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Abstract. This paper solve completely the problem of deteimy a point that realizes the minimum
weighted sum of the distances to an arbitrary nurobpoints. There are treated the two cases quoreting
to existing roads - using graph theory and whesasowill built later - by analytical methods. Thagtér
problem is solved, in principle, for n points andgtical for three points.
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1 I ntroduction

The Localization Problem is of great practical imtpoce. For a proper understanding of it we wiI
first, give an example.

Consider a firm that produces a good in a quaitwishing its distribution to beneficiaries in the
quantities Q...,Q. Distribution activity involves the use of meanst@nsport (say, for example,
trucks), assumed identical as if skills and perfamoe. Distribution to the beneficiary k will requia

Q Q

trucks if — is integer andct {2} +1 trucks otherwise, where [a] is the integer part
k k k

of the number (i.e. the largest integer less thraagaal to a).

number =

The problem lies in determining the location of gamy headquarters so that total transport costs
from the company to the beneficiaries to be minin@bnsidering the points Mof location of
beneficiaries and M — the company site, h — théflwel km with load and s — without load, the tota
cost of transport (considering that after delivgrithe trucks will return to the headquarter) va#i:

n
E:Z(tkhMMk +tksMMk). Noting p, =th+ ts, the problem lies in the determination of M for
k=1
n
which E=) p,MM, =minimal.
k=1

The problem presented can be solved in many cHdhsre is a network of roads then it returnshe t
determination of the minimum length of the roadairgraph, and if there is not exist, as if in the
problem of the arrangement of a base at a siteaafugtion, the paths being replaced by the conveyor
and being constructed after solving the probleiis, ieduced to a purely geometric.

At the end of this introduction, note that the peob is not new, being made in the mid-century XVII
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by Pierre de Fermat in a letter to Evangelistai€elir challenging him to determine a point for whi

the sum of distances to the vertices of a triabhglaninimal. The problem was solved geometrically
leading to the so-called Fermat-Torricelli poinubSequently, the problem was generalized in the
sense above, proposing that the determination efwibighted average of the distances from the
vertices of a triangle to be minimal. Solving tletér problem has benefited also from a purely
geometric approach ([3]).

In the following, we will solve the issue presentedeveral aspects. First, we will completely solv
the problem using graph theory, then we will attdo& Euclidean appearance that does not imply
predetermined roads. In the latter case, we olatai@ries of results for both the n points probleh a
we will give the complete solution for 3 points tiyt purely analytical methods.

2  Thesolution of the problem using graph theory

Let the fixed nodes M kzﬁ, n=2 and the nides of potential location, B=1m, m>1, conveniently
chosen in a region surrounding the pointg 94 that the problem does not impossible chargk wit
potential points (of course in the minimal sen3®)solve the problem we will apply Bellman-Kalaba
algorithm ([2]).

We will build therefore, for each node,Nhe effective distances matrix &(d;), dj=d(M;,M), i,j=
1Ln+1 where M.:=Ns, and d(M,M;) is the length arc connecting; ¥ M, if exists, d(M,M;)=c if
between Mand M is no arc and d(iyM;)=0. Note nowmini1 - the minimum length of roads from;M
to M,.; consisting of a single arc. Obviously, they arehi@ column "n +1" of the matrix 2 If we
note now at the step pnin’ - the minimum length of roads from; M,.; consisting of at most p

arcs, we havemin? = miin(dik + mink‘l). It is clear that unless there is a path betweeard M.,
k=1,n+1

with at most p arcs we gehin? =co. To do this, we will construct the matrix Pobtained from the
addition of each line of the matrixsPof the vectormin®™. The vectormin® will be obtained from
the matrix Q , by finding the minimum of the elements in the #itre. The process is continued till we
will obtain min® =minP*, i=1n+1. Finally, the vectormin”=(min‘1°,...,minﬁ+1) will have like
components the minimal distances from th each of the points ;l\/lkzﬁ. After this, we will

n n _
compute B> p,M N, => p, minf . Doing this for all all potential nodes,Ns=1,m, is determined,
k=1 k=1

finally, that for which is obtaineehin E, .

s1im
3  Thesolution of the general problem

Let the points M(Xq,yi) OR?, k=1n, p0, k=1n. Considering an arbitrary point M(x[yR?, we
formulate the question of determining it such tkpression:
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E(x, )ZpkMAk Zpd( —x P +{y -y, ) (1)

be minimal.

Suppose first thafi=1,n such that:p, = ipk . Consider now the expression:

Elxy)-E Zlill \/ +{y =) kzillpk\/(xi P+ -v) =
ki:lpkW(X— \/x X, yk)zj ®)

n n
Becausep; = ) p, let note: usp; - > p, 0.

k#i k#i

We have therefore:

E(x,y)- u\/ y )2+

ipkw(x X 2+ (y -y, ) +(x- (y Vi) \/(Xi—xk) +(yi—yk)2) (3)

155

We will prove that/(x =, +(y =y, )’ +/(x=x, ) +(y =y, )* =(x, =x, ) +(y; =y, 20.

Noting: a=x - X;, b=x-Xx,, c=y -y, , d=y -y, the inequality becomes:

Va2 +c? +4b? +d? 2 \/(a-b) +(c—d)?

and after squaring, this is equivalent &{a2+cz)(b2+d2)2—(ab+cd). If ab+cd0 then the
statement is true, and if abfdlthen, after further squaring, it becoméa;j—bc)2 =0 - true.

n
Therefore, E(x,y)z E(xi,yi) O(x,y)OR? so if p; 2> p, then the expression is minimum is

k=1
k#i

reached at the point f;,y:).
It is obvious that due to the positivity of the qtites R, k=1n can not exist at least two indices

IZ] such thatp; > Zn:pk = Zn:pk .
5 B

We therefore consider further that: < Zn: Py, i=1n.
k=1
k#i
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Compute now, first, the values:k=EE(xk,yk) and minEzrknm E(x,.y,) and suppose in what
=1n

follows that (x,y)# (x,.y, ), k=1n. We have now:

ﬁ_znl pk(x X)
OE _ i (
0y id(x - Xk)2+(y Vi)
’E_Q Py -y, )’
ox? kz—: 2 3
2l =x, P+ -y, f
aE :_n pk( )(y yk) (5)
3
P k= x Py - f
azE $ pk(x )
2 3
H\/X Xk)2+ y- Yk)
EOE
L : : ox>  oxay . : :
Considering the Hessian matrixz E 0% , the values of principal diagonal determinants
oxay  dy?
are
A=Y A 50,07 3 pp, (X(yj_yk)_y(xj_;(k)Jr(ijk_xkyj»z 50
k:l\/(x_xk)z"'(Y‘Yk)2 K \/(X_Xk)2+(y_yk)2 \/(X_Xj)2+(y_yj)2
(6)

S0 any stationary point will be a local minimum rthermore, since the function is strictly convex,
it will have at most one global minimum point.

The problem thus reduces to determining the statijopoints of E. If none exist, the minimum
function E will be minE, and if they are (considheyj for example, a point with coordinatgs&))
then the minimum will bemin(E(y,é),min E).

To determine the stationary points, the solve @& dtharacteristic system is very difficult, in
practice requiring computer implementation, but wdag complications relative to the
convergence of the algorithms.

We can obtain an approximate solution as followd) ([

Let the function f(x, y)-\/ 1
(x-a)*+(y-p)*

. Its development in Mac-Laurin series give:
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@+ax +By) +...

; _ 1
(X,Y)—W

Substituting in the characteristic system, we obtdth the notations;d b i=1,n

W, i=1n:

n+l n+l n+l n+l n+l n+l
X(Zdi ->.a Xuzj —y2dxy; + XZZdi X; + XyZdi yi =20
i=1 i=1 i=1 01 7)
n+l n+l 5 n+l n+l n+l
y(Zdi -2y j—XZd i ty Zd Yi +xyZd =>4y
i=1 i=1 i=1 i=1

By eliminating y between the two equations we aobtan equation of degree four in x that can
provide approximate solutions. Calculating the eabdl E in these pairs (x,y) and considering the
minimum values obtained for one of the pay8)( we obtain finaIIy:min(E(y,é),min E).

The presented method does not claim to providexiaet answer, but it is an approximation of the
actual location.

Returning to the original problem, we note now: #iyXIC and z=x+iy[C, k=1n. The
determination of stationary points thus reducesoteing the equation:

n

2P 272 =0 8)
2=z 157

From the fact tha(x,y):t (xk,yk), k=1n follows : zz, k=1n therefore z-2-0.

Let now the trigonometric forms of complex numbers:z,, = |z -z,|(cosa, +i ina, ), k =1n.

The equation becomes:

n

> py (cosa, +iBina, )=0 9)
k=1
from where:
Z p, cosa, =0
Kt (10)

Zpk sina, =0
k=1

Considering an arbitrary solution of the systeﬁal ..... O(n),the stationary point will be at the
intersection of the lines that pass throughrad with slope ta, k=1n.

Consider then, for&#s, the straight lines:
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d, :tga, X —y =tga, X, — Y,
d, :tga,x -y =tga, X, -y, (12)
ds :tgasx -y= tgasxs ~Ys
the condition of intersection of all three is:
tga, 1 tgo,Xx, -y
tga, 1 tga,x,-y,|=0 (12)
tgas 1 th( Ks T Ys

equivalent to:
(tgar, - tgar, )(tgar x - ys) + (tgar, - tga )(tga x, -y, )+ (tga, — tga, Jtga,x, —y,)=0 (13)

the solution being given by the first two equations

X = tgakxk _tgarxr +yr ~ Yk
tgGr —tgGk
y= tga, tgar, (x, =X, ) + ytga, — v tgar,
tgar _tgak

(14)

Therefore, for all the solutions of the system (@) will check the equations (18)l<k<r<s<n,
those which satisfy substituting in (14) for twditmary values ¥r and determining the pairs (X,
y). After that we weill replace these pairs in tiaracteristic system:

C pk(x_xk) =0
k:L\/(X - Xk)2 + (y ~ Yk )2 (15)
3 pk(y_yk) =0

G (x-x P+ (v -y, f

If there is a pairy( 0) then, finally, the minimum isnin(E(y,é),min E). If none of the pairs (X, y)
does not check the system, the minimum is minE.

4 The solution of the problem for three points

Returning to the system (10), we have fesh, fixed:

n
Ps COSO g = =3 Py, COSNy

k=1

|:1¢S (16)
psSinag ==> p, sina,

k=1
k#s
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Adding, after squaring, we obtain successively:

2 2
n n
pZ = Zpk cosay |+ Z,pk sina, (17)
o pos
n n n
p§=2pﬁ+ngjcosuicosaj+ngjsin01isin0(j (18)
2 g B
1] 1]
n 2 n 2 -
> pp;codo; —a)=pZ - Y pf, s=1n (19)
s pos

i£]
For n=3 we have with sE3:

2p,p; coda, —a3) = pf - p3 —p3
2pyp; coda, — o) = p3 —p? - p3 (20)
2p,p, 005(0(1 - Gz) = p§ - pf - pg

3
How p, <) p, it can construct a triangle with sides, @, si ps. Note nOWBl=D(p2,D3)1 B=
k=1
k#i 159

O(p,,ps), Bs=0(p,.p,). After applying the cosine theorem, the systenohess:

coda, —ay)=-cosB,
coda, —a,)=—cospB, (21)
cos(O(1 —0(2) = —-cosf3,

from where:

o, =0y + o, =0y
CcOoS 2 3 BICOS 2 3 Bl:o

2 2
cos L _O(23 B2 ot _0(23 B2 _g (22)
cost1 Y2 +B5 cost1 Y2 Bs -0

2 2

From (22) we get:

a,—a;=gn+d4k,n+n,P, k, 0Z,&,n; D{_ 11}
a, =0 =&,m+4k,m+n,03,,k, 0Z,€,,n, D{_ll} (23)
ay =0, =g+ 4K, 1T+ N B, Ky 0Z,€5,N;5 D{_ll}

Froma, —a;,0;—0,,0, —a, (— 2r[,2n) follows k;=k,=ks=0 therefore:
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a, — 0y =&+, €0, 0{-11}
O =0y =€,T+N,B,,€,,1, O{-11} (24)
Oy~ 0, = €5T0+ NPy, 85,15 O{- 11
Adding the three equationsyB, +n,B, +NBs = (g, +&, +&;). How B, +B, +B, =7 follows
Bs = 1~B, - B, from where:(n, ~n3)B, +(n, —N3)B, = ~(e, +&, + €5 +n3)m= 2pm, pOZ.
But — 2rt<-2B, - 2B, < (n, = N4 B, + (N, =3 )B, < 2B, + 2B, < 21 implies -kp<1 therefore p=0.

We obtain: (n; =n)B, + (N, ~ns)B, = 0. If ne=-1=>(n, +1)B, +(n, +1B, = 0=n:=n,=-1. If n=1=
(n, 1B, +(n, - 1)B, = 0=n,=n,=1. Let thereforen;=n,=ns=n0{- 11} . We have:

O, =03 =&T+NPBy, & D{_ 11}
o, -0, =&,m+npB,,&, 0{-11}, &, +&, +e,+n=0 (25)
O, —0, =&+ nNP;, & D{— ],]}
Finally, with the notations=¢3, u=¢,, we obtain:
o, =0, —€em-nf;,
0y = oy +pr+nB, , e uNO{-1,1}, e+p+n{-1,1} (26)
a, 0 (0,21'[)
It can be seen that the triplet of valuag,,a3) verify the system (10) for n=3.
Considering as in the above, the straight lines:
d, :tga;X —y =tga;X; —
d, :tga,Xx — y =tga X, - Y, (27)
d; :tgagX —y =1tgagX; Y,
the condition (13) becomes after (26) and a sefi¢eborious calculations:
= N, tgBs (X5 = X,) = (y1 = V3 )tBs + taB, (v, — 1) (28)
(Xs - Xl)thB + ntgﬁztgﬁs(ys - YZ) + (Xz - Xl)thZ

the system solution being:

tga, =

X = X, tgBstg’a,; — [thg(Y1 ~Y,)- I'](Xl - Xz)]t90(1 +1gB:x, Ny, —Y»)
ths(l"' tgzal) (29)
y= [ﬂ(Xl ~X,)+ tg[33y2]tgzo(l - [tgﬁ,s(xl - Xz) -n(y, - yl)]tgal + 984y,
ths(\l"' t920(1)
Replacing the values of (29) for baik-1 andn=1 in the system (15) for n=3, if a pair (X,y) ckedt,

this is the optimal solution (from the strict cowitg only one of them may verify). If none of the

solutions does not check the system, the minimwnglstois minE.
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5 Conclusions

The presented method provides, unlike the pure gaaral method, the advantage of actually
determining the optimal point so when there is apbr and if subsequent construction of paths
through points.
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