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1 Introduction 

 
Let note for any n∈N*, p∈N*, Sn,p= pp n...1 ++  and Sk,n,p= pp n...k ++ =Sn,p-Sk-1,p, 
k= n,2 . 
It is well known that in order to compute the expressions: Sn,p we depart from the 
decomposition: 

( ) ∑
=

−+=+
p

1i

ipi
p

pp kCk1k , k= n,1  

Summing for k= n,1 : 

( ) ( ) ∑∑∑
=

−
==

=−+=−+
p

1i
ip,n

i
p

n

1k

p
n

1k

pp SCk1k11n  

therefore: 

( )

1p

SC11n
S

p

1j
jp,n

1j
1p

1p

p,n +

−−+
=

∑
=

−
+
+

+

 

and also: 

( )
=

+

−−
−

+

−−+
=

∑∑
=

−−
+
+

+

=
−

+
+

+

1p

SC1k

1p

SC11n
S

p

1j
jp,1k

1j
1p

1p
p

1j
jp,n

1j
1p

1p

p,n,k  

( ) ( )
1p

SSCk1n
p

1j
jp,1kjp,n

1j
1p

1p1p

+

−−−+ ∑
=

−−−
+
+

++

=
( )

1p

SCk1n
p

1j
jp,n,k

1j
1p

1p1p

+

−−+ ∑
=

−
+
+

++

 

 It is easly to see that the first 10 sums are: 

Sn,1= n...1 ++ = ( )
2

1nn +  

Sn,2= 22 n...1 ++ = ( )( )
6

1n21nn ++  

Sn,3= 33 n...1 ++ = ( )
4

1nn 22 +  

Sn,4= 44 n...1 ++ = ( )( )( )
30

1n3n31n21nn 2 −+++  
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Sn,5= 55 n...1 ++ = ( ) ( )
12

1n2n21nn 222 −++  

Sn,6= 66 n...1 ++ = ( )( )( )
42

1n3n6n31n21nn 34 +−+++  

Sn,7= 77 n...1 ++ = ( ) ( )
24

2n4nn6n31nn 23422 +−−++  

Sn,8= 88 n...1 ++ = ( )( )( )
90

3n9nn15n5n15n51n21nn 23456 −+−−++++  

Sn,9= 99 n...1 ++ = ( ) ( )( )
20

3n3nn4n21nn1nn 234222 +−−+−++  

Sn,10= 1010 n...1 ++ =
( )( )( )( )

66
5n10n3n11n2n9n31nn1n21nn 234562 −++−++−+++  

We can compute these sums taking into account the symmetry after a middle term. 
We have therefore 2 cases: 
Case 1 – the sum has an odd number of terms 
Let therefore:SCs,m,p= ( ) ( ) ( ) ( )ppppp sm...1mm1m...sm +++++−++− = Sm+s,p-
Sm-s-1,p. 
We have now: 
SCs,m,1= ( ) ( ) ( ) ( )sm...1mm1m...sm +++++−++− = ( )1s2m +  

SCs,m,2= ( ) ( ) ( ) ( )22222 sm...1mm1m...sm +++++−++− = ( )( )
3

1s2ssm3 22 +++  

SCs,m,3= ( ) ( ) ( ) ( )33333 sm...1mm1m...sm +++++−++− = ( )( )1s2ssmm 22 +++  
SCs,m,4= ( ) ( ) ( ) ( )44444 sm...1mm1m...sm +++++−++− =

( )( )( )
15

1s2ss2s6s3ssm30m15 234224 +−+++++  

SCs,m,5= ( ) ( ) ( ) ( )55555 sm...1mm1m...sm +++++−++− =
( )( )( )

3
1s2ss2s6s3ssm10m3m 234224 +−+++++  

and so on. 
Case 2 – the sum has an even number of terms 
Let therefore:SCs,m,p= ( ) ( ) ( ) ( )ppppp sm...1mm1m...1sm +++++−+++− = Sm+s,p-
Sm-s-1,p. 
We have now: 
SCs,m,1= ( ) ( ) ( ) ( )sm...1mm1m...1sm +++++−+++− = ( )1m2s +  
SCs,m,2= ( ) ( ) ( ) ( )22222 sm...1mm1m...1sm +++++−+++− =

( )
3

1s2m6m6s 22 +++  

SCs,m,3= ( ) ( ) ( ) ( )33333 sm...1mm1m...1sm +++++−+++− =
( )( )1m2smms 22 +++  

SCs,m,4= ( ) ( ) ( ) ( )44444 sm...1mm1m...1sm +++++−+++− =
( )( )

15
1s10s6ms601s2m30m60m30s 2422234 −++++++  
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SCs,m,5= ( ) ( ) ( ) ( )55555 sm...1mm1m...1sm +++++−+++− =
( ) ( )( )( )

3
1m2s31s10m1s5m2m6m3s 422234 ++−++++  

and so on. 
All over in this paper, the software presented was written in Wolfram Mathematica 
9.0. 

 
2 Polite numbers 
 
A natural number N greather than 2 is called polite number if it can be written as 
sum of two or more consecutive natural numbers. 
If N is odd it is natural that for N=2k+1 we have N=k+(k+1) therefore each odd 
natural number is polite. Let therefore N=even, N=2M, M>2. 
Let consider now the decomposition: N=2qa where q∈N*, a=odd.If the sum of 
integers has an odd number of terms, we have: 

2qa=m(2s+1) with 1≤s≤m-1 
Because 2s+1=odd we have that: 2qm therefore: m=2qb, b∈N*. Now, from: 
2qa=2qb(2s+1) we have: a=b(2s+1) therefore, for N=2qbc, b,c=odd, we have: 
m=2qb, 2s+1=c. 
 But 2s+1≥3 and 2s+1≤2m-1 impliy that: c≥3 and c≤2q+1b-1. 

From c≤2q+1b-1 we have: c2≤2N-c therefore: 
2

1N81c3 −+
≤≤ , 







 +

≥ +1q2
1c,1maxb  

For example, for N=36 we have: N=2232 therefore: 8c3 ≤≤ , 






 +

≥
8

1c,1maxb  

from where: q=2, b=3, c=3⇒m=12, s=1⇒N=36=11+12+13.If the sum of integers 
has an even number of terms, we have: 

2qa=s(2m+1) with 1≤s≤m 
With the same arguments like upper, we have that for N=2qbc, b,c=odd, we have: 
s=2qb, 2m+1=c. But s≥1 it is obvious and s≤m implies that: 1cb2 1q −≤+  therefore 

ccN2 2 −≤  that is: 










 ++

≥
2

N811,3maxc  and 1q2
1cb1 +

−
≤≤ . 

For example, for N=36 we have: N=2232 therefore: { } 99,3maxc =≥  and 

8
1cb1 −

≤≤  that is: q=2, c=9, b=1⇒m=4, s=4 therefore: 

N=36=1+2+3+4+5+6+7+8.If N is a power of 2, i.e. N=2q we then have a=1 and in 
each case we shall obtain s=0 or m=0 which will be a contradiction. After these 
considerations we have that no power of 2 can be expressed like a sum of 
consecutive natural numbers. 
 
3 Almost polite numbers of order p 
 
A natural number N greather than 2 willbe called almost polite number of order p if 
it can be written as sum of two or more consecutive of a same power p of natural 
numbers.The software for determining the almost polite numbers limited to 10000 
and powers less than or equal with 30 is: 
Clear["Global`*"]; 
limit=10000; 
pmax=30; 
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S[0]=n; 
(*The calculus of sums of powers from 1 to n*) 
For[p=1,p≤pmax,p++, 
 suma=0; 
 For[j=1,j≤p,j++,suma=suma+Binomial[p+1,j+1]*S[p-j]]; 
 S[p]=Factor[((n+1)^(p+1)-1-suma)/(p+1)] 
 ] 
(*The calculus of sums of powers from k to n*) 
For[p=1,p≤pmax,p++,sumpower[n_,p]=S[p]]; 
For[p=1,p≤pmax,p++,sumpowerkn[n_,k_,p]=Factor[Simplify[sumpower[n,p]- 
sumpower[k-1,p]]]] 
(*The analisys*) 
For[number=2,number≤limit,number=number+1, 
 For[p=2,p≤pmax,p++, 
  For[n=2,n≤number^(1/p),n++, 
   For[k=1,k≤n-1,k++, 
    If[sumpowerkn[n,k,p]==number, 
     Print[number,"=\[Sum](power=",p,") from ",k," to ",n]]]]]] 
We find (first results): 
5=[Sum](power=2) from 1 to 2 
9=[Sum](power=3) from 1 to 2 
13=[Sum](power=2) from 2 to 3 
14=[Sum](power=2) from 1 to 3 
17=[Sum](power=4) from 1 to 2 
25=[Sum](power=2) from 3 to 4 
29=[Sum](power=2) from 2 to 4 
30=[Sum](power=2) from 1 to 4 
33=[Sum](power=5) from 1 to 2 
35=[Sum](power=3) from 2 to 3 
36=[Sum](power=3) from 1 to 3 
41=[Sum](power=2) from 4 to 5 
50=[Sum](power=2) from 3 to 5 
54=[Sum](power=2) from 2 to 5 
55=[Sum](power=2) from 1 to 5 
61=[Sum](power=2) from 5 to 6 
65=[Sum](power=6) from 1 to 2 
77=[Sum](power=2) from 4 to 6 
85=[Sum](power=2) from 6 to 7 
86=[Sum](power=2) from 3 to 6 
90=[Sum](power=2) from 2 to 6 
91=[Sum](power=2) from 1 to 6 
91=[Sum](power=3) from 3 to 4 
97=[Sum](power=4) from 2 to 3 
98=[Sum](power=4) from 1 to 3 
99=[Sum](power=3) from 2 to 4 
100=[Sum](power=3) from 1 to 4 
 
4 Almost polite numbers of order 2 
Let consider now the problem of determining polite numbers of order 2. Let N=2qa 
where q∈Z, q≥0, a=odd.If the sum has an odd number of terms, we have: 

2qa= ( )( )
3

1s2ssm3 22 +++  with 1≤s≤m-1 

The equality becomes: 
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( )( ) a231s2ssm3 q22 ⋅=+++  
We have now two cases: 
Case 1: q≥1 
Because 2s+1=odd it follows that: ssm3|2 22q ++ . But ( )1ssss2 +=+ =even 

implies that: 2q m|2  therefore: if q=even: m= b2 2
q

 and if q=odd: m= b2 2
1q+

, b∈N*. 

In both cases, we can write: m= b2 2
1q




 +

, b∈N*, where [⋅]  is the integer part. Also, 

ssm3|2 22q ++  implies now: ssb23|2 222
1q2

q ++⋅




 +

 therefore: ( )1ss|2q + . 
Because ( )1s,s + =1 we have that: s=2qc or s=2qc-1, c∈N*. 
We have the following cases: 

• m= b2 2
1q




 +

, s=2qc. Because s≤m-1 we have: 2qc≤ 1b2 2
1q

−




 +

. 

o q=even: m= b2 2
q

, s=2qc⇒( )( ) a31c2cc2b3 1q2q2 =+++ +  and 

2qc≤ 1b2 2
q

− . 

o q=odd: m= b2 2
1q+

, s=2qc⇒( )( ) a31c2cc2b6 1q2q2 =+++ +  and 

2qc≤ 1b2 2
1q

−
+

. 

• m= b2 2
1q




 +

, s=2qc-1. Because s≤m-1 we have: 2qc≤ b2 2
1q




 +

. 

o q=even: m= b2 2
q

, s=2qc-1⇒( )( ) a31c2cc2b3 1q2q2 =−−+ +  and 

2qc≤ b2 2
q

. 

o q=odd: m= b2 2
1q+

, s=2qc-1⇒( )( ) a231c2cc2b6 q1q2q2 ⋅=−−+ +  

and 2qc≤ b2 2
1q+

. 
Like an example let consider N=140=22⋅35. We have q=2 therefore: 

• m=2b, s=4c and ( )( ) 7531051c8cc4b3 22 ⋅⋅==+++ ⇒c=13, b∉Z 
• m= b2 , s=4c-1 and ( )( ) 7531c8cc4b3 22 ⋅⋅=−−+ ⇒ 

o c=1⇒b=2⇒m=4, s=3 – N=140=12+22+32+42+52+62+72. 
o c=2⇒b∉N 

Case 2: q=0  
We have now: ( )( ) a31s2ssm3 22 =+++ . Because 3a=odd and s2+s=s(s+1)=even 
we must have m=odd. 

 Like an example let consider N=55. We have q=0 therefore: 
( )( ) 11531s2ssm3 22 ⋅⋅=+++  

• 2s+1=3⇒s=1⇒m∉N 
• 2s+1=5⇒s=2⇒m=3⇒N=55=12+22+32+42+52 
• 2s+1=11⇒s=5⇒ m∉N 
• 2s+1=15⇒s=7⇒ m∉N 
• 2s+1=33⇒s=16⇒ m∉N 
• 2s+1=55⇒s=27⇒ m∉N 
• 2s+1=165⇒s=82⇒ m∉N 

If the sum has an even number of terms, we have: 
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2qa= ( )
3

1s2m6m6s 22 +++  with 1≤s≤m 

The equality becomes: 
( ) a231s2m6m6s q22 ⋅=+++  

Because 2q ( )1s2m6m6s 22 +++  and ( )1s2m6m6 22 +++ =odd it follows that: 
s=2qb, b≥1. 
From ( ) a31b2m6m6b 21q22 =+++ +  we shall find m if it exists. 
 For example, let N=126=21⋅63 we have: q=1, a=63. Therefore: s=2b and 
( ) 731b8m6m6b 322 ⋅=+++ . We find after all cases that: b=1, m=5 and finally: 

N=126=42+52+62+72. 
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