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Abstract 
Fault Diagnosis in real systems usually involves human expert’s shallow knowledge 

(as pattern causes-effects) but also deep knowledge (as structural / functional modularization 
and models on behavior).  The paper proposes a unified approach on diagnosis by abduction 
based on plausibility and relevance criteria multiple applied, in a connectionist 
implementation. Then, it focuses elicitation of deep knowledge on target conductive flow 
systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the 
paper gives hints on design and building of diagnosis system by abduction, embedding deep 
and shallow knowledge (according to case) and performing hierarchical fault isolation, along 
with a case study on a hydraulic installation in a rolling mill plant.  
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1 INTRODUCTION 
Real systems are so complex that 

someone’s efforts on detailed modeling fails. 
So, diagnosis (in technical, medical or 
economical domains) performed by human 
diagnosticians, often relies on incomplete, 
imprecise and uncertain knowledge. Human 
experts think in terms of discrete pieces: events, 
modules, causes and effects - all as separate 
knowledge pieces. Human concepts are also 
qualitative – regarding relations between causes 
and effects. Designers and practitioners cope 
with complexity of real systems by means of 
physical, functional and behavioral units.  

Diagnostic problem solving is 
abductive problem solving; human 
diagnostician’s way involves shallow 
knowledge – regarding associations between 
causes and effects from practice, and deep 

knowledge – regarding causal links from laws 
in the domain. 

The paper proposes a unified model for 
diagnosis by abduction with straight forward 
connectionist implementation, able to embed 
deep and shallow knowledge of human experts 
on the target system’s faulty behavior, again 
computational issues included. The study that 
follows integrates concepts from means-end 
and bond-graphs modeling, in the effort to 
embed deep and shallow knowledge in a 
diagnosis system based on abduction. 

 
2  UNIFIED MODEL FOR 

DIAGNOSIS BY ABDUCTION 
Abduction means finding causes as 

explanation of effects observed in the target 
system This chapter proposes a unified model 
for diagnosis by abduction, based on 
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plausibility of causes from effects and 
relevance of causes. Plausibility embeds 
shallow and deep knowledge on cause-effects 
relations, relevance embeds deep knowledge on 
causes, related to physical and functional 
structures and to behavioral aspects of the target 
system.  

 
2.1 Characteristics of abductive 

problem solving 
Abductive reasoning in fault diagnosis 

considers the cause as single or multiple fault 
explaining effects appeared and observed by 
instance manifestations. Diagnosis in real 
systems faces a huge number of causes, due to 
various sources (equipment, environment 
human operator) and to various combinations of 
faults. On the other hand, the effects-to-faults 
links are complicated, while effects may enter, 
for example, conjunction or disjunction 
grouping when evoking faults, also interaction 
between causes when provoking some effects. 
[5] propose four categories of abduction 
problems:  
i)  independent abduction problems - no 

interaction exists between causes; 
ii)  monotonic abduction problems - an effect 

appears if cumulative causes appear; 
iii)  incompatibility abduction problems – pair 

of causes are mutually exclusive; 
iv)  cancellation abduction problems – pair of 

causes cancel some effect, otherwise 
explained separately. 

[4] have a sound approach on abductive 
problem solving based on neural networks 
adapted to abductions problems above. They 
introduced a fifth category: 
v)  open abduction problems - when 

observations consist of three sets: present, 
absent and unknown observations. 

Human diagnostician usually master 
target systems structure and behavior 
complexity dealing with discrete pieces of 
knowledge: modules and components on 
physical structure, then process ends and 
component roles on functional structure. 
Regarding diagnosis, he or she employs other 
discrete pieces – faults and manifestations, 
which have truth values attached and refer to 
physical and functional units in a qualitative 
manner. 

Various links between effects and 
causes (as reversed causal relation) commonly 
get a connectionist computational model, suited 

to abduction. Diagnosis applications meant for 
real complex systems exploits the great number 
of effects-to-faults patterns, obtained from 
human diagnostician’s practice or from 
experiments, and embeds that shallow 
knowledge by training artificial neural 
networks. Deep knowledge – on causes and 
effects as in abduction problems above, may 
enter various dedicated processing (as in [4]). 

 
2.2  Abductive problems solving by 

plausibility and relevance 
Direct relations between effects and 

causes represent plausibility criteria [5]. From 
the set of all plausible causes only a subset 
represent actual causes, usually obtained 
through a parsimonious principle. [6] considers 
the minimum cardinality as a relevance 
criterion and applies it to the set of plausible 
faults to obtain the diagnostic subset.  

 
2.2.1  Cause isolation by relevance 
Plausibility criteria detects causes (e.g. 

faults), while relevance criteria isolate them. 
The paper extends the concept of relevance and 
makes it effective in Fault Detection and 
Isolation (FDI). 

Relevance assumes some grouping of 
causes followed by selection of most plausible 
item from the group (in [1] called relevance 
group). For example, all faults occurring at a 
physical component form a group, only one 
likely to be the cause of effects appeared. 
Following minimum cardinality principle over 
the structure, if one fault is relevant – single 
fault diagnosis, if certain number of faults – 
multiple fault diagnosis performed. 

The concept of relevance is useful 
when fault diagnosis relies on expert's deep 
knowledge, when he or she applies different 
grouping criteria to faults according to deep 
knowledge in the domain. Hence, relevance is 
effective not only regarding the minimum 
cardinality principle over the structure but also 
regarding some phenomena happening in the 
target system and domain. For example, while 
relevance criterion over structure states “a 
component is unlikely to have more than one 
fault at a time”, in conductive flow systems 
another relevance criterion  may apply “leakage 
is unlikely to be caused by more than one fault 
at a time”. Relevance involves first grouping 
causes, then selecting the most relevant by 
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some processing – for example sorting causes 
by plausibility. 

 
2.2.2. Plausibility and relevance in a 

connectionist approach 
As a general idea, abductive problem 

solving proceeds by multiple applying the two 
functions: 
- plausibility(P_CRITERIA, EFFECTS) which 

output is the set of all plausible CAUSES, 
activated from instance EFFECTS according 
to plausibility criteria P_CRITERIA;  

- relevance(R_CRITERIA, CAUSES) which 
output is a subset of CAUSES from the set of 
the plausible ones, in groups and relevance 
criteria according to R_CRITERIA. 

Various P_CRITERIA and 
R_CRITERIA may apply sequentially to effects 
and causes until a final set of CAUSES have 
truth values of highest level achievable. If 
cardinality of the final set of CAUSES is 1 then 
one deals with single fault diagnosis, else with 
multiple fault diagnosis.  

In a computational model using 
Artificial Neural Networks (ANN) plausibility 
criteria get implemented in forward excitatory 
links from EFFECTS to CAUSES and relevance 
criteria get implemented in competing links 
between CAUSES. In ANN implementation of 
diagnosis, both effects and faults get logical 
truth values, while in the incomplete and 
imprecise environment they may get following 
meanings: effects “almost” appeared, and 
causes “possibly” occurred. Links between 
effects and causes enforce or reduce causes’ 
truth values, toward the diagnostic – i. e. the set 
of most plausible and relevant causes.  

However, ANN architecture must be 
adapted to comply with general types of 
abduction problems above, also to conjunction / 
disjunction grouping of effects to causes. In this 
respect, human diagnostician way of acting is 
again helpful, while plausibility and relevance 
get certain logical meanings from his or her 
point of view, as shown below. 

 
2.2.3.  Characteristics of plausibility 

and relevance 
When activating causes form actual 

effects plausibility criteria should exhibit 
qualitative  and logical features, for example 
when activating causes even their effects are 
not certain (i.e. as long as effects truth value 
grows, the cause truth value grows), or when 

cause activation depends on conjunction of 
some effects. Relevance criteria should exhibit 
quantitative features, while causes have to be 
compared to select the relevant one. In the 
computational model for abductive problem 
solving:  
- plausible causes result from qualitative or 

logical processing that activate all causes 
from given set of effects; 

- relevant causes result from quantitative 
processing that selects causes from the 
plausible set if exhibit a given certainty 
degree (greater than the threshold value). 

While computational model deals with 
numbers, the two criteria should handle them 
adequately: numbers involved in plausibility 
criteria should suffer “logical overload” to 
allow conjunction / disjunction of effects to 
causes (and between causes) and numbers 
involved in relevance criteria assess the degree 
causes may belong to the diagnostic set. 

The “logical overload” of numbers is a 
meaning attached to a range of values, similar 
to fuzzy truth values attached to elements in 
fuzzy subsets. Cardinality of partition, over the 
universe of discourse of a numerical variable V, 
may take the values: 2 – if processing refers to 
classical logical approach (truth values 0 and 1), 
3 or more – if processing refers to Lukasiewicz 
or to Zadeh logic, depending on horizontal (α-
cuts) or vertical (continuous) representation of 
the fuzzy subsets.  

An example of logical overload of 
numbers is the following: if the input of a fault-
neuron from a manifestation-neuron is greater 
than 0.5 (doubt threshold) then the link is 
declared as “important” and enters the fault 
neuron (added to the other inputs), else it is “not 
important” hence blocked (set to 0). Other 
examples below. 

 
2.3.  Connectionist model of 

abduction by plausibility and relevance 
In the presented approach, the ANN 

architecture for abductive problem solving is 
not a particular one; the only restrictions that 
apply are: the two layers EFFECTS and 
CAUSES are neighbour causes (because of 
possible conjunctions of effects to a fault – see 
§2.3.1). Plausibility criteria are forward links 
between EFFECTS and CAUSES, relevance 
criteria form various grouping of CAUSES then 
provoke competitions inside the relevance 
group. ANN architecture as Adaline, Perceptron 



or Counterpropagation, etc. are suited to 
implement the presented approach on 
abduction. 
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2.3.1  Neural models of plausibility  
Let consider a cause Ci as a neuron that 

observes general equation for neuron activation 
by forward excitatory link from the layer of 
effects Ej (see Figure 1. a): 

 Ci = f(Σ wji ⋅ Ej + θi)     (1) 
If both cause and effects get truth 

values, i.e. Ci∈[0,1] and effects Ej∈[0,1], then a 
link with weight w enforces the cause truth 
value at some effects. Cause neuron truth value 
Ci indicates how plausible is that cause in the 
context of actual effects values Ej. However, the 
above equation should also comply to 
plausibility criteria where effects enter a 
conjunction first, then attack the neuron’s input.  

In the presented approach, an input of 
cause-neuron get “logical overload” to allow 
logical processing (e.g. conjunction) required 
by plausibility criteria. After the training phase 
the weights w get certain values and the an 
actual input at cause neuron Ci in recall phase 

will be  Iij = w ⋅ Eij j. If the effect is not certain 
(Ej<0.5) then input is Iij ≤ wij /2, hence: 

if  Iij > wij /2 then Iij = “important” else 
Iij = “not important” (2) 

It is now possible to perform logical 
aggregation on effects and causes. Neural 
model of plausibility is the site that performs 
the aggregation of input effects as follows (see 
Figure 1): 

- disjunctive aggregation – performed 
by default through cumulative processing of 
effects E at case-neuron input I:  

 Ii =Σ wij ⋅ E . (3) j
- conjunctive aggregation – performed 

by the “conjunction site”, see Figure 1. a, and 
the truth table; output O of the site observes the 
rule:  

 if  I  > w /2 AND I  > w1 1 2 2 /2 then O = 
I1 + I   else O = 0  (4) 2

- negation – performed by the 
“negation site”, see Figure 1. b, and the truth 
table; output O of the site observes the rule:   

 O = w  - I                 (5) 11
The original architecture of ANN is 

changed by the sites added to cause-neurons 
that require logical aggregation. 

 

∧ 

I1 I2

O
Conjunctive site (∧) AND 
 

O I1≤ w1/2 I1≤ w1/2 
I2≤ w2 /2 0 0 
I2> w2 /2 0 I1 + I2
 
Truth table for inputs I1, I2

a) 

¬ 

I1

O1 Negation site (¬) NOT 
 

O I1 ≤ w1/2 I1 > w1/2 
 w1-I1 w1-I1
 
Truth table for input I 

b) 

w1 w2

w1

Figure 1.     Neural sites for logical aggregation of effects to causes. 
 
Note that added sites do not disturb or 

change the original running of the  initial ANN, 
while they do not change either the training 
procedure nor values w of weights. For 
example, if two effects enter a conjunction 
aggregation, the input pattern for training such 
situation presents the two inputs with truth 
values greater than doubt value (0.5), while that 
pattern comply the real situation (both input 

effects are important); at recall phase it worth to 
activate the fault only if both actual effects are 
important. 

 
 
 
 
 
 



2.3.2  Neural models for abduction 
problems  

b) For monotonic abduction problems 
– causes C  and Ci l evoking both the same effect 
ENeural (sites) models for the five 

abduction problems in the literature are 
depicted in Figure 2. and solve each category 
from §2.1 as follows:  

j, suffer conjunction with one-another and 
with the common effect through conjunction 
sites as in Figure 2. b: 

 (C  ←  C  AND E  ) AND (C  ←  Ci l j l i  
AND Ea) For independent abduction 

problems – excitatory links apply directly from 
effect E

 ) (6) j
c) For incompatibility abduction 

problems – the pair C to corresponding cause C
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j i (see Figure 
2. a. If there exist also conjunction grouping of 
effects to the cause, conjunction site(s) get 
“mounted” and entering the default disjunctive 
grouping to neuron input.  

 and Ci l of causes are 
mutually exclusive, i.e. one is active if the other 
one is not, both evoking the same effect Ej. The 
pair of causes suffer conjunction with negation 
of the another one conjunction with the 
common effect as in Figure 2. d: 

(C  ← NOT Ci l  AND Ej )  AND (C  ← NOT Cl i  AND Ej )  (7) 

Ej

Ci

wji

a) 

Ci Cl

b) 

d) 

Ej 

absentc) 

e) 

Ci Ci ClCl

Cl

Ej

Ej Ej

wji

wji wji

wjl

wjl

wjlwjl

 
Figure 2.   Abduction problem solving using neural  

network models for plausibility criteria 
 

d) For cancellation abduction 
problems – the pair C  and Ci l of causes are 
mutually exclusive, i.e. one is active if the other 
one is not, both evoking the same effect Ej. The 
pair of causes suffer conjunction with negation 
of the another one conjunction with the 
common effect as in Figure 2. e: 

(Ci ← NOT Cl  AND Ej ) AND (Cl ← 
NOT Ci  AND Ej )  (8) 

e) For open abduction problems – the 
only problem is dealing with absent effects: 
cause Ci is activated if no effect Ej  exists, see 
Figure 2. c: 

 Ci ← NOT Ej     (9) 
Original ANN architecture for 

abductive problem solving is changed adding 
sites specific to each abduction problem, 
adequate to causes and effects in concern. 

However, similar to final note at §2.3.1, the 
ANN running is not changed – regarding the 
training procedure and values of weights 
obtained. 

 
2.3.3 Neural models of relevance 
A relevance criterion usually observes 

minimal cardinality of CAUSES over criterion’s 
specific relevance group. In general, relevance 
involves three stage processing: 
i) Consider all plausible causes belonging to 

relevance group.  
ii) Start competition between causes inside 

relevance group.  
iii) Select cause(s) for diagnostic set, observing 

an ordinal property of causes and some 
selection threshold. 

Neural model of relevance is 
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3.1  Abstraction levels for structure 
and behavior 

competition between causes. Computationally, 
it may consist from sorting all causes in the 
relevance group, then selecting the one(s) with 
higher degree according to a maximum number 
(e.g. 1 if single fault diagnosis), or a “relevance 
value” (e.g. minimum activation of causes – if 
they exceed the doubt value 0.5). For example, 
if the ordinal property for sorting is plausibility 
of causes (truth values of CAUSES), then the 
sorting procedure is applied to all causes in the 
relevance group - not only to plausible ones, 
while those not plausible have the lowest 
degree. So, competition proceed always over 
the entire set of CAUSES in the relevance 
group. 

It is commonly accepted that discrete 
pieces in physical and functional structure of a 
real target system is only an abstraction that 
requires also models for continuous behavior; 
the entire model obtained is a hybrid dynamic 
model (as discussed in [7]). In this view, deep 
knowledge on the target MCFS refers to: 
- physical and functional units, from means-

end modeling perspective – as  Discrete 
Event System abstraction; 

- bond graph components and junctions, from 
bond graph modeling perspective – as 
Continuous System abstraction required to 
assess abnormal behavior of structural units.  

3  DEEP AND SHALLOW 
KNOWLEDGE IN DIAGNOSIS 

For CFSs bond graphs represent 
powerful modeling means, as they not only 
capture essential ideas from Kirchkoff'’s laws 
but, additionally, offer a proper modularization 
of the target system’s model, in a general 
conceptualization.  

Knowledge elicitation is a very 
important phase in diagnosis system design, 
while it involves information on various causes 
and effects, on physical structure and on normal 
and faulty behavior of the target system in real 
life. Any approach on diagnosis depends on 
how knowledge covers spaces of causes, effects 
and their relations; otherwise, one gets open 
spaces and incomplete knowledge leads to 
inaccurate diagnosis. When the target system is 
a conductive flow system (CFS) diagnosis is 
more difficult due to propagated effects 
throughout the system. 

 
3.1.1  Physical and functional 

structure  
From means-end point of view the 

module is a network of components, and the 
entire target MCFS is a network of modules. 
Modules accomplish specific ends during 
specific activities through components flow 
functions as in [8]. Each module may 
accomplish more ends, provided one end 
attained during one activity; each components 
may have more functions but only one during 
one activity of the superset module. 

Few works refer to methodical 
procedures to guide knowledge elicitation, and 
fewer to generic models suited to control and 
guide knowledge covering for diagnosis 
purposes. [3] proposes knowledge pieces suited 
to cover faulty behavior of CFSs based on 
means-end modeling approach and bond 
graphs, and [2] presents a CAKE (Computer 
Aided Knowledge Elicitation) tool for 
methodical covering of structural and 
behavioral complexity of a target CFS. 

From bond graph point of view, 
modules correspond to bond graph junctions. 
[3] proposes three generic flow functions that 
correspond to bond graph primitive 
components, so reducing them to a meaningful 
subset for diagnosis purposes: 
- flow transport function (ftf) – R component; 

when faulty, directly affects propagation of 
power flow along paths in the target CFS;  

Present chapter stresses main directions 
to extract deep knowledge on structure and 
behavior of conductive flow systems which 
perform simultaneously multiple functions – 
further denominated Multifunctional 
Conductive Flow Systems (MCFSs), and the 
ways such knowledge is represented and 
become plausibility and relevance criteria for 
diagnosis by abduction. 

- flow storing function (fsf) – C and I 
components; when faulty, directly affect time 
delays in the running process; 

- flow processing function (fpf) – TR and GY 
components; when faulty, directly affect the 
ends of modules. 
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3.1.2 Faulty behavior structure  
Fault is a physical non-conformity 

occurred at component level, opposed to 
designed specifications from producer. Fault’s 
name often suggests a disorder or a physical 
damage so, it reflects knowledge 
incompleteness about component structure. The 
set of all “known” faults should be decided at 
elicitation phase; some of them indicate a 
specific damage, some – a class of damages.  
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Manifestation is a piece of knowledge 
assessing values of an observed variable at 
component, during a certain activity of the 
superset module. Manifestation is a linguistic 
variable  with truth values for normal (no) or 
“too low” (lo), “too high” (hi) linguistic values. 
Some manifestations arrive by sensors (from 
continuous or binary variables), some by human 
operators tests (from human senses – as 
adjectives, or from test points – as numbers) on 
observed variables in the process. 
Manifestations may refer to primary effects or 
to secondary effects.  

Anomaly or symptom is a piece of 
knowledge obtained from a set of manifestation 
by some processing, and deposits deep 
knowledge in the domain, so helpful in 
diagnosis (see below). 

 
3.1.3  Generic anomalies in the 

faulty behavior 
To each generic flow function a generic 

anomaly is attached : 
i) Process anomaly (AnoP) – means deviation 

from the normal value (e.g. “too high” or 
“too low”) of an end-variable; it refers to 
transformations the flow undergoes. 

ii) Transport anomaly (AnoT) - means 
changes on flow variables or on inner 
structure of component, relative to flow 
transport along flow paths. 

iii) Store anomaly (AnoS) – refers to deviation 
from the normal value for the delay specific 
to storing (capacitor-like) or inertial 
(inductance-like) component (see §2.3.). 

Note that only transport anomalies refer 
to propagated effects, while process and store 
anomalies are located at component showing 
corresponding flow function fpf or fsf as above. 
If there exists a definite set of transport 
anomalies located at faulty component, then 
they get meanings of primary effects.  

 [3] presents signatures with 
manifestations at effort and flow (bond graph) 

variables in 1-junction and 0-junction, specific 
to transport anomaly occurred in the junction. 

 
3.1.4 Orthogonal transport anomalies  
Works on fault diagnosis deal with 

concepts as “leakage” or “obstruction”. [3] 
defines a set of four orthogonal transport-
anomalies for bond graph components, as 
follows: 
a) Obstruction – change of resistance 

parameter (increase), without flow path 
modification, e.g. clogged pipe. 

b) Tunneling – change of resistance parameter 
(decrease), without flow path modification, 
e.g. broken-through pipe. 

c) Leakage – structure change (balance too 
low on flow), involving flow path 
modification, e.g. hole in pipe. 

d) Infiltration – structure change (balance too 
high on flow), involving flow path 
modification, e.g. flow injection. 

Transport anomalies are orthogonal in 
pairs (obstruction to tunneling and leakage to 
infiltration), each pair orthogonal to the other. 
A fault causes a unique transport anomaly that 
appears at respective component and, by 
default, at module it belongs. Thus, transport 
anomaly is a primary effect located at module 
level, hence isolating it means isolating the 
faulty module.  

Each type of transport anomaly has a 
specific signature – regarding deviations for 
bond graph junctions. 

 
3.2  Guidelines on knowledge 

embedding in plausibility and relevance 
criteria 

The main problem raised on diagnosis 
by abduction in the proposed approach is deep 
and shallow knowledge elicitation and 
embedding in the neural network for diagnosis. 

During elicitation phase, knowledge 
engineer discriminates: 
- physical structure – i.e. modules and 

components; 
- functional structure – i.e. activities for 

modules and flow functions for components, 
bond graph junctions for interconnected 
modules and bond graph components with 
specific parameters for corresponding flow 
functions; 

- behavioral structure – i.e. faults, 
manifestations and flow anomalies 
(processing, store, transport). 
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Note that components result from 
hierarchical decomposition of physical structure 
according to the accepted granularity of fault 
isolation, that is location units for faults may 
also have structure.  

Plausibility criteria embed shallow 
knowledge as patterns of non-propagated 
manifestations-to-faults (e.g. color, position) 
and anomalies-to-faults. Deep knowledge refer 
to conjunction and abduction problems related 
to manifestations and certain faults. 

Relevance criteria involve 
modularization of faults according to deep 
knowledge on physical and functional structure 
and on anomalies they provoke (in the given 
structural unit). 
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It worth stressing that shallow 
knowledge for plausibility is obtained for each 
module separately. So, practical survey rather 
experiments on real complex systems seem 
realistic (in technical and economical domains), 
while they are much easier performed and less 
combinatorial burden occur than for the entire 
system. 

 
3.3. Abduction procedure for 

diagnosis  
All discrete concepts resulted from 

elicitation phase should enter in ANN structure 
for diagnosis by abduction. So, all units from 

behavioral structure become neurons: 
manifestations on input layer, faults on output 
layer and anomalies on an intermediate level 
(activated by manifestations and attacking 
faults). All behavioral units attached to a 
module belong to a separate neural network 
(ANN). Links between neurons get weights by 
training procedure (from shallow knowledge) 
and sites from deep knowledge, all according to 
plausibility criteria stated by human 
diagnostician at elicitation phase. 

All units from physical and functional 
structures become relevance groups related to 
relevance criteria at elicitation phase. 

For proper diagnosis, each component 
(as final location in fault isolation) have 
attached the “normal” CAUSE, beside all faults 
at component in concern. So, to the set F0, 
F1,… Fn-1 of neurons indicating faults, it is 
added the Fn neuron – assessing the truth value 
of normal running. It is important to exist a Fn 
neuron because NORMAL situation enters 
relevance competition with FAULTY situation. 
So, before finding the cause when faulty 
situation occurred, diagnosis system should 
asses if the target system is FAULTY (i.e. it 
performs fault detection). 

To asses FAULTY situation a relevance 
criterion is applied over all decisions F0 to Fn-1 
and  F  as follows: n

if   then FAULTY  (10)          1)-n .. 1 (i  5.0    
1

0
n

n

i
ii FnFF ⋅>∧=>∃ ∑

−

=

Because modules of target MCFS 
simultaneously accomplish ends (independent 
from one another), combinations of activities 
raise to a huge number. In the hierarchic way 
proposed, diagnosis relies only on shallow 
knowledge and deep knowledge at module 
level, then on groups of modules in bond graph 
junctions. 

in words: if any of activated faults have 
truth values greater than the "doubt value" and 
the relative level of the NORMAL situation is 
greater than all current (activated) faults, then 
the FAULTY situation is credited. 

Diagnosis is performed in hierarchic 
and sequential manner, detecting transport 
anomaly at module, then isolating fault(s) by 
abduction through multiple plausibility and 
relevance criteria: 

 
4  CASE STUDY ON A 

HYDRAULIC INSTALLATION 1) faulty module isolation – by 
plausibility and relevance of transport 
anomalies possibly occurred based on 
signatures in junctions of the system’s bond 
graph model (see [2]); 

Fault diagnosis was meant for a simple 
hydraulic installation in a rolling mill plant (see 
Figure 3), comprising three modules: Supply 
Unit (pump, tank and pressure valve), 
Hydraulic Brake (control valve, brake cylinder) 
and Conveyor (control valve, self, the conveyor 
cylinder). For the 20 faults to 8 components 
considered, manifestations come from sensors 
as lo, no, hi values (2 flow-rate, 4 pressure, 5 
temperature), 8 binary values (cylinders at 
left/right ends and open/shut valves) also 10 

2..n-1) fault isolation – proceed by 
sequential application of a given sets of 
plausibility and relevance criteria, specific to 
module detected in stage 1; 

n) diagnostic – fault(s) obtained after 
assessing faulty situation versus normal 
situation at module, by relevance as in (10). 
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linguistic manifestations from operator 
observed variables (for noise and oil-mud). 
Software architecture exhibit 6 ANN perceptron  
blocks – 2 per module.  

The three modules – corresponding to 
Hydraulic Brake, Carrier and Oil Supply, are all 

bond graph 1-jonctions (if considering 
components on the loop for each) and they enter 
a 0-junction, corresponding to the entire 
hydraulic MCFS. Modules evolve (somehow) 
independently those with hydraulic cylinders in 
4 activities and the third with 2 activities. 

 

 

1-Junction 

1-Junction 

1-Junction 

0-Junction 

 
Figure 3.    Hydraulic installation under fault diagnosis. 

 
Figure 4 presents the diagnostic for 20 

simulated faults in the example hydraulic 
installation and the maximum number of 
successive activities in which the diagnosis 
system is able to properly indicate the fault; 
additional 

observations supplied by human operator count 
as distinct activities.  
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Figure 4.    20 faults and the number of activities in which they are properly recognized. 

iagnosis performed on the target 
hydraul

to transport anomalies shared by faults. 

5  CONCLUSION 

aces of 
causes and incomplete and 
impreci

 

 
D
ic system applied plausibility criteria 

from human diagnostician concerning patterns 
of manifestations-to-faults from practice and 
deep knowledge on specific transport anomalies 
for the faults in concern. Deep knowledge for 
relevance criteria refer to physical structure and 

Diagnosis is a difficult task in real life, 
while it is often performed on open sp

 effects, in an 
se knowledge milieu. Human 

diagnostician performs diagnosis by abduction; 
abductive reasoning itself is a challenge for 
philosophy, science and practice.  
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