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1 Introduction 
  

We call continued fractions a number which has the expression: 
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where a0Z, aiN
*
 i1. 

 We shall write: =  ,...a,...,a,a n10 . 

 With Euclid’s algorithm every rational number has as a finite representation like a continued 

fraction. Because, for Q, if an2: =  n10 a,...,a,a =  1,1a,...,a,a n10   we shall consider the shorter 

decomposition for  therefore the first expression. 

 We shall remind, in what follows, from the [2], the principal properties of continous fractions. 

 Let note n=  n10 a,...,a,a  - the convergent of  of order n and n=
n

n

q

p
, (pn,qn)=1. pn and qn are 

called the continuants of  of order n. 

 It is easly to see that: 
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where: p-1=1, p0=a0, q-1=0, q0=1. 

 After these definitions and notations, we have: 
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therefore: 
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from where: 
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 It is easly to see that: 
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After the last statement we can see that any convergent is closer to the value  of the 

continued fraction than any other rational whose denominator is less than that of the convergent. 

Also, the theorem of Lagrange states that any quadratic irrational (that is a number which is 

root of an equation of second degree with discriminant not perfect square) has a periodic development 

as continued fraction, that is: 

cba  =  nk10 a,...,a,...,a,a  

which means that an+1=ak, an+2=ak+1 and so on. 

 The reciprocal is also true. 

 

2 Solving algebraic equations with the aid of continuous fractions 

Let now the polynomial PZ[X] and the equation P=0. First, we isolate the roots in intervals with 

whole ends. Let, for example: x1(a0,a0+1), a0Z. It is not necessary to have only one root in this 

interval. 

The associate Taylor polynomial is: 
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  that is: 
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the root x1 belongs in the interval: 
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Using the Horner’s diagram, the computations are organized as follows, for P=cnX
n
+...+c0 
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 The new diagram has new coefficients: 
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 If at a step we find two or more  such that 0
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  it follows that in the 

interval (a0,a0+1) belongs more than one roots of the ploynomial. 

 

3 Numbers expressed like ratio between prime numbers 

All over in this paper, the software presented was written in Wolfram Mathematica 9.0. 

Let now a number rQ
*
+, r=

s

k

p

p
 where pk – is the k-th prime number. 

First, we will inquire into the existence of a development in continued fraction where all terms 

are primes or 1. 

The next software find the development with maxim length for first 2000 prime numbers. 

Clear["Global`*"]; 

numberprimes=2000; 

nr=0; 

For[k=2,knumberprimes,k++,For[s=1,sk-1,s++,x=Prime[k]/Prime[s]; 

  a=ContinuedFraction[x];b=1;For[p=1,pLength[a],p++,x=Part[a,p];If[PrimeQ[x]||x== 

1,b=b,b=0*b]];If[b==1,nr=nr+1;If[nr==1,c=a;d=k;e=s,If[Length[a]>Length[c],c=a;d=k;e=s]]]]] 

Print[d,"---",e,"---",Prime[d],"/",Prime[e],"=",c] 

 The result of the execution is: 

1430---1158---11933/9349={1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2} 

which means that 
1158

1430

p

p
=

9349

11933
=[1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]. 

If we shall find the development in continued fraction where all terms are primes we find: 

Clear["Global`*"]; 
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numberprimes=2000; 

nr=0; 

For[k=2,knumberprimes,k++,For[s=1,sk-1,s++,x=Prime[k]/Prime[s]; 

a=ContinuedFraction[x];b=1;For[p=1,pLength[a],p++,x=Part[a,p];If[PrimeQ[x],b=b,b=0*b]]; 

If[b==1,nr=nr+1;If[nr==1,c=a;d=k;e=s,If[Length[a]>Length[c],c=a;d=k;e=s]]]]] 

Print[d,"---",e,"---",Prime[d],"/",Prime[e],"=",c] 

and the result of the execution is: 

1271---613---10357/4517={2,3,2,2,2,2,2,2,3,2} 

which means that 
613

1271

p

p
=

4517

10357
=[2,3,2,2,2,2,2,2,3,2]. 

If we shall find the development in continued fraction where all terms are different primes we 

find, for first 5000 prime numbers: 

 

Clear["Global`*"]; 

numberprimes=5000; 

nr=0; 

For[k=2,knumberprimes,k++, 

 For[s=1,sk-1,s++,x=Prime[k]/Prime[s]; 

  a=ContinuedFraction[x];b=1; 

  For[p=1,pLength[a]-1,p++, 

   x=Part[a,p]; 

   If[PrimeQ[x], 

    For[i=p+1,iLength[a],i++, 

     y=Part[a,i]; 

     If[PrimeQ[y], 

      If[x== y,Goto[salt]],Goto[salt]]],Goto[salt]]]; 

  If[b==1,nr=nr+1;If[nr==1,c=a;d=k;e=s,If[Length[a]>Length[c],c=a;d=k;e=s]]]; 

  Print[k,"---",s,"---",Prime[k],"/",Prime[s],"=",a]; 

  Label[salt]]] 

Print["Maximum length is for: ",d,"---",e,"---",Prime[d],"/",Prime[e],"=",c] 

and the result of the execution is: 

Maximum length is for: 3636---1335---33961/10993={3,11,5,7,13,2} 

which means that 
1335

3636

p

p
=

10993

33961
=[3,11,5,7,13,2]. 

In what follows we shall try to find the numbers rQ
*

+, r=
s

k

p

p
 where pk – is the k-th prime 

number, r=  n10 a,...,a,a  for which the reverse: s=  01nn a,...,a,a   is also of the form: s=
v

u

p

p
. 

Clear["Global`*"]; 

numberprimes=2000; 

nr=0; 

For[k=2,knumberprimes,k++, 

 For[s=1,sk-1,s++,x=Prime[k]/Prime[s]; 

  a=ContinuedFraction[x]; 

  lung= Length[a]; 

  c=a; 

  For[p=1,plung,p++, 

   c[[p]]=a[[lung+1-p]]]; 
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  value=FromContinuedFraction[c]; 

If[PrimeQ[Numerator[value]]&&PrimeQ[Denominator[value]],nr=nr+1;If[nr==1,t=a;d=k;e=s, 

If[Length[a]>Length[t],t=a;u=c;d=k;e=s]]]]] 

Print[d,"---",e,"---",Prime[d],"/",Prime[e],"=",t," and reverse:", 

Numerator[FromContinuedFraction[u]],"/",Denominator[FromContinuedFraction[u]],"=",u] 
 We found the maximum length for the first 2000 prime numbers: 

1400---871---11657/6763={1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,2} 

and reverse: 11657/4447={2,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1} 

that is: 
871

1400

p

p
=

6763

11657
=[1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,2] and the reverse development is: 

4447

11657

=[2,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1], both 11657 and 4447 being primes. 
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