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Abstract. Increased financial regulation with tougher cap#indards and additional capital buffers has
made understanding volatility in financial marketsore imperative. This study investigates various
forecasting techniques in their ability to forects South African Volatility Index (SAVI). In pacular, a
time-delay neural network’s forecasting abilityc@mpared to more traditional methods. A comparisicthe
residual errors of all the forecasting tools useggests that the time-delay neural network anchisterical
average model have superior forecasting abilityr avaditional forecasting models. From a practical
perspective, this suggests that the historicalagemodel is the best forecasting tool used indtoidy, as it
is less computationally expensive to implement careg to the neural network. Furthermore, the tesul
suggest that the SAVI is extremely difficult to éoast, with the volatility index being purely a gauof

investor sentiment in the market, rather than beg®n as a potential investment opportunity.
51
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1 Introduction

Volatility prediction has become a crucial tasktive appraisal of assets and risk management. In
addition, most derivative securities are affectgd/dlatility, with most risk management models used
by financial institutions and regulators relying time-varying volatility as a key input (Brownlees,
Engle & Kelly, 2012). Granger and Poon (2003, B)4argue that when volatility is interpreted as
‘uncertainty’ in the market, it becomes a cruciglut to investment decisions and portfolio formatio
with investors and portfolio managers both haviagipular levels of risk which they can tolerate.

Furthermore, the interconnected nature of finantiatkets, together with its complexity, has created
the need for analytical tools that allow for a Emgumber of market variables to be used to explore
interrelationships in financial markets; in partary Artificial Neural Networks. A neural networlag

the ability to learn nonlinear mappings betweeruiapand outputs. It thus may have the ability to
predict stock market volatility. This study analgsed examines the use of neural networks as well a
traditional and non-linear methods as a forecadting Specifically, a comparison is done between
traditional forecasting methods and a Time-DelayfdeNetwork (TDNN) with regard to the various
models’ ability to forecast volatility.

This study makes use of the SAVI as a means to ieeavolatility in the South African stock market,
and is explored in detail later. The SAVI was chogeexplore the impact of forecasting methods on
an emerging market volatility index. We examine thdl hypothesis that the SAVI cannot be
forecasted using neural networks against its aterm; along with examining whether a neural
network is not a better modelling technique thadlitronal forecasting techniques. These traditional
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techniques are selected from the literature andh eatbsequent method can be seen as an
"improvement” over its predecessor. For example, amasider basic moving average methods,

improved by conditional volatility models, improvdy non-linear models. Further, the choice of

particular neural networks to use was governedhloge that are more apt to time series data. We
compare our models using a traditional RMSE coteliany alternate criterion may well be used) and

make the assumption that the changes to the SA&/Inat random. This assumption allows us to

create a foundation upon which we can model the ISAV

The article proceeds with a review of forecastireghnds and a background of the SAVI, followed by
a description of the models and data used, enditly an analysis of the results and concluding
remarks.

2 Literature review

Forecasting volatility using traditional methods

Investors do not always have access to sophidticBieecasting tools like neural networks. In
addition, neural networks and its application toafice have not always been in the forefront of
financial literature. Although traditional forecesgy methods may be seen as a naive approach to
forecasting volatility, the plethora of studiesrsuinding the topic advocates that it is still aeaaof
interest to professionals throughout the world. €kisting literature suggests that no one forecgsti
tool has successfully been deemed as being superi@nother consistently enough to draw a
conclusion about the best forecasting method. Agdéfbate surrounding market efficiency continues
to expand and accept new innovative possibilitidth which to explore the topic, so shall the debate
around forecasting and which tool has the bestcémting ability, as these concepts are in fact all
interrelated.

This study does not explore any linear regressiameis and their forecasting ability, but does
consider a historical average model as one ofithpler forecasting tools. This method of evaluating
volatility can be seen as a naive approach dwgntplicity, and the assumption that future volgtils

in fact the historical average. Evidence suggdststhe conditional expectation of volatility isng-
varying (Bollerslev, Chou & Kroner, 1992). It isrfthese reasons that the historical average model
and the literature which surrounds it is not exptbextensively; its volatility estimate is statedretly

as a basis with which to compare the other, movarazkd methods.

An additional linear forecasting technique is tlbatexponential smoothing, whereby more recent
observations are given more importance and thusidered better forecasters. There are many types
of exponential smoothing techniques, with this gtathking use of Simple Exponential Smoothing
(SES), which is explored later. After a statistitelsis was provided for exponential smoothing
methods, Gardner (1985) later achieved satisfaatesylts by introducing exponential smoothing
methods into supply chain management, in ordemrgdipt demand. The author's empirical analysis
suggests superior forecastability.

Another forecasting tool which is explored in tligidy is the Exponentially Weighted Moving
Average (EWMA) estimator, which has proven to becsssful at forecasting the volatility of returns
over short horizons. Stuart (1986) posits that MV WMA was born from the early work of
econometricians, and although its use has beemymesam, it still remains a neglected tool. There is
also evidence of this method outperforming morehstjgated forecasting methods such as GARCH
models (see Boudoukh, Richardson and Whitelaw, 199xtther evidence of EWMA models being
successful predictors arise from Tse (1991) andahseTung (1992), who claim that EWMA models
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provide more accurate forecasts than GARCH modglsugéing data sets from Japanese and
Singaporean markets respectively. Ladokhin (20@@hpared various forecasting tools, testing the
accuracy of the models by attempting to forecast3&P 500 stock index. The author found that the
EWMA estimator produced better forecasting abilityan the historical average, exponential
smoothing estimate, all ARMA, ARCH and GARCH modebamined, as well as the two neural
networks which were also compared. The author ageeliral network that was a generalisation of the
networks prescribed in the literature. It is polsithat different neural networks have different
forecasting abilities, and the decision of whicluna¢ network to use should be made with careful
analysis of the problem at hand. This study adepsimilar methodology of comparison and is
discussed later.

The complex nature of markets, as well as the d&goof markets exhibiting non-linear movements
(Abhyankar, Copeland and Wong, 1997) may be reaasng why linear and historical models do not
distinctively outperform random walk models in theredictive abilities.  Nelson (1992) found
evidence of the ARCH model being able to perfornil fge volatility forecasting when using high
frequency data, even when the model is misspecifidddokhin (2009) found the ARCH model to
have poor predictive ability, with the ARCH modellpdisplaying better performance than the simple
historical average, which itself is not known tovéahe best predictive ability due to its naive
simplicity. Samouilhan and Shannon (2008) investighe comparative ability of ARCH, implied
volatility forecasts and other historical averagedels. The authors find that simple ARCH models
provide a good in-sample forecast, but are howéwerworst predictors of volatility, together with
Historical Volatility Models (HIS) models. The auwiits argue that more complex ARCH and GARCH
models are the best models to use to forecastlitglat South Africa.

A more parsimonious model is the generalised ARGARCH) model (Taylor, 1987), where
additional dependencies are permitted on lagseotdmditional variance. Akigray (1989) was one @

the earliest authors to examine the predictive poafeGARCH models. The author found that

GARCH models consistently outperform historical rage and EWMA models in all sub-periods and
evaluation measures. Sabbatini and Linton (1998)ige evidence of the simple GARCH (1,1) model

providing a good parameterisation for the dailyines of the Swiss market index.

Forecasting volatility using artificial intelligence

Forecasting using neural networks is not new amdetkisting body of knowledge contains a vast
amount of literature which compares neural netwotds traditional historical techniques for
forecasting. Zhang (2001) claims that neural netw@re successful in linear time-series modelling
and forecasting. This seems to suggest thatcatifintelligence techniques such as neural netsork
can compete with linear models of forecasting. Awmpartant point to note is that unlike the
forecasting methods discussed earlier, neural mktvare data-driven, self-adaptive methods,
whereby there are only a feav priori assumptions about the models used (Hu, Patuwo &@h
1998). In addition, Hu, Patuwo and Zhang (1998&)nelthat neural networks are highly suited for
problems whereby the solutions require knowledge ith not easily specified, but where there are
enough data and observations. This implies thataheetworks learn from examples, and detect
functional relationships in the data which areidifft to describe (Hu, Patuwo and Zhang, 1998).
Werbos (1974) first described the process of tngnartificial neural networks through the
backpropagation of errors and concluded that neumetivorks trained with backpropagation
outperform traditional statistical forecasting mmth, including regression and Box-Jenkins
approaches.

Literature suggests that traditional methods o&dasting have variations in the way models are
utilised or combined. This is also true for the mibess collection of artificial intelligence techies.

FINANCE, BANKING &» ACCOUNTING



FuroEconomica
Issue 2(34)/2015 ISSN: 1582-8859

Donaldson and Kamstra (1997) make use of a Neuealvdik-GARCH model in an attempt to
capture volatility effects of stock returns. Thetrems find that both in-sample and out-of-sample
comparisons suggest that their neural network medetures certain volatility effects which are
overlooked by GARCH models. Dockner, Dorffner archienkopf (2000) conclude that volatility
predictions from neural networks are superior toR& models. On the other hand, Gahan, Mantri
and Nayak (2010) and Anwar and Mikami (2011) artipnzg# ARCH (GARCH) models are superior to
a neural network model.

Bollerslev et al., (1992) argue that, with but & fexceptions, the majority of research into voigtil
utilises data from the United States (US), the &thiKingdom and Japanese markets. This study thus
examines data from South Africa, in particular 8odannesburg Stock Exchange (JSE). The JSE is
open and liquid, but at the same time displaysattaristics which are different to those of develtbp
markets’ bourses.

The South African Volatility Index — An Introductio n

The SAVI can be seen as a forecast of equity marsletin South Africa and was first introduced in
1997. The SAVI very swiftly became the benchmarkn@asuring market sentiment, and is now also
referred to as a “fear gauge” — this is primarilyedto the negative correlation which is present
between the underlying index level and it's volibtjlas depicted in Figure 1 below. As can be seen
from Figure 1 below, the SAVI shows visual sighghifstering and potential signs of mean reversion.
Given the objective of this paper - to determine llest forecasting method for the SAVI - these two
statistical considerations provide a possible finde to the objective. Stein (1989) find that aptio
traders in the US overreact to implied volatilitgasures when new information arrives for short term
option contracts. This overreaction would resulsome form of clustering. The author shows that
while these overreactions are statistically sigaifit, they have a small economic impact. We raly o
this finding and therefore make this assumptiooun paper. Naturally, an avenue for future research
would be to test this assumption on the SAVI.

Further, the author postulates that while meanrséme is typically present in volatility, this sistical
anomaly is of concern when considering the implietditility of long-dated options. In this scenario,
the economic significance of overreaction wouldhiech more apparent. In the context of the SAVI,
the option maturities used are typically short-témmature. Therefore, the anomaly of mean revarsio
(and its economic significance, if mispriced), isronor importance.
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Figure 1 FTSE/JSE Top40 index level and its volatility
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The JSE updated the SAVI in order to reflect a me@thod of capturing expected volatility. The
reason for the revision of the SAVI calculation viaslign the SAVI with the theoretical framework
and technique that traders use when trading optibne SAVI was previously calculated daily, by
means of polling in the market. The polled at-theney volatilities were used to determine the three-
month at-the-money volatility, with the average lmlied as the SAVI (Joseph, Koetze & Oosthuizen,
2009).

The SAVI is now not a polled volatility measuremehhis reduces the probability that the calculated
volatility can be manipulated by polled volatiliontributors. The SAVI is now calculated as the
weighted average prices of calls and puts acraligesse array of strike prices that expire withie t
following three months. As stated by the Josephetk® and Oosthuizen (2009), the SAVI is
calculated by means of the following mathematicpiagion:

SAVI = \/z?:f Wi Py (KD + 282 wic Co(K) )

whereF is the current forward of the FTSE/JSE Top40 ink#el, which is obtained using the risk
free interest rate and dividend yie®(K;) are the liquid put options angj(K;) are the liquid call
options, with each option having a strike priGe The put and call options are priced using theéeda
market volatility skew which expires in three mdatktime. Joseph, Koetze and Oosthuizen (2009)
claim that calls and puts may be used to find tieepf volatility, given that option prices areelitly
proportional to their input volatility.

In addition, volatility skew is incorporated in tlalculation, which reflects the market's expectati 5
of a market crash (Joseph, Koetze & Oosthuizen9R0the volatility skew is a function relating the
implied volatility of an option to its strike price

Araujo and Mare (2006) state that stock marketigpants view volatility skew as a means by which
market makers may extract more profitability froption trades. The authors further note that a bid-
offer spread is incorporated in implied volatiliyotes, which reflects potential profit to the nerk
maker, while the skew reflects potential risk, atuld not be interpreted as a risk margin. The
volatility skew measure is important in the Southidan market whereby some options are illiquid,
with prices not always being transparent (AraujMére, 2006).

3 Research methodology

Data

Data is collected from McGregor BFA. The data cetesl of the daily price levels of the South
African Volatility Index (SAVI) over the period Felary 2007 to December 2013, resulting in 1713
price levels and 1712 input logarithmic returnd. isl important to note that the SAVI was only
introduced by the JSE in 2007, to measure the rtiarkepectation of the three-month implied market
volatility, with the SAVI then being updated in ZDWvith an improved method of calculation. Aboura
and Wagner (2014) show that extreme asymmetridiliglacan have a significant role in explaining
periods of market downturns. Our sample period @rassen both out of necessity (due to the SAVI
calculation being restated); and to also corresgoradfull business cycle. It is quite possiblet ttie
results could be mired with the presence of vatatieedback (as per Aboura and Wagner, 2014), in
that large market downturns are a consequence latility feedback and rational asset pricing
behaviour. We require a larger sample period tty fulvestigate this phenomenon; and that relies on
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re-engineering the SAVI calculation before it wastated in 2010. Furthermore, the SAVI is
published at the close of business each day b8dkith African Futures Exchange (SAFEX), and thus
leaves the published opening and closing priceldawechanged throughout the day, together with the
high and low price levels. This makes relying spleh the historical daily returns of the SAVI for
each forecasting methodology practical and effigiém particular, when implementing the neural
network. Lastly, the logarithmic returns are cadtet from the daily prices. Logarithmic returnsetak
into consideration that stock prices cannot be tleas zero, thus creating a lower bound of zerd, an
creating the assumption of lognormal returns.

Historical Volatility Models
a) Historical Average Model (HAM)

The HAM makes forecasts based on the entire hisibmolatility as opposed to the Random Walk
model which uses today’s volatility as the bestefaist for tomorrow’s volatility. The HAM is
calculated by using the following formula:

~ 1
Ot+1 = = ;25:1 0j (2)
whereg, 1S the next period’s standard deviation, whichgsdias a measure of volatility.

b) Simple Exponential Smoothing (SES)

ES can be used to forecast volatility based orostl values. The ES method is described by the
following formula:

ot =1 —a)oy_1 +ad_1+ {; (3)
6t41 = (1 —a)o, + ady 4)

wherea is a smoothing parameter which is estimated by msing the in-sample forecast errofs,
as proposed by Poon (2008).

This method is similar to the HAM but more weightassigned to the recent past and less weight to
the more distant values. As discussed previous{gomential smoothing has been found to be an

effective forecasting method by many researchemwever, ES is a segment of linear forecasting

methods and thus is not able to capture nonlirestufes of financial time-series.

¢) Exponentially Weighted Moving Average (EWMA)

The formula for determining the moving average vaiponential weights is presented by Ladokhin
(2009) as follows:

O-tz+1h = Zn:Wj (R—jﬂ - ﬁ[ )2 whereW, :(1—/])/11'—1 -
j=1

The EWMA is seen as a more sophisticated methochaoed to the SMA, in that it assigns higher
weightings to more recent observations (whereas $MA assigns equal weightings to all
observations, irrespective of how much time hased)s Shumway and Stoffer (2011) argue that the
ARIMA (0,1,1) model leads to an EWMA model. Furtimere, the authors define a smoothing
parameterd, which is bound between zero and one, wherebyri@lar the value of the smoothing
parameter, the smoother the forecasts. The authairs that forecasting with EWMA is popular due
to its ease of use, and the need to only retaipréé@ous forecast value and the current obsenvatio
order to forecast the next time period. On thesotand, the authors refer to the model as being
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“abused”, as the value éf which is used to define the smoothing paraméearbitrarily picked by
the forecaster.

This study follows Shumway and Stoffer (2011) iderto forecast using EWMA, by adapting the ES
model using the Holt-Winters method, setting theapeeter fora equal tol-4, and the parametefs
and® equal to zero. The parametéris described later, and parametgend @ stem from the Holt-
Winters three parameter model. The Holt-Wintershmétallows for a series to be modelled with a
linear time trend, with additional seasonal vaoatilt should be noted that setting parametaqual

to zero is not equivalent to simply using a twoapaeter Holt-Winters model, as settidgto zero
only restricts any seasonal factors from changimgugh time so that nonzero seasonal factors still
remain in the forecasts.

Autoregressive and Heteroskedastic Models
a) Autoregressive Moving Average (ARMA)

The ARMA model combines both the simple moving ager model and an AR model. The ARMA
model is obtained from the simple regression metbbdobrecasting, which depicts volatility as a
function of its past values and an error term,digws past volatility errors to also be includethe
following formula shows the two components of tHeRMA model:

Orp1 = Zf:l AiOty1-i + Z?:l YiCtr1-i (6)

where A; andy; are parameters of the model, aRd{, ... {; are the error terms of the model=
6 + ;. The parameters, length of the moving averagas well as the autoregressive tegmare

found by minimising the error on the training deadokhin, 2009)
b) Autoregressive Conditional Heteroskedasticity (RCH)

The ARCH model used for forecasting time-seriea i®on-linear model which does not assume that
the variance is constant. Volatility clusteringalatility pooling is a motivating factor for ugn
ARCH models to forecast volatility. The ARCH modsldescribed by the following formulae as
presented by Ladokhin (2009):

T =p+ & (7)
& = heze (8)
hy =+ Z?zl aj et 9)

wherer; is the return at timg u is the mean returrz, are the residualg) anda; are parameters of

the model,h; is the conditional variance with ~ iid N(0,1) normally distributed random variable.
The process; is scaled byh; which follows an autoregressive process. In oitdeensure that
varianceh, is positive,w>0 anda;>0 (Ladhokhin, 2009).

c) Generalised Autoregressive Conditional Heteroskkasticity (GARCH)

The GARCH model was first developed by Bollersl&986). The GARCH model differs from the
ARCH model by the form of,, which is described as:

ht =w+ Z?zl ﬁiht—i + Z;Izl @j gtz—j 106

where the parametgy>0.
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Neural Network Model Construction
a) Multilayer Perceptron (MLP)

MLPs are feedforward neural networks which arenwdi with the popular and effective back
propagation algorithm. A feedforward neural netwansists of a number of layers whereby
information moves in one direction only (forwarffpm the input nodes (Pissarenko, 2002). MLPs
require a desired output in order for the supedvizetwork to be able to learn. A MLP consists of at
least three layers: the input layer, one or mudtipidden layers and an output layer. The individual
nodes are connected by links, each having a cewaight. Each node accepts several values as
inputs, which are then processed to produce arugughich can then be ‘forwarded’ to other nodes.
According to Pissarenko (2002), for any given ngdiés output is equal to

0j = transfer Y (x;;wj;) (11)

where0j is the output of nodg x; is thei*™ input to unitj, w; is the weight related to thé&" input to
unitj andtransferis a transfer function. A neuron may have many igfwt only one output.

b) Time Delay Neural Network (TDNN)

Principally, a Time-Delay Neural Network is an exded MLP. TDNNs apply time delays on
connections, which allow the neural network to havenemory”, in order to deal with various time-
series forecasts. This type of NN specifically &ddes the time series dependence of data on
preceding values. A TDNN has the ability to allmyuts to arrive at hidden units at different psint

in time, thus allowing the various inputs to berastbfor a long enough period of time to have a
significant influence on subsequent inputs. Thigpwupattern at a specific point in time is a fuowct

of the inputs for that time, as well as the indotsa prior number of time periods. TDNNs are daid
function like a moving average regression model finite impulse response filter.

Effectively, by the formulation of time delaysAt, every neuron has access to each input value at
T+1 different points in time. The neurons in the néu@work can therefore identify relationships
between current and previous input values. Furtbheznthe network is able to estimate functions that
take prior input signals into account (Kaiser, 19%aiser (1994) posits that traditional methods
which are used to speed up backpropagation leaganglso be applied to the TDNN. Furthermore,
the author states that delayed or scaled inputaligcan be dealt with by utilising the original
definition of the TDNN, which requires all links af neuron which are coupled to one input to be
identical.

The benefits of using a MLP and TDNN are the saméha benefits which underscore the use of a
NN, as discussed earlier. TDNN are however diffitalimplement due to the large number of input
nodes. This study however, takes a simple approadbrecasting the SAVI, by ignoring external
inputs which affect the movement of the index.

¢) Network Training, Testing and Validation Sets

This study makes use of thevenbergMarquardt (LM) backpropagation algorithm for traimg the
neural network. The algorithm provides a numerisalution to the problem of minimising a non-
linear function. This algorithm is one of the mpspular tools for non-linear minimum mean squares
problems and due to its properties of quick coneaog andstability; it has been used in many
modelling problems (Hayami, Kuwahara, Matsumotoak&noto, 2005).

Most neural networks require the time series talib@led into three distinct sets called the traijin
testing and validation sets. The network learnsepad in the data through the training set, whgh i
also usually the largest segment of the entire data The testing set is used to evaluate the
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generalisation ability of the trained network (Bo§dKaastra, 1996). It is intuitive that larger nalur
networks require larger training datasets, andiin should produce better forecasts and predictions
However, the concept of over fitting is more proamhwhen the model is large as stated by Bardina
and Rajkumar (2003). The authors list a serieguektions which should be addressed when selecting
the training dataset for a given problem. Thesestijmes address factors like whether or not any
transformations are needed for the training datésetquestion of whether there are sufficient damp
representations in all sub-classes, as well astiqneselating to the number of layers needed e th
neural network architecture. The debate of how ntadgen neurons should be used, which has no
hard and fast rule is also carefully looked intgether with the selection of an appropriate tremsf
function. Lastly, the length of time that trainirsgrequired for the network is also listed by thhars

as an important factor which needs to be takenantmunt when implementing a neural network.

This study uses the Tangens hyperbolicus (tanh}fiea function in transforming the input data. The
network’s learning involves deviations from the mage and thus the tanh function works best
(Pissarenko, 2002). The tanh transfer functionb=astated as:

sinh(x) _ eX*—e™*®

transfer(x) = tanh(x) = cosh(x) ~ e¥+e~*

(12)

d) Number of Hidden Layers

The purpose of a hidden layer in a neural netwsrkoi equip the network with the ability to

generalise. Theoretically, a neural network whialy @onsists of one hidden layer with an adequate
number of hidden neurons has the ability to appnaté any continuous function. Increasing the
number of hidden layers subsequently increasesdhgutation time and also poses the danger of

overfitting which leads to unsatisfactory forecagtperformance (Boyd & Kaastra, 1996).

Boyd and Kaastra (1996) argue that the more weigtitgive to the size of the training set, th
stronger the networks’ ability to memorise any piecities of individual observations, which is
actually detrimental to the model’'s use in actaak€asting, due to the validation set being ldss |
because of the aforementioned reasons that thily shakes use of a single hidden layer, with ten
hidden neurons, and two time delays. Later anafysiges that these specifications are the beshéor
time-series in question.

e) Number of Hidden Neurons

The existing body of knowledge has not yet come tooncise conclusion as to the most efficient

number of hidden neurons to use. Theory suggeatghe final decision should be based on trial and
error and through experimentation. With that besagd however, there are some rules of thumb
which have been articulated, which attempt to gheeend user a reasonable amount of confidence in
the selection of the number of hidden neurons.

Masters (1993) proposed the geometric pyramidwereby a network with three layers, comprised

of n input neurons andh output neurons, would have a hidden layex/nfx m neurons. As stated
previously, this study uses ten hidden neuronsjsajustified later.

4 Empirical results

Examining the Univariate Properties

We examine the data for evidence of independenaea(gorrelogram and Q-statistics), normality (via
a Jaque Bera test) and for stationarity (via thgmented Dickey Fuller and Phillips-Peron test). Our
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results are not reported here in detail and aréadd@ upon request. We find that there is evidesice
independence in our data as the autocorrelatiofficieats drop to zero quickly, and our data thas d
not appear to have an infinitely-lived memory. Astyocks that occur will probably die out rapidly,
rendering the series stationary. These results negk@omic sense for a volatility index, as the
presence of autocorrelation suggests that thengfine governed by non-linear processes which allow
successive index changes to be linked throughahance.

Second, the Jarque-Bera test statistic, whichljoexamines the skewness and kurtosis to formaate
joint test statistic leads us to reject the nuppdithesis of normality at a 99% confidence levethasp-
valueis less than 0.01. Further analysis may be donexlynining the non-stationary nature of the
first two statistical moments. The leptokurtosisa@ed above could be a result of the time varying
nature of these moments.

Third, this study makes use of the Augmented Didkeler test with a constant and a linear trend.
The results suggest that one would reject the dbthesis that the return series has a unit roat a
99% confidence level, as the ADF test statistiegsial to -41.20505 and thevalueis essentially
zero. Thus, the results suggest that the retulirsser stationary. Further confirmation of the abov
results arises from the Phillips-Perron (PP) tesing the Bartlett kernel for the Spectral estiorati
method. The results suggest that one would rdpechtll hypothesis of the return series havingia un
root at the 99% confidence level.

Determining the ARMA structure of the Data Generating Process

It is necessary to establish the autoregressiveangawerage structure of the data generating psoces
(DGP). The general ARMA (p, q) process is definedollows:

Ve =8+ X Biye-i e + 2], 0je (13)

A lag order of 4 is used for the maximum AR termnadl as the maximum MA term. It is important
to note that no seasonal autoregressive (SAR)asos@l moving average (SMA) terms are used as
daily data is used; Box and Jenkins (1970) reconantlea use of SAR and SMA terms for monthly or
quarterly data with systematic seasonal movements.

The lag order chosen for the ARMA structure is dageon minimising the model selection criterion.
This study bases the ARMA structure on minimising Akaike Information Criterion (AIC). In this
case, for the AR componemtjs equal to 4 and the for the MA componenis equal to 4. Therefore,
the preferred equation specification for the dataegating process should be given by:

Ve =6+ D1Yi1+D2Ye2+ D3Yi3+ Dyt &+ 0161 + 0265+ 0363+ 0,64 (14)

Using the minimum AIC criterion, it was found ththe appropriate lag order was 4. Table 1 below
depicts the regression results for the ARMA (4mBdel of the data generating process. The table
displays the coefficients attaching to the correslng autoregressive and moving average terms. It
can be seen that all of these terms are statigtisanificantly different from zero at the 95%
confidence level.
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Table 1Estimation output - ARMA (4, 4) model

Variable Coefficiant Std. Error -Statistic Prob

L= -0.000142 0000720 -0 1a9To84 0.28438

AR(T) 1.022849 0050868 16. 80447 00000

AR(2) -0. 458445 0.049425 -9.264386 00000

AR(3) 1.012088 0.046195 21.90894 00000

AFR(A) -0.851575 D.OST7TATT -14.81585 00000

WAL} -1.020199 0.055198 -18.483252 [a el lnle]

LAY 0417491 0047421 8.803852 00000

KAL) -0.992832 0043856 -22.63845 LRl laful

MLACA ) 0.875093 0.051263 A7.09007F 00000

R-squarad 0013848 Mean dependent var -0.000165

Adusted R-squared 0009135 S.D. dependent var 0029087

S E ofregression D OoZ28954 Akaike info criteron £ 240912

Sum squared resid 1.403331 Schwarz criterion -4 211284

Lag likelihood ISTF. 728 Hannan-Quinn criter, -4 230161

F-statistic 2938280 Durbin-Watson stat 2015842

Prob{F-statistic) 0002904

Inwverted AR Roots S0-+.304 S90- 301 -.39-89i - 39+89i
Inverned MA Roots 21-.311i O+ - A0- B0 - 40+ 88

ARMA Equation Diagnostics

After estimating the ARMA (4, 4) model for the daenerating process, it is necessary to examine the
ARMA equation diagnostics. This study looks at thets, correlogram and impulse response as an
analysis of the ARMA model.

When examining Table 2, no root lies outside thié it circle, indicating that the ARMA model is
invertible and stationary. Figure 2 displays a fregl view of the “actual” and ARMA model
correlogram. The figure compares the autocorreigpiattern of the structural residuals and those of
the estimated model, for a certain number of peridtlis evident from the figure that even thotig
ARMA model in question is stationary and invertibkedoes appear that the ARMA model could b
improved as the residual and estimated autocowekatand partial autocorrelations are not alwa
close together.
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Figure 2 Graphical view of the actual and ARMA model corgrim
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Table 2Inverse roots of the AR and MA characteristic polyral

AR Root(s) Modulus
-0.386449 = 0.894562i 0.974466
0.897872 = 0.201017i 0.945989

MNo root lies outside the unit circle.
ARMA model is stationary.

MA Root(s) Modulus
-0.399727 = 0.889250i 0.974960
0.909826 = 0.306411i 0.960037

Mo root lies outside the unit circle.
ARMA model is invertible.

Further analysis is done by examining the impuésponse function, which traces the response of the
ARMA part of the estimated equation to shocks ia thnovation term. Effectively, the impulse
response function traces the response to an idotdteck in the innovation term. The accumulated
response, as the name suggests, is the accumalatedf the impulse responses. This can also be
interpreted as the response to a step impulse elvher single identical shock occurs in ever period,
emanating from the first period. This study usesdefault value for the number of periods as 84, a
defines the shock as being two standard deviatigilising the standard error of the regressiontiier
estimated equation.

Figure 3 displays the impulse response functionhef ARMA model. It is evident from both the
graphical and tabular views that the ARMA modedtitionary, as the impulse responses asymptote to
zero, whilst the accumulated values asymptote éa thng run value of 2.039770. The asymptotic
values are represented by dotted lines in figure 3.

Impulse Response + 2 S.E

2.4
25—
T B e g

1.8

LI P A P o ety b Bt P |t MU T Bl | ] D P |t Pyt By 1 i |
2 4 & ® 10 12 14 16 18 20 22 24

Figure 3. Impulse response function of ARMA model

Analysing the residuals of the model (not displalgece), it can be noted that all of the Q-statsstice
significant at the 95% confidence level. This suygé¢hat the ARMA model can be improved, as there
is still serial correlation left in the residual§.he current ARMA structure is selected based @n th
minimum AIC value. Using other ARMA structures yletl spurious and insignificant autoregressive
and moving average terms.
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Testing for ARCH Effects

Table 3 below displays the analysis for ARCH (Tets. The Lagrange Multiplier (LM) test yields a
test statistic of 22.11927, withpavalueof 0. The null hypothesis that there are no ARCfea§ in
Equation (19) is thus rejected at a 95% level gnisicance. The F-Statistic yields a similar
conclusion.

It is tempting at this point to assume that by atjgy the null hypothesis that there are no ARCH
effects implies that the conditional variance ofti&gpn (19) is non-constant. Further analysisugio
the Breusch-Godfrey serial correlation (LM) testvMewer suggests that the null hypothesis that the
residuals are serially uncorrelated cannot be tejeat a 95% confidence level as fwalueis
greater than 0.05. Table 3 below displays thisltesu

The above-mentioned results and diagnostic che@ys appear to be trivial at first; however, this
analysis is imperative in order to understand tipeiis and procedures used by the various foregastin
techniques. Furthermore, by scrutinising the datassuch a manner, one is able to make more
intelligent inferences about the forecasting rasolitained. In addition, the forecasting tools useg

be adapted based on the analysis of the data, snieadble forecasting methods may be selected based
on the data and its characteristics, and avenudsifiber research may also be exploited which may
stem from such an analysis.

Table 3Breusch-Godfrey serial correlation LM test

Breusch-Godfrey Serial Correlation LM Test

F-stalistic 0.187005 Prob. F{1,1673) 0.6655
Obs*"R-squared 0187858 Prob. Chi-square(1) 06647
Historical Average Model (HAM)

The historical average model is computed using mug4). As discussed earlier, this forecasting
technique is considered a naive approach to fotiegaslt is the simplest method used in this study
and results are stated merely as a benchmark tgarenthe other models to. Ladokhin (2009)
reported a RMSE of 0.1235, which was the worstgrering model. This makes intuitive sense due
its simplicity, and mere disregard for other fastatich could affect volatility. The empirical apsils
done in this study however, yields a RMSE of 0.0Z8ds result should be interpreted with caution
however, as the sample size in this study is fainhall, due to SAVI itself being fairly new. A loag
time period, with a larger sample size would mik&ly alter the forecastability of not only the HAM
but all the other forecasting tools as well. Initidd, a longer time period would also allow for rao
random shocks to appear and evolve over time wivctld be much more difficult to predict by
using the simple historical average model. Thisldiduturn, leave the more sophisticated forecagstin
tools with a higher probability of being able tadoast the volatility in question, due to theirliapio
handle and manipulate more complex data, as disdysgviously.

Exponential Smoothing

The parameters of the ES model are obtained bymmisirig the sum of squared errors. Although
there are various forms of estimating an ES madti,study uses the “Single Smoothing” method, as
it is more common to use for a random series wieichibits no trend or seasonal patterns. The

average of the firs([(Tz;l)) observations of the series is used to start ttersen, wherd is equal to
the number of observations in the sample.

Table 4 below displays the forecasting power of Bf method. The estimated parameterdfoof
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0.001 is not close to 1, and hints at the fact geathaps the return series being forecasted idbyot
definition, a random walk, whereby the current ealis the best predictor of future values.
Furthermore, the RMSE of 0.029063 indicates the efiwdorecasting ability, suggesting that the
model can be improved, as a value below 0.01 itesca reasonably accurate model. Nonetheless, the
forecasting ability based on this measure is moomsing than the results presented by Ladokhin
(2009), who presented a RMSE of 0.0886.

Table 4 Single Exponential Smoothing results

Parameters: Alpha 0.0010
Sum of Squared Residuals 1.424940
Root Mean Squared Error 0.0239063
End of Period Levels: Mean -0.000295

Exponentially Weighted Moving Average

As discussed earlier, this study uses the methggigioesented by Shumway and Stoffer (2011) in
order to forecast using EWMA, by adapting the ESletasing the Holt-Winters method, setting the
parameter fora equal tol-1, and the parameters and @ equal to zero. This study follows
RiskMetrics™ and uses a of 0.94, this making=0.06

The Holt-Winters method is a two-parameter methbéthvrestricts any seasonal factors from varying
over time, such that any positive seasonal factrain in the forecasts.

Table 5 below displays the results from forecastisipgg EWMA. The value af is computed as 0.06,
rather than being estimated based on minimisingstime of squared errors. The RMSE is 0.029529,
which is almost identical to the ES method, butdates a slightly worse forecasting model. Ladokhin
(2009) reported a RMSE of 0.0784 which indicatekelor no forecasting ability.

Table 5 EWMA results

Parameters. Alpha 0.0600
Beta 0.0000

Sum of Squared Residuals 1.470998
Root Mean Squared Emor 0.029529
End of Period Levels: Mean -0.003458
Trend 2.87E-05

ARMA Model

Table 6 below displays the forecasting ability lné ARMA (4, 4) model, relative to the data used in
this study. The RMSE is 0.028876 which is slightlstter than the forecastability of the EWMA
model and the ES model. It is tempting at this ptonassume forecastability of the SAVI using the
ARMA (4, 4) model, however, at closer inspectiohe tThiel Inequality Coefficient (Thiel's U)
suggests otherwise. The value of 0.894673, whichlie argued as being fairly close to 1, suggests
that forecasting using the ARMA model is only stighbetter than a naive guess. Ladokhin (2009)
reported a RMSE of 0.0890 which suggests poor &stadbility.
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Table 6 ARMA results

Forecast RETURNSARMA

Actual: RETURNS

Forecast sample: 2012007 10212013

Adusted sample: 2082007 10212013

Included observations: 1683

RootMean Squared Error  0.028876

Mean Absolute Ermmor 0.020337

Mean Abs. Percent Error  123.8046

Theil Inequality Coefficient 0.894673
Bias Proportion 0.000000
Variance Proportion 0.803623
Covariance Proportion 0196377

ARCH Model

The necessary diagnostic checks before making fuse ARCH model are presented above, and not
restated here. Once these diagnostic checks aee afahthe data generating process is defined, the
implementation of an ARCH model is fairly simple.

Table 7 below presents the results. The RMSE i29D.08 which shows inferior forecastability than
the ARMA model, but slightly better forecastabilthan the EWMA model. The forecastability of the
ARCH model presented is similar to the forecasitghif the ES model. Ladokhin (2009) reported a
RMSE of 0.1029 for a simple ARCH model, indicatpapr forecastability.

Table 7 ARCH results
Forecast: RETURMNSARCH 65
Actual: RETURNS

Forecast sample: 2/01/2007 10/31/2013
Adjusted sample: 2/08/2007 10/31/2013
Included ocbservations: 1683
Root Mean Squared Error 0.029018
Mean Absolute Error 0.020320
Mean Abs. Percent Error 118.8914
Theil Ineguality Coefficient 0.904483
Bias Proportion 0.000803
Vanance Proportion 0.817815
Covarniance FProportion 0.181382

GARCH

As with the ARCH model presented above, all preydisstic checks are presented above, which are
the same for the ARCH model.

Table 8 displays the forecasting results of the GAR(1,1) model used. The RMSE is 0.028973
which is only slightly better than the forecastiypibf the ARCH model presented above. Thiel'ssU i

0.873324 which is close to 1, indicating poor fasability of the model, but displaying slightly

improved forecastability compared to the ARCH modeldhokin (2009) presented a RMSE of
0.1011 and 0.1014 for the two GARCH models usedaddition, the RMSE for the ARCH and

GARCH model used are similar, as is the case smdthidy.
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Table 8 GARCH (1, 1) results

Forecast: RETURNSGARCH

Actual: RETURNS

Forecast sample: 2/01/2007 10/31/2013
Adjusted sample; 208/2007 10/31/2013
Included abservations: 1683

Root Mean Squared Error 0.028973

Mean Absolute Error 0020338
Mean Abs. Percent Error 133.3911
Theil Inequality Coefficient 0873324
Bias Proportion 0.001353
Vanance Proportion 0754727

Covaniance Proportion 0.243921

TDNN

As discussed previously, this study uses the Lestgpbarquardt algorithm for training the neural
network. Furthermore, the data set is split ite¢ sets (60% for training, 20% for validation and
20% for forecasting). The use of a TDNN in thisdstus defined as a Nonlinear Autoregressive
(NAR) time-series problem, whereby a ser¥@) is predicted, giverd past values off(t). The
network is generated and trained in open loop famthis allows the network to be supplied with
correct feedback inputs, in order to generate tineect feedback outputs. After the network is teain

it may be converted to closed loop form if thisgguired by the application.

Figure 4 displays the performance of the trainimigh a plot of the training errors, validation esp
and test errors. The final mean-squared error mlswalidating the results. Furthermore, the feyur
depicts that the test set error and the valida®nerror have similar characteristics. Lastly, libst
validation performance occurred by iteration 5, vy no significant overfitting seems to have
occurred, another advantage of usinglteeenbergMarquardt (LM) backpropagation algorithm.

Best Validation Performance is 0.00090778 atepoch &
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Figure 4 Best validation performance

One now turns to examine the error terms of thevoidt A perfect prediction model would consist of
one lag which is greater than zero, which occurzeat lag, which is in fact, the mean squared error
This result would suggest that the prediction ar@me completely uncorrelated with each other and
are merely white noise. While unreported, therengy slight correlation between the prediction
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errors, with the correlations falling within the%@=onfidence limit around zero. This suggests tinat
model is fairly adequate.

Lastly, the training set yielded a RMSE of 0.0294&ith the validation set and testing set producing
RMSE values of 0.030129 and 0.02679 respectivdigs& RMSE values appear to be in the range of
forecastability of the other tools presented is gtudy. The testing set RMSE of 0.02679 is theekiw
compared to all the forecasting tools presentedsaigdests that although the SAVI does not seem to
be entirely forecastable, the best forecasting ftmothe time series in question is a TDNN. Ladakh
(2009) reported RMSE values of 0.0919 and 0.082h# two neural networks used in that study.

Overall, the results suggest that the historicarage model and the TDNN have better forecasting
ability than all the other methods used in thigdgiuvith the historical average model only slightly
outperforming the TDNN. The HAM model showing supeforecasting abilty goes against intuition,
because of its simplicity in the way that volajilis forecasted. A longer sample period which would
probably contain more shocks in the SAVI will prbbadistort the superior forecasting ability of the
HAM, due to its simple approach, and inability txeunt for trends, non-linearity, or external fasto
affecting the SAVI.

It is interesting to note that the non-linear medead lower RMSE values than the linear models
(except for the HAM). This could be due to the fewt the SAVI is not random, and does display
some non-linearity, as concluded from the BDS {&sbck, Dechert, Scheinkman and LeBaron,
1996). This test for non-linearity examines thetribisition of data at each quartile for linear
behaviour. The results of the test (not presentgrd)hshow that the SAVI does indeed exhibit non-
linear behaviour at each quartile. The BDS test e@wducted on the time series in question, but
further tests were conducted on the linear moddispf which suggest that the models may b
improved. This could be due to external factoredihg the volatility of the SAVI, other thane_
historical values of the SAVI. This in turn allowsom for artificial intelligence techniques to b
explored more extensively, as these models allownidtiple inputs and factors which are assumed to
affect the underlying variable to be forecast.

5 Conclusion

Table 9 below provides a summary of the resultsetdaolely on a comparison of the RMSE values of
the various forecasting tools explored. All of tRBISE values are fairly similar, with the EWMA
model and the RMSE using the validation set of datahe TDNN producing the worst results. The
best models can be concluded to be the TDNN, basd¢tle RMSE of the testing set, and the HAM,
although this method is considered a naive appraadtthe result should be interpreted with caution.
The mere fact that this simple analysis yieldeditpmesresults for the TDNN in terms of the best
forecasting model of those compared, suggestdrtimbvements to the model should produce even
better results. Although a good forecasting masishid to have a RMSE close to zero, under the dat
constraints, the results could be improved greatly.

These results seem to suggest that the SAVI carmptredicted, and that any guess at next period’s
volatility is just as good as a guess. The resshisuld however be interpreted with caution as the
sample used was fairly short due the SAVI only geimroduced in 2007. Furthermore, no evidence
exists of the SAVI being forecasted backwards,riteoto obtain more data points. Furthermore, due
to the returns of the SAVI being calculated by gdime end of-day price levels, a disparity mayearis
between the actual return of the SAVI at a paréicploint in time. In addition, based on the way tha
the SAVI is calculated, it may be possible that eahthe options are infrequently traded, resulting
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the closing prices of the SAVI being inaccurate sueas of the actual closing prices at set points in
time. The results may also improve if a larger danip utilized, together with additional inputs dse
as potential forecasters.

Given our findings that the SAVI cannot be foreedstve now explore some potential implications of
our result. From an economic or theoretical perbpecthe absence of predictability of the SAVI can
point towards a market where sentiment (as giveogiion volatility) cannot be reliably predicted.
While it is tempting to link our results to commeant market efficiency, it is tenuous to compare a
lack of prediction on market sentiment to whethgquiy prices reflect all available information.
Further, the SAVI itself is not a tradable prodaetd is only considered an indicator of market
sentiment. However, if one were interested in trgdiolatility-based assets, the only security derof
to South African investors is a variance futurest@xt. Lastly, given our lack of predictability, a
trading strategy cannot be relied upon to geneatsistent, abnormal profits.

Moreover, even though the analysis of the neur&lvomx suggests that the model could not be
improved greatly; there still may lsaveatgo the construction and implementation of the ekwAs

the research surrounding this topic grows, furthedence may arise of specific rules and algorithms
to use when making use of a neural network.

Table 9 Summary of results

Model: RMSE
Historical Average (HADM) 0.025313
Exponential Smoothing (ES) 0.029063
Exponentially Weighted Moving Average (EWNLA) 0.029529
ARMA 0.028876
ARCH 0.029013
GARCH 0.028973
Training Set |Validation Set [Testing Set
Time-Delay Neural Network 0.029467 0.030129 0.02679

As discussed previously, the fact that no consehaaseen reached surrounding the best forecasting
tool to use when forecasting volatility and stocic@s, many avenues for further research in tiisl fi
remain open. The growing popularity of artificiatelligence in finance adds to the many avenues of
financial time-series forecasting that can be espdnupon, as well as those that have yet to be
explored.

Empirical analysis can be done by utilising diffgr@eural networks, with various architectures and
neurodynamics. In addition, due to neural netwdraging the ability to solve complex problems,
even when data is convoluted or contains missimgegaallows one to use additional factors besides
historical prices or returns as inputs to the nekwim particular, the daily open, close, high, doa
values of the South African All Share Index carubed, together with other economic, technical, and
fundamental factors. From a theoretical perspective can examine investor sentiment as being a
driver of the SAVI, with proxies for this sentimdmting used as an additional input in forecastig t
SAVI.

The direct link between market efficiency and tleetastability of the market can be explored
further, whereby the ability to forecast volatilitwith an investor being able to trade on such
information, may lead one to hypothesise that tbetl® African market in not entirely efficient.
Furthermore, the concept of markets exhibiting icgtlefficiency, as proposed by Lo (2004) can also
be examined, by testing for structural breaks & dhta, as well as attempting to forecast vobatilit
over longer or segmented periods of time.
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