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Abstract. The Electre method aims as objective the choosing of the best variant in the conditions of 
existence of some decision criteria. An interesting problem arises when different variants associated 

to the values are not constant but are in intervals. The paper treats how to determine the optimal 
variant for two types of action and two decision criteria. 
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1 Introduction 

The Electre method is mainly aimed at determining the best choice of action in the 
condition of existence of some decision criteria. Many problems arising in this 

method but also extensions of this have generated a series of subsequent 

development (Mousseau, 2001), (Buchanan, 2007), (Almeida, 2008). 

The method consists of a number of action’s variants V1, V2, ..., Vn whose choice is 

faced with a decision maker. Let also, be a number of m criteria C1, C2,..., Cm 

which have each an importance coefficient (usually determined subjectively) k1, 

k2,..., km. To each pair (Vi,Cj) we assign a numerical value vij (if it is  a qualitative 
appreciation we will convert it in a number of hierarchy). To determine the optimal 

action, the coefficients of importance will be normalize by the relationship: 

j=




m

1p
p

j

k

k
, j= m,1  getting: 




m

1j
j =1. 

The next step is to determine the nature of the method ( maximizing or minimizing) 
harmonizing the data in that, in the case of a criterion of contrary nature to the 

problem, the corresponding range changing its sign. 

Also, at least two corresponding values of a criterion must be different, otherwise 
the selection criterion becoming insignificant. 
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Because the different criterions use various units, we will determine the utilities Uij 

that correspond to the pairs (Vi, Cj) as follows: for the problem of maximizing: 

Uij=
kj

n,...,1k
kj

n,...,1k

kj
n,...,1k

ij

vminvmax

vminv








 and for the minimization: Uij=

kj
n,...,1k

kj
n,...,1k

ijkj
n,...,1k

vminvmax

vvmax








 and 

after we will construct their table. Let noted also that the utilities are quantities 

located always between the interval: 0,1. 

Finally we compute the concordance indicators according to the following: 

c(Vi,Vj)= 






jpip UU
m,...,1p

p = 






jpip UU
m,...,1p

p1  

and the discordance indicators: 

 

d(Vi,Vj)= )0,UU(max ipjp
m,...,1p




 

In order to determine the best choice, we establish two values p and q such that 

p,q(0,1) and p+q=1 to measure the limits of concordance and discordance. We 
will say that a variant Vi is preferred to a variant Vj if: 









q)V,V(d

p)V,V(c

ji

ji
 

Taking into account that q=1-p we have therefore and noting 








jpip UU
m,...,1p

pji )V,V('c named the contra-concordance, we have that: 

)V,V('c1)V,V(c jiji   

so we get: 









p)V,V(d1

p)V,V('c1

ji

ji
 

therefore: 

 )V,V(d),V,V('cmaxp1 jiji  

A variant Vi will satisfy the optimal condition if for a given p: 

  n1,j )V,V(d),V,V('cmaxp1 jiji   

We thus determine p by condition: 












)V,V(dmax),V,V('cmaxminp1 ji

n,1j
ji

n,1jn,1i
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the optimal variant (variants) corresponding  to this value. 

2 The Electre method for intervals 

Let consider the problem of maximization: 

Criterion 

Variant 

C1 

k1 

C2 

k2 

V1 [a,b] [,] 

V2 [c,d] [,] 

where: k1+k2=1. 

Because: [a,b]={(1-s)a+sbs[0,1]} and analogously for the other intervals, we 

have: 

Criterion 

Variant 

C1 

k1 

C2 

k2 

V1 (1-s)a+sb (1-p)+p 

V2 (1-t)c+td (1-q)+q 

with s,t,p,q[0,1]. 

Let A=max(b,d), B=min(a,c), C=max(,), D=min(,). 

We have [a,b][c,d]=[B,A] and [,][,]=[D,C] respectively. 

We define the appropriate utilities of vij like the ratio of the difference between vij 

and the minimum of the interval appropriate for the criterion and the length of the 

union-interval. 

We have therefore the utilities: 

Criterion 

Variant 

C1 

k1 

C2 

k2 

V1 U1=
BA

Bsba)s1(




 U3=

DC

Dp)p1(




 

V2 U2=
BA

Btdc)t1(




 U4=

DC

Dq)q1(




 

The condition that U1U2 

becomes:
BA

Btdc)t1(

BA

Bsba)s1(









 tdc)t1(sba)s1(   

0cat)cd(s)ab(  . 

With the straight line: 0cat)cd(s)ab(   the upper condition is reduced 

to the determination of the appropriate half-plane. Because the coordinates of the 

origin satisfy the inequality: a-c0, follows with s,t[0,1], the next cases: 

 acb (fig.1) all the points inside the pentagon OACDE satisfy U1U2, and the 

points inside the triangle ABC satisfy U1U2; 
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 abc (fig.2) all the points inside the square OABC satisfy U1U2; 

 cad (fig.3) the points inside the triangle CDE satisfay U1U2, and the points 

inside the pentagon OABCE satisfy U1U2; 

 cda (fig.4) all the points inside the square OABC satisfy U1U2. 

  
Fig.1       Fig.2 
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Fig.3       Fig.4 

In a very similar manner we analyze the comparison between U3 and U4 

whose geometric areas we will note similar but with character ‘. 

 Before continue, let make a remark that: 

V=U2-U1=
BA

cat)cd(s)ab(




  

W=U4-U3=
DC

q)(p)(




  

 Finally we have the following cases: 

1. acb,  

a. (s,t)OACDE (fig.1), (p,q)O’A’C’D’E’ (fig.1) 

The table of contra-concordance and discordance indicators becomes: 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 
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V1 0 0 1 max(V,W) 1 max(V,W) 1 

V2 0 0 0 0 0 0 0 

 The optimal variant coresponds to the minimum between the two values, 

that is V2 with p=1. 

b.  (s,t)OACDE (fig.1), (p,q)A’B’C’ (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k1 V k1 V max(k1,V) 

V2 k2 W 0 0 k2 W max(k2,W) 

 The optimal variant coresponds to the minimum between max(k1,V) and 

max(k2,W). 

c. (s,t)ABC (fig.1), (p,q)O’A’C’D’E’ (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k2 W k2 W max(k2,W) 

V2 k1 V 0 0 k1 V max(k1,V) 

The optimal variant coresponds to the minimum between max(k2,W) and 

max(k1,V). 

d. (s,t)ABC (fig.1), (p,q)A’B’C’ (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 0 0 0 0 0 

V2 1 max(V,W) 0 0 1 max(V,W) 1 

The optimal variant coresponds to the minimum between the two values, 
that is V1 with p=1. 

2. acb,  

a. (s,t)OACDE (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 1 max(V,W) 1 max(V,W) 1 

V2 0 0 0 0 0 0 0 
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The optimal variant coresponds to the minimum between the two values, 

that is V2 with p=1. 

b. (s,t)ABC (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k2 W k2 W max(k2,W) 

V2 k1 V 0 0 k1 V max(k1,V) 

The optimal variant coresponds to the minimum between max(k2,W) and 

max(k1,V). 

3. acb,  

a. (s,t)OACDE (fig.1), (p,q)C’D’E’ (fig.3) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 1 max(V,W) 1 max(V,W) 1 

V2 0 0 0 0 0 0 0 

The optimal variant coresponds to the minimum between the two values, 

that is V2 with p=1. 

b. (s,t)OACDE (fig.1), (p,q)O’A’B’C’E’ (fig.3) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k1 V k1 V max(k1,V) 

V2 k2 W 0 0 k2 W max(k2,W) 

The optimal variant coresponds to the minimum between max(k2,W) and 

max(k1,V). 

c. (s,t)ABC (fig.1), (p,q) C’D’E’ (fig.3) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k2 W k2 W max(k2,W) 

V2 k1 V 0 0 k1 V max(k1,V) 

The optimal variant coresponds to the minimum between max(k2,W) and 

max(k1,V). 

d. (s,t)ABC (fig.1), (p,q)O’A’B’C’E’ (fig.3) 
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 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 0 0 0 0 0 

V2 1 max(V,W) 0 0 1 max(V,W) 1 

The optimal variant coresponds to the minimum between the two values, 

that is V1 with p=1. 

4. acb,  

a. (s,t)OACDE (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 k1 V k1 V max(k1,V) 

V2 k2 W 0 0 k2 W max(k2,W) 

The optimal variant coresponds to the minimum between max(k2,W) and 

max(k1,V). 

b. (s,t)ABC (fig.1) 

 V1 V2 
)V,V('cmax ji

n,1j
 )V,V(dmax ji

n,1j
 max=1-p 

V1 0 0 0 0 0 0 0 

V2 1 max(V,W) 0 0 1 max(V,W) 1 

The optimal variant coresponds to the minimum between the two values, 

that is V2 with p=1. 

 In the same manner there are treated the cases: 

5. abc,  

6. abc,  

7. abc,  

8. abc,  

9. cad,  

10. cad,  

11. cad,  

12. cad,  

13. cda,  
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14. cda,  

15. cda,  

16. cda,  

3 Conclusion 

The above method of choice the optimal variant can be applied in the case when 

we cannot know exactly the values corresponding to each variant and/or criterion. 

The difficulties of this algorithm consist in the fact that the approach of the 

variables require a geometrically analysis of the position of different intervals. 
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