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A Study of Integers Using Software Tools — |1

Citilin Angelo IOAN*
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Abstract. The paper deals with a generalization of polite numbers that is of those numbers that are
sums of consecutive integers.
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1 Introduction

Let note for any neN”, peN’, S;,=1° +...+n" and Synp=K" +...+n° =S, ;-S.1,
k=2,n.

It is well known that in order to compute the expressions: S,, we depart from the
decomposition:

b .
(k+1f =kP+ Y. Ck""  k=Ln
i=1

Summing for k=1,n:

n n p .
(n+1f -1=3(k+1f -3 k"=>'C}S, .
k=1 k=1 i=1
therefore:
+: b j+
(n+2f"-1-Y Cis,
Shp = =
’ p+1
and also:
" p " " P iy
(n+1f*-1-3'Ciss, ,; KPH-1-3CliS,
S — = _ j=1 _
on.p p+1 p+1
. . P . y LI
(n+1fP™ - kP —Ecg,fl(sn,p_j ~Skapy) (N+DPT—kP? —écg,jlsk,n,p_j
p+1 - p-+1
It is easly to see that the first 10 sums are:
Sr,,1:1+...+n:M
Sn2=12 +m+n2:w
’ 6
Sn3:13+___+n3:M
’ 4
5 o1t 4 4 pi=n(+12n +1)(3n% +3n 1)
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s_n2(n+17(2n? +2n-1)
12

6_ n(n+1)2n +1)(3n4 +6n°-3n +1)
B 42
n?(n+1)%(3n* + 6n° —n? — 4n + 2)

24
n(n+1)2n +1)5n° +15n° +5n* ~15n® —n? + 9n —3)

90
n?(n+1(n? +n—1)2n* + 4n® —n? —3n +3)
20

Sns=1°+..4+n

Sne=1°+...+n

Sn7=1"+..+n’

Sng=18 +...+n8=

Sne=1°+...+n°=

Sn10=1" +...+n'=
n(n+1)(2n +1)n? +n —1)3n° +9n° + 2n* ~11n® + 3n? +10n — 5
66
We can compute these sums taking into account the symmetry after a middle term.

We have therefore 2 cases:
Case 1 — the sum has an odd number of terms

Let therefore:SCsmp=(m—s)f +..+(M-1 +m" + (M +1P...+ (M +5)P = Spsp-

Sm—s—l,p
We have now:
SCemi=(M—=8)+...+(Mm-1)+ m+(m+1)..+(m+s)=m(2s +1)
M=8)t .ot (M=1 +m? +(m+1F...+ (m+sf= (g’ +S3+5)(23+1
+o+(Mm-1P+m+(m+1)... (m+s3=m(m2+sz+sXZS+1)
SCema=(m—=s) +...+(m-1)" +m* + (m+1)*...+ (m+s)* =
(15m* +30m2(s? +5)+ 35" + 65° + 25 —s )25 +1)
15
SCms=(m—sP +..+(M-1P +m° + (m+1 ...+ (m+s)=
(3m +10m (s +s)+3s4+653+2$2—sX25+1)
3

and so on.
Case 2 — the sum has an even number of terms

Let therefore:SCqmp=(m—s+1F +...+ (M =1 +m? +(m+1)...+ (M+5)P= Sppusp-
Sm—s—l,p-
We have now:
SComi=(M=s+1)+...+(m=1)+m+(m+1)..+(m+s)=s(2m +1)
SCsmz=(M—s+1)° +...+(m-1f + m? +(m+1)°..+ (m+s) =
s(6m? + 6m + 25 +1)
3
SCsma=(Mm—-s+1° +..+(m-1 + m® +(m+2)°...+ (m +s)’ =

s(m2 +m+sZX2m +1)
SCma=(m-s+1)' +..+(M-1)  +m* +(m+1)*...+(m+s)*=
s(30m* + 60m® + 30m2(2s? +1)+ 60ms? + 6s* +10s? —1)

15

70



Journal of Accounting and Management JAM vol. 5, no. 3(2015)

SCems=(Mm—s+1P +..+(m-1P +m* + (m+1...+ (m+s)°=
s(3m* + 6m® + 2m2(5s? +1)+ m{L0s? 1)+ 35 {2m +1)
3

and so on.
All over in this paper, the software presented was written in Wolfram Mathematica
9.0.

2 Polite numbers

A natural number N greather than 2 is called polite number if it can be written as
sum of two or more consecutive natural numbers.
If N is odd it is natural that for N=2k+1 we have N=k+(k+1) therefore each odd
natural number is polite. Let therefore N=even, N=2M, M>2.
Let consider now the decomposition: N=2% where qeN", a=odd.If the sum of
integers has an odd number of terms, we have:
2%=m(2s+1) with 1<s<m-1

Because 2s+1=odd we have that: 29| m therefore: m=2%, beN". Now, from:
2%=2%(2s+1) we have: a=b(2s+1) therefore, for N=2%c, b,c=odd, we have:
m=2%, 2s+1=c.

But 2s+1>3 and 2s+1<2m-1 impliy that: ¢>3 and c<2%*'b-1.

From ¢<2%'b-1 we have: c’<2N-c therefore: 3<c<

b> max{l c_+1}

v1+8N -1
2 Ll

! 2q+l

For example, for N=36 we have: N=2°3? therefore: 3<c<8, b> max{l, CTH}

from where: q=2, b=3, c=3=m=12, s=1=>N=36=11+12+13.1f the sum of integers
has an even number of terms, we have:

2%=s(2m+1) with 1<s<m
With the same arguments like upper, we have that for N=2%c, b,c=odd, we have:
s=2%, 2m+1=c. But s>1 it is obvious and s<m implies that: 2%*b <c—1 therefore

1+J1+8N} c-1
2

2N <c?—c thatis: ¢c> max{& and 1<b < SR

For example, for N=36 we have: N=2°3% therefore: c>max{3,9}=9 and
1sbsCT_1 that  is: =2, c=9, b=1—m=4, s=4 therefore:

N=36=1+2+3+4+5+6+7+8.If N is a power of 2, i.e. N=2% we then have a=1 and in
each case we shall obtain s=0 or m=0 which will be a contradiction. After these
considerations we have that no power of 2 can be expressed like a sum of
consecutive natural numbers.

3 Almost polite numbers of order p

A natural number N greather than 2 willbe called almost polite number of order p if
it can be written as sum of two or more consecutive of a same power p of natural
numbers.The software for determining the almost polite numbers limited to 10000
and powers less than or equal with 30 is:

Clear[""Global *"];
limit=10000;
pmax=30;
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S[0]=n;

(*The calculus of sums of powers from 1 to n*)
For[p=1,p<pmax,p++,

suma=0;
For[j=1,j<p,j++,suma=suma+Binomial[p+1,j+1]*S[p-jl];
S[p]=Factor[((n+1)(p+1)-1-suma)/(p+1)]

]

(*The calculus of sums of powers from k to n*)
For[p=1,p<pmax,p++,sumpower[n_,p]=S[p]];
For[p=1,p<pmax,p++,sumpowerkn[n_,k_,p]=Factor[Simplify[sumpower[n,p]-
sumpower[k-1,p]]1]
(*The analisys*)
For[number=2,number<limit,number=number+1,
For[p=2,p<pmax,p++,
For[n=2,n<number”(1/p),n++,
For[k=1,k<n-1 k++,
If[sumpowerkn[n,k,p]==number,
Print[number,"=\[Sum](power="",p,") from " k," to "*,n]1]1]]

We find (first results):
5=[Sum](power=2) from 1 to 2
9=[Sum](power=3) from 1 to 2
13=[Sum](power=2) from 2 to 3
14=[Sum](power=2) from 1 to 3
17=[Sum](power=4) from 1 to 2
25=[Sum](power=2) from 3 to 4
29=[Sum](power=2) from 2 to 4
30=[Sum](power=2) from 1 to 4
33=[Sum](power=5) from 1 to 2
35=[Sum](power=3) from 2 to 3
36=[Sum](power=3) from 1 to 3
41=[Sum](power=2) from 4 to 5
50=[Sum](power=2) from 3to 5
54=[Sum](power=2) from 2 to 5
55=[Sum](power=2) from 1 to 5
61=[Sum](power=2) from 5 to 6
65=[Sum](power=6) from 1 to 2
77=[Sum](power=2) from 4 to 6
85=[Sum](power=2) from 6 to 7
86=[Sum](power=2) from 3 to 6
90=[Sum](power=2) from 2 to 6
91=[Sum](power=2) from 1 to 6
91=[Sum](power=3) from 3 to 4
97=[Sum](power=4) from 2 to 3
98=[Sum](power=4) from 1 to 3
99=[Sum](power=3) from 2 to 4
100=[Sum](power=3) from 1 to 4

4 Almost polite numbers of order 2
Let consider now the problem of determining polite numbers of order 2. Let N=2%
where geZ, g>0, a=odd.If the sum has an odd number of terms, we have:
= (3m? + 57 +s)25 +1)
3

with 1<s<m-1

The equality becomes:
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(3m2 +5° +SX23+1):3-2qa
We have now two cases:
Case 1: g1

Because 2s+1=odd it follows that: 2%|3m? +s?+s. But s?+s=s(s+1)=even
q o

implies that: 2% |m? therefore: if g=even: m=22b and if g=odd: m=2 2 b, beN".

a+t

2

In both cases, we can write: m= 2{ }b, beN", where [-] is the integer part. Also,

Jfaa
2913m? +s* +s implies now: 29|3-2 { 2 }bz +s%+s therefore: 29|s(s+1).
Because (s,s+1)=1 we have that: s=2% or s=2%-1, ceN".

We have the following cases:

g+l g+l

e m= 2{7} b, s=2%. Because s<m-1 we have: 2°%c< 2[7} b-1.

q
0 g=even: m=22b, s=2%= (3b2 +29¢% 4+ cX2q+1c +1)= 3a and
q
2%c<22ph-1.
g+
o g=odd: m=22b, s=2%= (6b2 +29¢% + cxzq*lc+1)= 3a and
a4l
2%<2 2 p-1.
%] %]
e m=2"2Jp, s=2%-1. Because s<m-1 we have: 2%<2" % 'p.

q
o0 g=even: m=22b, s=2%-1= (3b2 +29¢% - cX2q+1c —1): 3a and
q
2%c<22h.
a1
0 g=odd: m=22b, s=2%-1=(6b%+2%c? —cXZq*lc—l): 3-2%
g+l
and 2%<2 2 b.
Like an example let consider N=140=2%35. We have q=2 therefore:
e m=2b, s=4c and (3b? +4c? + B +1)=105=3-5.7 =¢=13, be Z
e m=2b,s=4c-1and (307 +4c> —c)8c-1)=3-5-7=
0 C=1=b=2=>m=4, s=3 — N=140=1*+2°+3°+4*+5°+6°+7°.
0 c=2=bgN
Case 2: g=0
We have now: (sz +5° +5X25+1): 3a. Because 3a=odd and s*+s=s(s+1)=even
we must have m=odd.
Like an example let consider N=55. We have g=0 therefore:
(Bm? +5? +s) 25 +1)=3-5-11
25+1=3=s=1=mgN
25+1=5=>5=2=>m=3=>N=55=1"+2°+3%+4°+5"
25+1=11=5=5= mgN
2s+1=15=s=7= mgN
2s+1=33=5=16= mgN
25+1=55=5=27= mgN
25+1=165=5=82= mgN
If the sum has an even number of terms, we have:
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Do S(Gm2 +6m + 2s° +1)
3

with 1<s<m

The equality becomes:
s(6m?+6m+ 252 +1)=3.2%
Because 27| s(6m2 +6m+2s2+1) and (6m? +6m + 257 +1)=odd it follows that:
s=2, b>1.
From b(6m2 +6m +2%91p? +1): 3a we shall find m if it exists.

For example, let N=126=2"'.63 we have: gq=1, a=63. Therefore: s=2b and
b(6m2 +6m +8h? +1)= 3%.7. We find after all cases that: b=1, m=5 and finally:
N=126=4+5°+6"+7".
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