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The Complete Theory of Generalized CES Production Function
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Abstract: The paper treats various aspects concerning the generalized CES production function. On the one hand were
highlighted conditions for the existence of the generalized CES function. Also were calculated the main indicators of it and
short and long-term costs. It has also been studied the dependence of long-term cost of the parameters of the production
function. The determination of profit was made both for perfect competition market and maximizes its conditions. Also we
have studied the effects of Hicks and Slutsky and the production efficiency problem.
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1 Introduction

To conduct any economic activity is absolutely indispensable the existence of inputs, in other words of
any number of resources required for a good deployment of the production process. We will assume
that all resources are indefinitely divisible.

We define on R" the production space for n fixed resources as SP={(Xy,...,Xn) |xi20, i=1,_n} where

xeSP, x=(X4,...,Xn) is an ordered set of resources and, because inside a production process, depending
on the nature of applied technology, not any amount of resources is possible, we will restrict
production space to a convex subset D,cSP — called the domain of production.

We will call a production function an application:

Q:Dy—>R:, (X1, Xn)>Q(X1,...,.Xn) €R+ V(X1,...,Xn) €Dy
which satisfies the following axioms:
Al. Q(0,...,0)=0;

A2. The production function is of class C* on D, that is it admits partial derivatives of order 2 and they
are continuous on Dy;

aQ

A3. The production function is monotonically increasing in each variable, that is: — >0, i=1n;

OX;

A4. The production function is quasi-concave, that is: Q(Ax+(1-A)y)=min(Q(x),Q(y)) Vie[0,1]
vX,yeD,

Considering a production function Q:D,—R. and Q, €R. - fixed, the set of inputs which generate the
production Q, called isoquant. An isoquant is therefore characterized by: {(xl,...,xn)erl Q(X1,.,Xn)=
Q, } or, in other words, it is the inverse image Q(Q,).
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We will say that a production function Q:D,—R. is constant return to scale if
Q(AX1,..., AXn)=AQ(Xy,...,.Xn), With increasing return to scale if Q(AXy,...,AX))>AQ(Xy,....X,) and
decreasing return to scale if Q(AXy,...,AXn)<AQ(X1,...,Xn) VAE(1,00) V(Xy,...,Xn) €Dp.

2 The generalized CES production function
The generalized CES function has the following expression:
1

Q:Dyc R} -{0} >Ry, (X1,..,Xn) >Q(X1,..., Xn)= o{iBixfjp eR. V(X4,...,Xn) €Dp, a,B1...,Br>0,
i=1

y€(-0,0)u(0,1), yp>0
For y=p we have the classical CES production function.
Computing the partial derivatives of first and second order, we get:

1
n -1 Ve -
Q' =at ix?‘{ZkaK]p _IBXQ iz
P P BiXk
k=1
1
? n o7 Bri(p-Dxr X1t _
8 ) P e R
p p k=1 n
PZ(kZBlej
=1

vBiX?z(p(v -1 éﬁkxtj —v(p —1)BiX?jQ

; 2
PZK BkXKJ
ko

=2 ( n — n
Q"xixi:mi—zxi(ZBle]p (p(y—l Zkalj_“/(P_l)BiXiy]:

vi=1,n

Let the bordered Hessian matrix:

0 prﬂlxrl[iﬁkx‘;] pﬁzx;*[iﬁkx‘;] pﬁnx:*[iﬁkxtj
k=1 k=1 k=1
p&xz’l(éﬁkxﬁj ﬁlxzZ[p(y—l{kilﬁkxl}(y—pﬁleJ —BBarlp -1 Xy ~BBarlp -1t X
h kel
HB(Q): Q 0 & ) 141 2 n 1,71
NN PﬁQXE’[ZBkXi] = BBoy(p — X x Box3 | ply —1) 2 Bux [+ (v —p)Boxt | .. = BaBav(p — x5 xi
p ;kak it =
pﬁnxz*(kilﬁkxa] Bl - Y BnXRz[p(vl{knlﬁkX'&}(vp)BnX'A]
- k=h

S

s+l
We find (not so easy): A% =(-1f o (1] A=y TIB TTx/2Q4 Y s=1n.
P

i= i=1
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s+l s+l
Because (-1)SA§:aPS(1J (1- )‘T[ﬁ 1‘[xy 2Qt0Y) jf [ J (1—y)™>0, k=1,n it follows that
p

i=1 i=1
the function is strictly quasi-concave. Also, if the function is quasi-concave we have that

s+1
[ZJ (1— y)s_l >0. But from the definition this condition is equivalent with definition’s conditions.
p

1

We have now: q(x;,-. X1 )= Qg sty grd) = [ZB x! +P, J and the homogeneity degree: r=".
p

The main indicators are;

1
n 1 71 _
. nxi:axﬁixiy_l(ZBkXIijp YB'X Q, i=1,n - the marginal productivity relative to the
P k=t pZkaV
k=1

production factor x;;

1
n o N
=&(Zﬁix?jp =2 , 1I=1,n - the average productivity relative the production factor x;;

y-1
o RMS(i,j)zg—‘(ﬁ} , 1,Lj=1,n - the partial marginal rate of technical substitution of the factors i
X
] J

and j;
Xt —

o RMS(i)le'#, i=1,n - the global marginal rate of substitution between the i-th factor and

e

;BJ?XJZ(H)

i
the others;

X! —
°* g =ZB'—X', i=1,n - the elasticity of production in relation to the production factor x;;
P BrXi
k=1

e Gj=y-1, ij=1n, i# - the relative variation of marginal rate of technical substitution relative to
factors i and j at the relative variation of the factor endowment ratio with factor i relative to factor j.

Reciprocally, if for a homogenous production function of degree r: c;=y -1, i,j=1,_n, i#], y=1 we have

that Gij: Xi w :'Y_l
OX;

But, in terms of q(xy,...,%,,4) We obtain:

Lqiq_iq oq
oyl ox; oniowon; . . ——
1) Gi=y; 6q aq =y-1,1,j=14,n-1, i#

Oxi O
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n-1 A2
] g s, g

h ox, i J;=;@x,-8x. oxf —18x,
(@) oin=1y; =v-1,i=,n-1
oq = og
-2
6)@[ i OX J
From the first relations, multiplying by y; and summing with j=i:
82q oq IS a
— —— (=1 i —
6x.;§’5x o % Vor, ﬁxi( );1 Yoy,
J#
Replacing in (2) we find that:
0 oq .
®3) re ‘3 (—f)x[ qj —(y-rg-i=1n-1
6XA a i
After multiplying (3) with S—q it follows from (1):
Xj
2
@) (- )[aq] A g8 g ij=Tn1, i
oxi ) Ox; O%i O%iOX;
% oq \ oq
(5) rxiq—+(1—r)x{—] =(y-2rg—,i=Ln-1
5Xi2 Oxi Oxi
aq° oq
oy pa - olng — N
Let note: X, = Xi __ 9K =p ,i=1,n where peR . We have that:
q° q Oxi
A TG e
. oo Ox; O  OX. _
©) ax,zp %ioX : i 0L _ i ij=in
O j q oxi

g _qoX, 109 oq

Because from (6) we have:
Oxiox; P Ox; P9 Ox OX;

it follows from (4) and (5):

% 0X; =_r+p2—rpxixj
OX.j rp

oX; :y—lxi _r+p2—rpxi2

(©))
Ni i rp

We have now the first differential of X;:

n-1 . _ _ _
dX; = zaXId ox IdXi:Xi(rp - rdq+y 1dXiJ
i1 Oxj aXi rpq Xi

j#
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rp—p-r

therefore: d(lnxi—mlnq—(y—l)lnxi]:O from where: X, =C,q " x/*. Taking into
rp

account the definition of X; we finally find that:

—Ip+p+r

+r—r
9q * C%XA-"A(XP v Xont)

c PrI-rp

px, + A, (XgseeXi X ) We Obtained from (4), (5):
Wp

Noting g=

2
(10) —r(p—l) a_gﬁ_,_ g _

p+r—TIp oy Ox; OXiOX;

rp-1) (o o%g og
11 —_— —-1)jg——
an o x(axj FOli e = = )gaxi

But g=C; L_erxg’ + A (g s X ) iMplies that:
ryp

- 2
a_g_P"'r—rPC_X_yfl’ ﬁ:aAi(Xla---aXi1---1Xn—1) o9 -0, 0%g p+r—rp( —1)CX

oL rp’ o OX,j OX,j ’ OXiOx j - ot rp’

from where:

(12) (P 1)CXV16A (le vXu - Xn 1) =0

2 iAi

OX,j
therefore 22 Gt i) =0 that is A=constant.

OXj
—rp+p+r
. U p+r—rp , . -
After these considerations: ¢ " =C;————y/{ +A,; and summing for i=1,n —1:
ryp

—oeert p+r—rpd
(13 g " ==——=-2Cyl +C,
ryp-  ia
r+p—rp
e

Denoting = we finally have:

1

(14) q=[£”§cix¥ +CnJC

YPi=t
therefore q is a CES production function.
1
n
Considering now again the generalized CES production: Q(xl,...,xn)=a(ZBixinp let search the
i=1
dependence of the parameters By,...,Bn,Y.p-

We have:
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1.
@:g(iﬁjx]/}p 1X;{= ?X:/

By pll pZBjX]/
=
1 4 y—l
@:ﬂ[iﬁ.xylpliﬁ)(?/l: YQEBixl
A S Y

-

ool 2

op i-1

From these relations we have that at an increasing of a parameter f; the production Q will increase also

if p>0 and decreases if p<0. Because yp>0 it follows that Q will increase if y increases. On the
JE— n

restriction of production’s domain at D’y={(Xy,...,Xn) | xi20, i=L,n, > B;x! =1} we have that Q will
i=1

decrease at an increasing of p and on the restriction of production’s domain at D”,;={(X,...,Xn) | x>0, i=

JE— n
1,n, > B;x{ <1} we have that Q will increase at an increasing of p.
i=1

In particular, for the generalized CES function related to capital K and labor L: Q=

1
oc(BKKY + BLLVF we have that the main indicators are:

N — YBKKY?lQ M= YBLLV?lQ
“ P( kK’ +BLLV) P(BKKY +BL|—V)
T

_ B (K™ _ B (LY
RMS(K,L)= RMS(K)-B—K(IJ RMS(LK)= RMS(L)_B—'-(EJ

L K

g = MBKT o B
“ P(BKKY"'BLLV) ) P(BKKY"'BLLV)

e o=y-1

If y=p and Bx=B, BL.=1-B we obtain the main indicators of the classical CES production function:

BK'™Q _ (@-pLQ

* nK:BK“r(l—B)LY’ “UBKY +(1-B)L
R

. _ _ B (KYT B} _1-B(LY”
RMS(K,L)= RMS(K) 1—[3(Lj , RMS(L,K)= RMS(L) 5 [Kj
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BK - 1-pL’
BKY +(1—-p)L" " BKY +(1—B)L"

e o=p-1

o g =

3 The costs of the generalized CES production function

Considering now the problem of minimizing costs for a given production Q,, where the prices of
inputs are p;, i=1,n, we have:

n
min_p, X,
k=1
1
(Z&Xl}pz 0
Xqpeen Xy 20
lefl anﬁfl 1
anﬁ o EH:B ! X=(B”p' HX i=1,n-1
p X p X 1 n? ’
From the obvious relations: { id « < . "a we obtain: BiPy .
n - n g
OL[ZB.X.YJP=Q0 G(Z;,B|X|YJ =Qy
i=1 i=
y 1
Bp(vfl) Yg L X e
and from the second equation: a="——Xx7 | >, et =Q,
pﬁ(v—l) =
1
y-1 _
Noting r=> o, we finally obtain: X ' QO, i=1n
k=1 l _i L y
The total cost is:
P vt
n.oo Qg n - 11 Y
Tczzplxlz_p _ZB|y p|y
1=] aY 1=
At a price change of one factor, ie. X, from the value px to P, we have: TC=
-1
s . L B A
0B+ 2B
o |<1k

where the relative variation of the total cost is:
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ATC TC-TC |k
TC  TC L
5]

Let us now consider the behavior of the total cost of production function at a parameters variation. We
have:

vy-1

g
a

1

e Q° {Zﬁf:p.‘l} ol

P
B
Therefore, if y<0 we have that ac >0 and if y>0: ac <0.
k k

ol

n
If we consider now for a given output Qg the inputs Xxi,...,X, such that: (Z J

1 1
Qo | QBT
=03 B! =0y Bix]
YR n " YA .
Xy = T . We have STC,=> piX; = 2.piX; + Py T representing the short-
Bl B Bl

term total cost when factors X,...,X,,...,X, remain constant (* means that the term is missing).

We put now the question of determining the envelope of the family of hypersurfaces:

1

Y

-2 Bix{
. n ik
F(Qos XyevesRicrnens X )= 2P + Py -
3 N

Conditions to be met are:
TC Qs Xgreen Kireoer Xy )

=0,i=1,n,i=k
6‘Xa
After the elimination of parameters X,...,X,,...,X, we have either the locus of singular points of
hypersurfaces (which is not the case for the present issue) or envelope sought.

We have therefore:
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=

n * :Jk
TC=2 piX; + Py T
ik !

PeBi| = ZB X}

p - '*tkl —0,i=1,ni=k
P
— Y iy
From the second equation, we have for i=1,n,i=Kk: Xi = P | . Multiplying with f3;
Qb Zn: ¥ !B
-2 BiXi !
p
*R
ZB 1 1
J— v 1y 1y
and summing for all i=1,n,i=k: Q'*k—n (B J ZB therefore:
~0 ZB < i
|¢k
1 1
b ( Pk ﬁiﬁf‘y
a” | By i=1 li
n i=k p: 7
ZBiX;/ = 1 : 1
i=1 Yy Yoy n L 1
ik 14 Pk yzp|y_1[3| y-1
B ) =
i=k
. 1
p
Replacing we have now: X; = pkBli ¢ =
1 . 1
plBE pﬁ E n %l _%1 !
L+ 25 2B
P ) i
i=k
P v
Y| n ST I
From the first equation: TC==0-| 3 ; "*p/™ | .
—|i=l
OLY

We obtained so that the envelope of the family of hypersurfaces of the short-term total cost when all
inputs are constant except one is just the long-term cost obtained from nonlinear optimization problem
with respect to the minimizing of the cost for a given production.

Calculating the costs derived from the (long-term or short-term) total cost now, we have:

-1
Py t

n -t L T
ATC—T—C—QO [ZB, 1 1} (average long-term total cost)

0
(04
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MTC=
Qo

ASTCk= ST Ck =

arC_pQs
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-1
Py vl

{iﬁ. pi
i=1

1 Y y
. ‘1J =P AT C (marginal long-term total cost)
- Y
yo!

1

N Y
2 PiX;
i1

i=k

gg—iBiX?
o i=1

i=k

0

+ Py 1 (average short-term total cost)

BLQ,

1

Y
Q5™

Qo

Q%<
PP =, = 2B
(04 i=1

ik

1

(marginal short-term total cost)
Ta"By

AVTC=

VTG, =P«

(variable short-term total cost)

< |~

gg_iﬁix?
i=1
i=k

of

0

1 (average variable short-term total cost)

BIQ,

n
FTC=>_p;iX; (fixed short-term total cost)
i=1

ik

FTC,

AFTC=
0

_ =k

n

2. PiX;

i=1

(average fixed short-term total cost)
0

Finally we have:

orcC
_ 0P _

€

1 v

B Pt

"I
Py
factor k

oTrcC
_ 0Q, _pP

©TC
Qo

ZBi Pi
i=1

o the coefficient of elasticity of long-term total cost with respect to the price
Y171

the coefficient of elasticity of long-term total cost with respect to the production Q,
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OATC 1

I
__0P _ BRI - the coefficient of elasticity of average long-term total cost with
fun TTATC T, L 1w y ge fong
B el
Py il pi
respect to the price factor k
oMTC 1,
€ __o® _ B =g - the coefficient of elasticity of marginal long-term total cost
marg,p, MTC - N 1y Pk y g g
pk ZBl l | I

i=1
with respect to the price factor k

1
In particular, for the generalized CES function related to capital K and labor L: Q= oc(BKKy +BLLV)E
we have:

1

1 p
= py 1 L
K= K 1 Qg

P11 v 1oy
o B B okt + B

1
_ v-1 P
L= oL Q}

1
p 1 1 v 1 v v

o' BI B PKT + B RY

£ 1 1 =

Y B 7i Y

Te=% [BK pict 4B }

Y

o

LN

1

(Qp BKKY]
Ry

On the short-term, we have for constancy of K: STC =p K +p, and

1
B!
Qp SV TN
ATC==0 [BK TPt +BUTRY }
aY
y-1
P 1 v
MTC= PQgp (B v—lpv—l +B v—lpv—1] !
yo!
1
% g
pK a’
ASTC,= +p, -
. 1
B Qo
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1
|
p ¥
ppL(gg - BKKVJ Qg_l

MC, = T
yo' B!
1
%
72 BKKYJY
VTCszL B
Bl
1
p y
0
p
AVTC =p,_ T
Bi Qo
FTC =p«K
AFTC,= PxK
0
v v
B vflpvfl B yflpy—l
EpK = T i K_i L, gpL = T i L_i
B it + B ol B Pk +B."
€ €

marg,p. ~ “p_*

av,p ~

Emargpx ~Cper Cavp T

In particular, for y=p and Bx=p, B.=1-p we obtain for the classical CES production function:

K= Pk

— P
L= pL 1 QO
1/ 1 p 1 P e
aBf B PR +(1-B) apf
p-1
Q R 1 P\
TC=7°[B "pi? +(1—B)p—1pﬁ‘1}

2 ke |”
o PC
STC=pyK +p ~—74—
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-1
1l op ) p?
MTC=L| B P ipet 4 (1—P) papf™
Yo
1
P
AsTe =Pl p A%
0 (1-B)r Qo
1,
0 1
ppL[ o _BKPJ 8
MC, =
Yap(l—B)p
; 1
0 _BKp
aP
VTCL—pL 1
(L-B)
1
Q BK*’JP
AVTC.=p, -
1-B)eQq
FTCL=py
AFTC, = Pk
0
1 p ( ) e
[3 pflppfl 1— [3 —l 1
SpK - 1 p ) '’ spL - 1 p 1 P ' SQ =1' Sav Pk gmarg Pk ng !
Bt @-B) prpp™ B P rpRt +(@-B) papt™
Sav,pL = 8marg,pL - SPL )
4 The profit

Now consider a sale price of output Qo: p(Qo). The profit is therefore:

I1(Qo)= P(Q0)-Qo-TC(Qo)
It is known that in a market with perfect competition, the price is given and equals marginal cost. The
profit on long-term becomes:

I1(Q0)=P(Q0)-Qo-TC(Q0)=MTC(Q0)-Qu-TC(Qo)= AT C(Q,) Q5 =

y-1

st
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1
In particular, for the generalized CES function related to capital K and labor L: Q= oc(BKKY +BLLYF
L_l

1 xr Y
we have: T1(Qo)= [p 1) Qs [BK Tprt +BL“p{1] and for the classical CES function (y=p and
Y

(XY

Pr=B, BL=1-B): I1(Qo)=0.

On short-term, when factors x,,...,X,...,X, remain constant, we have:

T1(Q0)=p(Q0)-Qo-STCK(Q0)=MTC(Q0)-Quo-STCi(Qo)= AVT C,'(Q, Q5 — FTC,

therefore:

[1(Qu)=p, (zg— J X S s gpixi

v Bk l—l
2k

i=k

1

For Q= oc(|3KKy + BLLVF we have that if K=constant:

H(Qo)szLHZB—ljer%(—S}—pKK and if y=p and Bx=PB, P.=1-p for classical CES: T1(Qo)=
Y TPL

_BKE ]
pLL[1+(1—B)LP) pcK

The condition of profit maximization for an arbitrarily price p, depending on the factors of production,
n -

is: maxTI(x,,...,X, )= max{pQ(xl,...,xn)—Zpixij from where S—Q =Pi i=In or otherwise:
i=1 Xi P

1 1

YB|XY lQ p| from where: X; ( PiP szval But Q:a(iBiX;’Jp implies:
pZBkXV p PYBiQ i E

YHpr—p 1 op
n Y i Te X
BXi = PrQ — therefore: X; = Pl Q T

k=l p(r-1) 1 vf 1o, L v )y
i=1

Because Q is quasi-concave the solution of the characteristic system is the unique point of maximum.

p y-1

NETN T
The maximum profit is: H(xl, WX ) pQ——{ZB. _lp._lJ .

o
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1oe
1 _ 1O
For Q= oc(BKKy +BLLY)p we have that: K= P"Q o
-V T 2 T 2 1
B&_lo‘y BKy_lp&_l + BLy_lpZ_l
28 . 1 1 =
— -1 L L LY Y\ y
[ Pl Q - ( ) Q_Q_[B 1 1+B ip } '
Aol 1 v L)y ¥
BIa’| Btk + B Rl *
If now y=p and Bx=B, B.=1-p for classical CES:
1
_ o ~ o -
K = L _, L= PLQ _, n(KD)=
S ,i L 1 P )e A T 1 P )e
ap? B " Ipkt +(L-p)pipp af? B " Ipkt +(L-p)papp
p-1

|OQ—9(B1 F-p) e
o

%)

1
=

;/
=

5 The Hicks and Slutsky effects for the generalized CES production function
1

Now consider the production function Q(X,...,X,)= o{ZBixi’}p and factor prices (p )I _in- The non-
i=1

linear programming problem relative to maximize production at a given total cost (CT,) is:

mam(iﬁix?jp

=1

Zpkxk =CT,

xl, X, 20

Because the objective function is quasi-concave and also the restriction (being affine) and the partial
derivatives are all positive we find that the Karush-Kuhn-Tucker conditions are also sufficient.
Therefore, we have:

Q. o aQ _
aXl(xl,...,xn): ax( e Xy)

P ' Py
2 PX, =CT,
k=1
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From the first equations we obtain:

Bxi™t _ _ BoXi

P, Py
2. PX, =CT,
k=1

therefore:
S
-1
X, =(%JV X,, k=1,n-1
pan

n
2.PX, =CT,
k=1

Substituting the first n-1 relations into the last we finally find that:

1 Ly

i R
Xok _w ,k=1,n and the appropriate production: Qo(Xy,...,X,)= a[ZBi Hpiv_l} CTy.
. i=1

Suppose now that some of the prices of factors of production (possibly after renumbering, we may
assume that they are: X,...,Xs) is modified to values p,,,,.p , the rest remain constant.

From the above, it results:

1 1
BkHW&CTo 1
Xtk =" 1 7 N L L'k: S
ZB| Yﬁlr);/il + ZBI Yﬁlplvil
i=1 i=s+1
I
Y1571 T
Xf,k = 1Bk pk C 0 Y ,k:S+1,n

ZB. & TR ) ‘1p.‘1

i=s+1

We will apply in the following, the method of Hicks. To an input price change, let consider that the
production remains unchanged, leading thus to a change of the total cost. We therefore have:

o ,LLLTY_X n,ii%y ¥
ZBI l 1 ZBI l | - CTgZ(X ZBI }/71F)i}/7l CTOp
i=s+1 i=1

from where:
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The Hicks substitution effect which preserves the production is therefore:

_11[i&l]} LZ&l.l_i&Vmﬁq

_ —_R 1yl
A Xy = Xintk — Xok =Bk’ P

i=1 i=s+1

[%‘1Z&lqmll

The difference caused by the old cost instead the new total cost one is therefore:
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We shall apply now the Slutsky method for our analysis.

At the modify of the price of the factors xu,..

factors is:

..Xs, the total cost for the same optimal combination of
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1 1
Zp B; ‘1p,‘l+ >p ;P
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CT, = 7 T CT,
ZBI 1 1 + ZBI l I l
i=s+1
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IR (N 11 HET
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The appropriate production is:
T _t L %
[Zpﬁj 1= l zp BJ 1 J CTP
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[ZB. p! < >, ‘1p.‘1]
i=s+1
The Slutsky substitution effect which not preserves the production is therefore:
AsXy = Xjntk _X0k =
1 1 i _t i 1 ox 1 L
1 Yl[zp BJ l ZP Bj 1 J {ZBI "'p 1 ZPI l | IJ
-— j=s+ i=s+ —
y-1 =
By R CT,, k=1,
[ZB. R+ 2By “p.“}
i=1 i=s+1
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' ' 1y 1
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and the difference caused by the old production instead the new production one is therefore:
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For Q= oc(BKKy +B, L )E we have that, for s=1 (that is for a capital price change):

_r
1

Al=Lp —Lo=B."p{

IEERE AR U Y
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6 Production efficiency of generalized CES production function

Let now two generalized CES production functions for two goods @, ¥ and a number of n inputs
Fi,...,Fn available in quantities X,,,, X, . Production functions of @ or ¥ are:

Q‘I’(Xl"“'xn)zA(gaiX?j?’, 0 (e, )= B(iﬁixfji

i=1

appropriate to the consumption of x, units of factor Fy, k=1,n.
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y-1 v 1 -
We have seen that: 1, = Y0X{ Qo My, = “an i=ln.
pZakXﬁ VZBka
P} pr}

The production contract curve satisfies:

i=1

1
n n N
Ayaixiy_lVZBk(Xk - Xy )”[Z%X?Jp
n¢,xi _ k=1

= T =, i=Ln
n‘P,Xi - - n n - ;
By (X; —x;) pkzlakxl(gﬁi(xi _Xi)yJ
= 1=
Dividing for i#j: x; = ! and for i=1: x; = — ,j=2,n. Finally,
&P _1X ~Xi Py TR
oiB; X o) X1
for x;=A we have the equation of production contract curve:
X, =\
X.
_ J

oiBy |1 X — A 41
alﬁj A

If we consider now the input prices: ps,...,p, we have that for the production contract curve:
X1=01(A),.... Xn=0n(1), LeR:

Xy _91(7“)27‘
X.
X;=0;(%)= i heR
oy |t X, - 1
oyB; A
and:
ncb,xj (gl(?\')aagno\')) JY}' . =
p;= V= y—1V'J:1’n'
Mo, 010,-9, (4) L
(Xlky_l LjB % —h +1
oclﬁj A
. ocji}_l —
For v=1 we then obtain: p;=1, p;= T, 0=2,n
1
| R
oclﬁj A
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n
If the initial allocation of factors of production was X, =(a1,...,an) we have that > p;(a;—x;)=0
j=1

=0 from where it follows A".

therefore: (a; — ) + i
=2

1 Z(Yfl)
oM WPy X =
OLlBJ- A
X, =\
—g,0.)= X
For this value we find now the final allocation: 4 i = 9i\*)= 1 N
3Py |7 %y~ +1
oclBj Iy

7 The concrete determination of the generalized CES production function

Considering an affine function: f:R">R, f(Xy,...,.X,)=B1X1+...+BXn+Bn+1 and a set of m>n+1 data:
(xlyk,...,xn'k,fk), k=1,m the problem of determining B;, i=1,n +1 using the least square method is to

m
minimize the expression: Z(lel,k ot BoXp g B — fk)2 that is to solve the system:
k=1

m m m m —_
B XppXik ot B 2 X wXix +Bria 2 Xik = 2 FXip i =10
k= k=1 k=1 k=1

m m m
Blle,k +...+ Bn zxn,k + mBn+1 = ka
k=1 k=1 k=1

Considering the matrix:

m 2 m m

Z(Xl,k) D XXk e DXk

] ] ka1

m m > m

0= 2 XikXok Z(Xz,k) e 2 X0k

k=1 k=1 k=1
s =
D Xy D Xo e m
ka1 k1

and ©;; the cofactor of the (i j)-element in ® we will obtain:

m m m
O szxl,k +.o.+ ®niszxn,k + 0O > T
k=1 k=1 k=1 ,i=1,n+1
det®

Bi =

1
) 1
Considering now a production function Q(xl,...,xn)zA(Zocixiyjp we put the problem of concrete
i=1

determination of the parameters A, v, p, o, i=1,n .

Let therefore a set of m>n+1 data: (x'l‘,...,xﬁ,Qk), k=1,m.
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i=1

n
Considering the equation of Q in the form: Q° :A{Zaix?j we will take for the beginning A=1

n
(because A will enter in the structure of o) and we have: Q” => a;X/ .
i=1

Considering fixed p and y, we will modify the data set to the new one: (Xf,k,---,x?w,k ,Qﬁ), k=1Lm.

From above, we will obtain the values of o, i=1,n. For an accurate determination of Q we will vary
the values of p and v till we will find the maximum value of the correlation coefficient.

8 Conclusions

The above analysis reveals several aspects. On the one hand were highlighted conditions for the
existence of the generalized CES function. Also were calculated the main indicators of it and short and
long-term costs. It has also been studied the dependence of long-term cost of the parameters of the
production function. The determination of profit was made both for perfect competition market and
maximize its conditions. Also we have studied the effects of Hicks and Slutsky and the production
efficiency problem.
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