euro / Albanian lekë during the period 1 January 2004 – 31 December 2012.

5 Statistical Analysis Of The Monthly Exchange Rate Euro / Albanian Lekë

The data set consists of the successive differences of the monthly exchange rate euro / Albanian lekë during the period 1 January1994 – 31 December 2012 in Albania's exchange market. The source of the data is Bank of Albania. Table 3 lists summary statistics for the X(t). We use SPSS (version 2009), see Field (2009).

The symbol X(t) denotes the successive differences of the monthly exchange rate euro/Albanian lekë during the period 01 January 2002 – 31 December 2012 in Albania's exchange market.

Sample size	n = 131
Sample mean	0.1252
95% confidence interval for mean	-0.1024; 0.3528
Median	0.060
Variance	1.734
Standard deviation	1.317
Coefficient of variation	10.52

Table 3: Statistical parameters for successive differences of the monthly exchange rate

Issue 1(32)/2013

ISSN: 1582-8859

Maximum	5.30
Minimum	-2.78
Range	8.08
Interquartile range	1.36
Skewness	0.545
Kurtosis	1.703

Test the hypothesis:

 \mathbf{H}_{0} : X(t) follow a normal distribution.

 \mathbf{H}_1 : X(t) follow a non-normal distribution.

Using the Kolmogorov – Smirnov – Lilliefors test as well as Shapiro – Wilk test for normality, we obtain the following results: the observed value of KSL test is 0.082; the observed value of SW test is 0.966.

Decision Rule

At the 99.7% confidence level reject the null hypothesis H_0 . In other words, the Albanian foreign exchange market was inefficient regarding to the monthly euro / Albanian lekë during the period 01 January 2002 – 31 December 2012, at the 99.7% confidence level.

Now, we consider the relative monthly changes, quoted in terms of Albanian lekë, for euro during the period 01 January 2002 - 31 December 2012 in Albania's exchange market. Table 4 lists summary statistics for this random variable, denoted by $\mathbf{r}(\mathbf{t})$.

Sample size	n = 131
Sample mean	0.000977
95% confidence interval for mean	-0.000733; 0.002727
Median	0.000000
Variance	0.000
Standard deviation	0.0101242
Coefficient of variation	10.34
Maximum	0.0420
Minimum	-0.0220
Range	0.0640
Interquartile range	0.0100
Skewness	0.649
Kurtosis	1.949

Table 4: Statistical parameters for the relative monthly changes of the exchange rate

Test the hypothesis:

FINANCIAL RELATIONS

Issue 1(32)/2013

ISSN: 1582-8859

 \mathbf{H}_{0} : $\mathbf{r}(\mathbf{t})$ follow a normal distribution.

 \mathbf{H}_1 : $\mathbf{r}(\mathbf{t})$ follow a non-normal distribution.

Using the Kolmogorov – Smirnov – Lilliefors test as well as Shapiro – Wilk test for normality, we obtain the following results: the observed value of KSL test is 0.095 and the significance is 0.006. The observed value of SW test is 0.963 and the significance is 0.001.

Decision Rule

Therefore, at confidence level 99.8%, the Albanian foreign exchange market was inefficient regarding to the relative changes in the monthly exchange rate euro / Albanian lekë during the period 01 January 2002 - 31 December 2012. Equivalently, the exchange rate process was un unfair game over the specified period in Albania's exchange market.

6 Conclusion

The main objective of the study is to test the efficient foreign exchange market hypothesis in the sense of Levich for the exchange rate process euro / Albanian lekë during the time period 01 January 2002 - 31 December 2012 in Albania's exchange market. There is a contradiction between the fundamental regularities of the contemporary float exchange rate theory and our findings. Although it is hard to distinguish the nominal exchange rate process from a martingale, we showed that the martingale model for the nominal exchange rate euro / Albanian lekë is inconsistent with the data set over the specified periods.

An important problem is the severity of rejection of the efficient currency market hypothesis; because the Albania's foreign exchange market is inefficient at the 99.99% level of confidence. We strongly reject the fair game hypothesis regarding to daily nominal exchange rate as well as monthly exchange rate process euro / Albanian lekë during the specified periods in Albania's market.

A substantial evidence leads us to reject the F_t^0 – martingale model of the nominal exchange rate process euro / Albanian lekë during the specified periods. According to Theorem 2, the nominal exchange rate process euro / Albanian lekë has not also been Ft – martingale during the specified periods.

We believe (make the conjecture) that there might be two reasons why the Albania's currency market is inefficient. **First:** the existence of speculative activities and the emergence of a parallel black exchange market. **Second**: the euro / Albanian lekë nominal exchange rate is not set at the Bayes – Nash – Harsanyi equilibrium level for the game with incomplete information. Therefore, there is a difference between the equilibrium level for euro / Albanian lekë exchange rate and corresponding spot exchange rate reported by the Bank of Albania.

These findings are **noteworthy** because it has long been thought of that the movements in the euro / Albanian lekë nominal exchange rate must be represented by a **fair game**.

7 **References**

1. Aroskar, R., Sarkar, S.K., Swanson, P. E. (2004). European foreign exchange market efficiency: evidence based on crisis and non-crisis periods. *International Review of Financial Analysis*, Vol. 13, No. 3, pp. 333-347.

- Azad, A.S.M. (2009). Random walk and efficiency tests in the Asia Pacific foreign exchange markets, evidence from the post – Asian currency crisis data. Research in *International Business and Finance*, Vol. 2-3, No. 3, pp. 322 – 338.
- 3. **Diamonds, P.F, Kouretas, G.P, Zarangas, L.** (2007). Dual foreign currency markets and the role of expectations: evidence from the Pacific Basin countries. Research in *International Business and Finance*, Vol. 21, No. 2, pp. 238 259.
- 4. Fama, E. (1984). Forward and spot exchange rates. Journal of Monetary Economics, Vol. 14, No. 3, pp. 319 338.
- 5. Field, A. (2009). Discovering Statistics Using SPSS (3ed.), London: Sage.
- Frankel, J. A.(1993). Monetary and Portfolio-Balance Models of Exchange Rates. Chapter 4 in: J. A. Frankel, ed., On Exchange Rates, MIT Press: Cambridge, Mass., pp. 95-115.
- Frankel, J. A. and Rose, A. (1994). A Survey of Empirical Research on Nominal Exchange Rates, in Grossman, G.M. and Rogoff, K.H. (eds.). *Handbook of International Economics*, Amsterdam, New York and Oxford: Elsevier, North Holland.
- 8. Giannellis, N. and Papadopoulos, A. P. (2009). Testing for efficiency in selected developing foreign exchange markets: an equilibrium based approach. *Economic Modelling*, Vol. 26, No. 1, pp.155 166.
- 9. Gihkman, I. I. and Skorohod, A.V. (1974 1979). *Theory of Stochastic Processes*, 3 volumes, New York Berlin: Springer Verlag.
- Grossman, S. J. and Stiglitz, J. E. (1980). On the impossibility of informationally efficient market. *American Economic Review*, Vol. 70, No. 3, pp.393 408.
- 11. Hakkio, C. and Rush. M. (1989). Market Efficiency and Cointegration: An Application to the Sterling and Deutschemark Exchange Markets. *Journal of International Money and Finance*, Vol. 8, No. 1, pp. 75 88.
- 12. Hallwood, C. and MacDonald, R. (1994). International Money and Finance. Oxford: Blackwells, chapters 11& 12.
- 13. Hogg, R.V. (2009). Probability and Statistical Inference, 8ed., Prentice Hall.
- 14. Hsien Yi Lee and K. Sodoikhuu. (2012). Efficiency tests in foreign exchange market. International Journal of Economics and Financial Issues, Vol. 2, No. 2, pp. 216 224.
- 15. Jensen, M. (1978). Some anomalous evidence regarding market efficiency. *Journal of Financial Economics*, Vol. 6, No. 2-3, pp. 95 101.
- 16. Levich, R. M. (1989). Is the foreign exchange market efficient?. *Oxford review of Economic Policy*, Vol. 5, No. 3, pp. 40-60.
- 17. Lipster, R. M. and Shiryaev, A. N. (1996). *Martingale Theory* (in Russian), Moscow: Mir.
- 18. Lucas, Robert, E. Jr. (1975). An equilibrium model of the business cycle. J. P. E., Vol. 83, pp. 1113 1144.
- 19. MacDonald, R. (1999). Exchange Rate Economics: Theories and Evidence, 2nd Ed., London: Routledge Keegan Paul.
- 20. Madura, J. and Fox, R. (2007). International Financial Management, Thomson Learning.
- 21. Messe, R. and Rogoff, K. (1983). Empirical exchange rate models of the seventies. *Journal of International Economis*, Vol. 14, pp. 3 24.
- 22. Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motions. New York Berlin: Springer Verlag.
- 23. Shiryaev, A. N. (2002). Probability, second edition, New York: Springer.
- 24. Slezak, S. L. (2003). On the impossibility of weak form efficient markets. *Journal of Finance and Quantitative Analysis*, Vol. 38, No. 3, pp. 523–554.
- 25. Smith, G., Jefferis, K., Ryoo, H. L. (2002). African stock markets: multiple variance ratio tests of random walks. *Applied Financial Economics*, Vol. 12, No. 7, pp. 475–484.
- 26. Stein, J. L. (2012). Stochastic Optimal Control and U.S. Finance Debt Crisis, New York: Springer.
- 27. Wu, J. L. and Chen, S. L. (1998). Foreign exchange market efficiency, revisited. *Journal of International Money and Finance*, Vol. 17, No. 5, pp. 831–838.
- 28. Zivot, E. (2000). Cointegration and forward and spot exchange rate regression. *Journal of International Money and Finance*, Vol. 19, No. 6, pp. 785 812.