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Abstract. This paper solve completely the problem of determining a point that realizes the minimum 
weighted sum of the distances to an arbitrary number of points. There are treated the two cases corresponding 
to existing roads - using graph theory and where roads will built later - by analytical methods. The latter 
problem is solved, in principle, for n points and practical for three points. 

Keywords: location, optimal 

  

1 Introduction 
 

The Localization Problem is of great practical importance.  For a proper understanding of it we will, 
first, give an example. 

Consider a firm that produces a good in a quantity Q wishing its distribution to beneficiaries in the 
quantities Q1,...,Qn. Distribution activity involves the use of means of transport (say, for example, 
trucks), assumed identical as if skills and performance. Distribution to the beneficiary k will require a 

number tk=
kQ

Q
 trucks if 

kQ

Q
 is integer and tk= 









kQ

Q
+1 trucks otherwise, where [a] is the integer part 

of the number (i.e. the largest integer less than or equal to a). 

The problem lies in determining the location of company headquarters so that total transport costs 
from the company to the beneficiaries to be minimal. Considering the points Mk of location of 
beneficiaries and M – the company site, h – the fuel for 1 km with load and s – without load, the total 
cost of transport (considering that after delivering, the trucks will return to the headquarter) will be: 

E= ( )∑
=

+
n

1k
kkkk sMMthMMt . Noting sthtp kkk += , the problem lies in the determination of M for 

which E=∑
=

n

1k
kkMMp =minimal. 

The problem presented can be solved in many cases. If there is a network of roads then it returns to the 
determination of the minimum length of the road in a graph, and if there is not exist, as if in the 
problem of the arrangement of a base at a site of production, the paths being replaced by the conveyor 
and being constructed after solving the problem, it is reduced to a purely geometric. 

At the end of this introduction, note that the problem is not new, being made in the mid-century XVII 
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by Pierre de Fermat in a letter to Evangelista Torricelli challenging him to determine a point for which 
the sum of distances to the vertices of a triangle be minimal. The problem was solved geometrically 
leading to the so-called Fermat-Torricelli point. Subsequently, the problem was generalized in the 
sense above, proposing that the determination of the weighted average of the distances from the 
vertices of a triangle to be minimal. Solving the latter problem has benefited also from a purely 
geometric approach ([3]). 

In the following, we will solve the issue presented in several aspects. First, we will completely solve 
the problem using graph theory, then we will attack the Euclidean appearance that does not imply 
predetermined roads. In the latter case, we obtain a series of results for both the n points problem and 
we will give the complete solution for 3 points but by purely analytical methods. 

 

2 The solution of the problem using graph theory 

 

Let the fixed nodes Mk, k= n,1 , n≥2 and the nides of potential location Ns, s= m,1 , m≥1, conveniently 
chosen in a region surrounding the points Mk so that the problem does not impossible charge with 
potential points (of course in the minimal sense). To solve the problem we will apply Bellman-Kalaba 
algorithm ([2]). 

We will build therefore, for each node Ns, the effective distances matrix Ds,1=(dij), dij=d(Mi,Mj), i,j=

1n,1 +  where Mn+1=Ns, and d(Mi,Mj) is the length arc connecting Mi to Mj if exists, d(Mi,Mj)=∞ if 

between Mi and Mj is no arc and d(Mi,Mi)=0. Note now 1
imin  - the minimum length of roads from Mi 

to Mn+1 consisting of a single arc. Obviously, they are in the column "n +1" of the matrix Ds,1. If we 

note now at the step p: p
imin  - the minimum length of roads from Mi to Mn+1 consisting of at most p 

arcs, we have: ( )1p
kik

1n,1k

p
i mindminmin −

+=
+= . It is clear that unless there is a path between Mi and Mn+1 

with at most p arcs we get p
imin =∞. To do this, we will construct the matrix Ds,p obtained from the 

addition of each line of the matrix Ds,1 of the vector 1p
imin − . The vector p

imin  will be obtained from 
the matrix Ds,p by finding the minimum of the elements in the i-th line. The process is continued till we 

will obtain 1p
i

p
i minmin −= , i= 1n,1 + . Finally, the vector ( )p

1n
p
1

p min,...,minmin +=  will have like 

components the minimal distances from Ns to each of the points Mk, k= n,1 . After this, we will 

compute Es=∑
=

n

1k
skk NMp =∑

=

n

1k

p
kk minp . Doing this for all all potential nodes Ns, s= m,1 , is determined, 

finally, that for which is obtained s
m,1s

Emin
=

. 

 

3 The solution of the general problem 

 

Let the points Mk(xk,yk)∈R2, k= n,1 , pk>0, k= n,1 . Considering an arbitrary point M(x,y)∈R2, we 
formulate the question of determining it such the expression: 
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( )y,xE =∑
=

n

1k
kkMAp = ( ) ( )∑

=
−+−

n

1k

2
k

2
kk yyxxp       (1) 

be minimal. 

 

Suppose first that ∃i= n,1  such that: ∑
≠
=

≥
n

ik
1k

ki pp . Consider now the expression: 

( ) ( )ii y,xEy,xE − = ( ) ( ) ( ) ( )∑∑
==

−+−−−+−
n

1k

2
ki

2
kik

n

1k

2
k

2
kk yyxxpyyxxp = 

( ) ( ) ( ) ( )∑
=






 −+−−−+−

n

1k

2
ki

2
ki

2
k

2
kk yyxxyyxxp        (2) 

Because ∑
≠
=

≥
n

ik
1k

ki pp  let note: u= ∑
≠
=

−
n

ik
1k

ki pp ≥0. 

We have therefore: 

( ) ( )ii y,xEy,xE − = ( ) ( ) +−+− 2
i

2
i yyxxu

( ) ( ) ( ) ( ) ( ) ( )∑
≠
=






 −+−−−+−+−+−

n

ik
1k

2
ki

2
ki

2
k

2
k

2
i

2
ik yyxxyyxxyyxxp       (3) 

We will prove that: ( ) ( ) ( ) ( ) ( ) ( )2
ki

2
ki

2
k

2
k

2
i

2
i yyxxyyxxyyxx −+−−−+−+−+− ≥0. 

Noting: a= ixx − , b= kxx − , c= iyy − , d= kyy −  the inequality becomes: 

( ) ( )222222 dcbadbca −+−≥+++  

and after squaring, this is equivalent to ( )( ) ( )cdabdbca 2222 +−≥++ . If ab+cd≥0 then the 

statement is true, and if ab+cd≤0 then, after further squaring, it becomes: ( ) 0bcad 2 ≥−  - true. 

Therefore, ( ) ( )ii y,xEy,xE ≥  ∀(x,y)∈R2 so if ∑
≠
=

≥
n

ik
1k

ki pp  then the expression is minimum is 

reached at the point Mi(xi,yi). 

It is obvious that due to the positivity of the quantities pk, k= n,1  can not exist at least two indices 

i≠j such that ∑
≠
=

≥
n

ik
1k

ki pp , ∑
≠
=

≥
n

jk
1k

kj pp . 

We therefore consider further that: ∑
≠
=

<
n

ik
1k

ki pp , i= n,1 . 
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Compute now, first, the values: Ek= ( )kk y,xE  and minE= ( )kk
n,1k

y,xEmin
=

 and suppose in what 

follows that ( ) ( )kk y,xy,x ≠ , k= n,1 . We have now: 

( )
( ) ( )

( )
( ) ( )












−+−

−=
∂
∂

−+−

−=
∂
∂

∑

∑

=

=

n

1k 2
k

2
k

kk

n

1k 2
k

2
k

kk

yyxx

yyp

y

E
yyxx

xxp

x

E

         (4) 

( )
( ) ( )

( )( )
( ) ( )

( )
( ) ( )

















−+−

−=
∂
∂

−+−

−−−=
∂∂

∂
−+−

−=
∂
∂

∑

∑

∑

=

=

=

n

1k
3

2
k

2
k

2
kk

2

2

n

1k
3

2
k

2
k

kkk

n

1k
3

2
k

2
k

2
kk

2

2

yyxx

xxp

y

E

yyxx

yyxxp

yx

E
yyxx

yyp

x

E

        (5) 

Considering the Hessian matrix: HE=



















∂
∂

∂∂
∂

∂∂
∂

∂
∂

2

2

2

2

y

E

yx

E
yx

E

x

E

, the values of principal diagonal determinants 

are: 

∆1=
( )

( ) ( )
∑

= −+−

−n

1k
3

2
k

2
k

2
kk

yyxx

yyp >0, ∆2=
( ) ( ) ( )( )

( ) ( ) ( ) ( )
∑
<

= −+−−+−

−+−−−n

jk
1j,k

3
2

j
2

j

3
2

k
2

k

2
jkkjkjkj

jk

yyxxyyxx

yxyxxxyyyx
pp >0 

(6) 

so any stationary point will be a local minimum. Furthermore, since the function is strictly convex, 
it will have at most one global minimum point. 

The problem thus reduces to determining the stationary points of E. If none exist, the minimum 
function E will be minE, and if they are (considering, for example, a point with coordinates (γ, δ)) 
then the minimum will be ( )Emin),,(Emin δγ . 

To determine the stationary points, the solve of the characteristic system is very difficult, in 
practice requiring computer implementation, but occurring complications relative to the 
convergence of the algorithms. 

We can obtain an approximate solution as follows ([1]): 

Let the function f(x,y)=
22 )y()x(

1

β−+α−
. Its development in Mac-Laurin series give: 
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f(x,y)= ...)yx1(
1

22
+β+α+

β+α
 

Substituting in the characteristic system, we obtain with the notations di=
2
i

2
i

i

yx

p

+
, i= n,1 : 










=++−






 −

=++−






 −

∑∑∑∑∑∑

∑∑∑∑∑∑
+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=
1n

1i
ii

1n

1i
ii

1n

1i
ii

2
1n

1i
iii

1n

1i

2
ii

1n

1i
i

1n

1i
ii

1n

1i
ii

1n

1i
ii

2
1n

1i
iii

1n

1i

2
ii

1n

1i
i

ydxdxyydyyxdxyddy

xdydxyxdxyxdyxddx
     (7) 

By eliminating y between the two equations we obtain an equation of degree four in x that can 
provide approximate solutions. Calculating the value of E in these pairs (x,y) and considering the 
minimum values obtained for one of the pairs (γ,δ), we obtain finally: ( )Emin),,(Emin δγ . 

The presented method does not claim to provide the exact answer, but it is an approximation of the 
actual location. 

Returning to the original problem, we note now: z=x+iy∈C and zk=xk+iyk∈C, k= n,1 . The 
determination of stationary points thus reduces to solving the equation: 

∑
= −

−n

1k k

k
k zz

zz
p =0       (8) 

From the fact that ( ) ( )kk y,xy,x ≠ , k= n,1  follows : z≠zk, k= n,1  therefore z-zk≠0. 

Let now the trigonometric forms of complex numbers: ( )kkkk sinicoszzzz α⋅+α−=− , n,1k = . 

The equation becomes: 

 ( )∑
=

α⋅+α
n

1k
kkk sinicosp =0       (9) 

from where: 

  










=α

=α

∑

∑

=

=

0sinp

0cosp

n

1k
kk

n

1k
kk

         (10) 

Considering an arbitrary solution of the system ( )n1,...,αα ,the stationary point will be at the 

intersection of the lines that pass through zk and with slope tg αk, k= n,1 . 

Consider then, for k≠r≠s, the straight lines: 
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







−α=−α
−α=−α
−α=−α

sssss

rrrrr

kkkkk

yxtgyxtg :d

yxtgyxtg :d

yxtgyxtg :d

       (11) 

the condition of intersection of all three is: 

0

yxtg1tg

yxtg1tg

yxtg1tg

ssss

rrrr

kkkk

=
−αα
−αα
−αα

       (12) 

equivalent to: 

( )( ) ( )( ) ( )( ) 0yxtgtgtgyxtgtgtgyxtgtgtg rrrkskkksrsssrk =−αα−α+−αα−α+−αα−α    (13) 

the solution being given by the first two equations: 

( )









α−α
α−α+−αα=

α−α
−+α−α=

kr

krrkkrrk

kr

krrrkk

tgtg

tgytgyxxtgtg
y

tgtg

yyxtgxtg
x

      (14) 

Therefore, for all the solutions of the system (10) we will check the equations (13) ∀1≤k<r<s≤n, 
those which satisfy substituting in (14) for two arbitrary values k≠r and determining the pairs (x, 
y). After that we weill replace these pairs in the characteristic system: 

( )
( ) ( )

( )
( ) ( )












=
−+−

−

=
−+−

−

∑

∑

=

=

0
yyxx

yyp

0
yyxx

xxp

n

1k 2
k

2
k

kk

n

1k 2
k

2
k

kk

        (15) 

If there is a pair (γ, δ) then, finally, the minimum is ( )Emin),,(Emin δγ . If none of the pairs (x, y) 
does not check the system, the minimum is minE. 

 

4 The solution of the problem for three points 

 

Returning to the system (10), we have for 1≤s≤n, fixed: 

    













α−=α

α−=α

∑

∑

≠
=

≠
=

n

sk
1k

kkss

n

sk
1k

kkss

sinpsinp

cospcosp

       (16) 
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Adding, after squaring, we obtain successively: 

2

n

sk
1k

kk

2

n

sk
1k

kk
2
s sinpcospp

















α+
















α= ∑∑
≠
=

≠
=

      (17) 

∑∑∑

≠
≠
=

≠
≠
=

≠
=

αα+αα+=
n

ji
sj,i
1j,i

jiji

n

ji
sj,i
1j,i

jiji

n

sk
1k

2
k

2
s sinsinppcoscospppp     (18) 

 ( ) ∑∑
≠
=

≠
≠
=

−=α−α
n

sk
1k

2
k

2
s

n

ji
sj,i
1j,i

jiji ppcospp , s= n,1                  (19) 

For n=3 we have with s=3,1 : 

( )
( )
( )








−−=α−α
−−=α−α
−−=α−α

2
2

2
1

2
32121

2
3

2
1

2
23131

2
3

2
2

2
13232

pppcospp2

pppcospp2

pppcospp2

      (20) 

How ∑
≠
=

<
3

ik
1k

ki pp  it can construct a triangle with sides p1, p2 și p3. Note now β1= ( )32 p,p∠ , β2=

( )31 p,p∠ , β3= ( )21 p,p∠ . After applying the cosine theorem, the system becomes: 

( )
( )
( )








β−=α−α
β−=α−α
β−=α−α

321

231

132

coscos

coscos

coscos

       (21) 

from where: 














=
β−α−αβ+α−α

=β−α−αβ+α−α

=β−α−αβ+α−α

0
2

cos
2

cos

0
2

cos
2

cos

0
2

cos
2

cos

321321

231231

132132

    (22) 

From (22) we get: 

{ }
{ }
{ }








−∈ηε∈βη+π+πε=α−α
−∈ηε∈βη+π+πε=α−α

−∈ηε∈βη+π+πε=α−α

1,1,,k ,k4

1,1,,k ,k4

1,1,,k ,k4

333333321

222222213

111111132

Z

Z

Z

   (23) 

From ( )ππ−∈α−αα−αα−α 2,2,, 211332  follows k1=k2=k3=0 therefore: 
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{ }
{ }
{ }








−∈ηεβη+πε=α−α
−∈ηεβη+πε=α−α

−∈ηεβη+πε=α−α

1,1, ,

1,1, ,

1,1, ,

3333321

2222213

1111132

       (24) 

Adding the three equations: ( )πε+ε+ε−=βη+βη+βη 321332211 . How π=β+β+β 321  follows 

213 β−β−π=β  from where: ( ) ( ) ( ) π=πη+ε+ε+ε−=βη−η+βη−η p23321232131 , p∈Z. 

But ( ) ( ) π<β+β≤βη−η+βη−η≤β−β−<π− 222222 2123213121  implies -1<p<1 therefore p=0. 

We obtain: ( ) ( ) 0232131 =βη−η+βη−η . If η3=-1⇒ ( ) ( ) 011 2211 =β+η+β+η ⇒η1=η2=-1. If η3=1⇒

( ) ( ) 011 2211 =β−η+β−η ⇒η1=η2=1. Let therefore: η1=η2=η3=η { }1,1−∈ . We have: 

{ }
{ }
{ }








−∈εηβ+πε=α−α
−∈εηβ+πε=α−α
−∈εηβ+πε=α−α

1,1 ,

1,1 ,

1,1 ,

33321

22213

11132

, 0321 =η+ε+ε+ε      (25) 

Finally, with the notations: ε=ε3, µ=ε2, we obtain: 

( )







π∈α
ηβ+µπ+α=α
ηβ−επ−α=α

2,01

213

312

, ε,µ,η∈{-1,1}, ε+µ+η∈{-1,1}    (26) 

It can be seen that the triplet of values (α1,α2,α3) verify the system (10) for n=3. 

Considering as in the above, the straight lines: 









−α=−α
−α=−α

−α=−α

33333

22222

11111

yxtgyxtg :d

yxtgyxtg :d

yxtgyxtg :d

        (27) 

the condition (13) becomes after (26) and a series of laborious calculations: 

( ) ( ) ( )
( ) ( ) ( ) 2122332313

1223312332
1 tgxxyytgtgtgxx

yytgtgyyxxtgtg
tg

β−+−ββη+β−
−β+β−−−ββη−=α      (28) 

the system solution being: 

( ) ( )[ ] ( )
( )

( )[ ] ( ) ( )[ ]
( )












α+β
β+α−η−−β−αβ+−η=

α+β
−η−β+α−η−−β−αβ=

1
2

3

131122131
2

2321

1
2

3

21231212131
2

31

tg1tg

ytgtgyyxxtgtgytgxx
y

tg1tg

yyxtgtgxxyytgtgtgx
x

  (29) 

Replacing the values of (29) for both η=-1 and η=1 in the system (15) for n=3, if a pair (x,y) checks it, 
this is the optimal solution (from the strict convexity only one of them may verify). If none of the 
solutions does not check the system, the minimum sought is minE. 
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5 Conclusions 

 

The presented method provides, unlike the pure geometrical method, the advantage of actually 
determining the optimal point so when there is a graph, and if subsequent construction of paths 
through points. 
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