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Abstract: The paper treats various aspects concerning the generalized CES production function. On the one hand were 

highlighted conditions for the existence of the generalized CES function. Also were calculated the main indicators of it and 

short and long-term costs. It has also been studied the dependence of long-term cost of the parameters of the production 

function. The determination of profit was made both for perfect competition market and maximizes its conditions. Also we 

have studied the effects of Hicks and Slutsky and the production efficiency problem. 
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1 Introduction 

To conduct any economic activity is absolutely indispensable the existence of inputs, in other words of 

any number of resources required for a good deployment of the production process. We will assume 

that all resources are indefinitely divisible. 

We define on R
n
 the production space for n fixed resources as SP=(x1,...,xn)xi0, i= n,1  where 

xSP, x=(x1,...,xn) is an ordered set of resources and, because inside a production process, depending 

on the nature of applied technology, not any amount of resources is possible, we will restrict 

production space to a convex subset DpSP – called the domain of production. 

We will call a production function an application: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

which satisfies the following axioms: 

A1. Q(0,...,0)=0; 

A2. The production function is of class C
2
 on Dp that is it admits partial derivatives of order 2 and they 

are continuous on Dp; 

A3. The production function is monotonically increasing in each variable, that is: 
ix

Q




0, i= n,1 ; 

A4. The production function is quasi-concave, that is: Q(x+(1-)y)min(Q(x),Q(y)) [0,1] 

x,yDp  

Considering a production function Q:DpR+ and 0Q R+ - fixed, the set of inputs which generate the 

production 0Q  called isoquant. An isoquant is therefore characterized by: {(x1,...,xn)DpQ(x1,...,xn)=

0Q } or, in other words, it is the inverse image  0
1 QQ . 
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We will say that a production function Q:DpR+ is constant return to scale if 

Q(x1,...,xn)=Q(x1,...,xn), with increasing return to scale if Q(x1,...,xn)>Q(x1,...,xn) and 

decreasing return to scale if Q(x1,...,xn)Q(x1,...,xn) (1,) (x1,...,xn)Dp. 

 

2 The generalized CES production function 

The generalized CES function has the following expression: 

Q:Dp
n
R -{0}R+, (x1,...,xn)Q(x1,...,xn)=














 

1

n

1i
iix R+ (x1,...,xn)Dp, ,1...,n0, 

(-,0)(0,1), 0 

For = we have the classical CES production function. 

Computing the partial derivatives of first and second order, we get: 
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Let the bordered Hessian matrix: 
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We find (not so easy): B
s =      1s1

s
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 , s= n,1 . 
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Because (-1)
s B
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0, k= n,1  it follows that 

the function is strictly quasi-concave. Also, if the function is quasi-concave we have that 
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0. But from the definition this condition is equivalent with definition‟s conditions. 

We have now:  1n1,...,q  =  1,,...,Q 1n1  =
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, i,j= n,1  - the partial marginal rate of technical substitution of the factors i 

and j; 
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, i= n,1  - the global marginal rate of substitution between the i-th factor and 
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ix =











n

1k
kk

ii

x

x
, i= n,1  - the elasticity of production in relation to the production factor xi; 

 ij= 1 , i,j= n,1 , ij - the relative variation of marginal rate of technical substitution relative to 

factors i and j at the relative variation of the factor endowment ratio with factor i relative to factor j. 

Reciprocally, if for a homogenous production function of degree r: ij= 1 , i,j= n,1 , ij, 1 we have 

that: ij=
i
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From the first relations, multiplying by j  and summing with ji: 
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therefore q is a CES production function. 

Considering now again the generalized CES production: Q(x1,...,xn)=
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dependence of the parameters 1,...,n,,. 

We have: 
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From these relations we have that at an increasing of a parameter j the production Q will increase also 

if 0 and decreases if 0. Because 0 it follows that Q will increase if  increases. On the 
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 In particular, for the generalized CES function related to capital K and labor L: Q=
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3 The costs of the generalized CES production function 

Considering now the problem of minimizing costs for a given production Q0, where the prices of 

inputs are pi, i= n,1 , we have: 
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At a price change of one factor, i.e. xk, from the value pk to kp  we have: TC=



















































1

n

ki
1i

1
i

1

1
 

i
1

k
1

1
 

k
0 pp

Q



 

where the relative variation of the total cost is: 
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Let us now consider the behavior of the total cost of production function at a parameters variation. We 

have: 
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If we consider now for a given output Q0, the inputs x1,...,xn such that: 
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We put now the question of determining the envelope of the family of hypersurfaces: 
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After the elimination of parameters nk1 x,...,x̂,...,x  we have either the locus of singular points of 

hypersurfaces (which is not the case for the present issue) or envelope sought. 

We have therefore: 
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From the first equation: TC=
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We obtained so that the envelope of the family of hypersurfaces of the short-term total cost when all 

inputs are constant except one is just the long-term cost obtained from nonlinear optimization problem 

with respect to the minimizing of the cost for a given production. 

Calculating the costs derived from the (long-term or short-term) total cost now, we have: 
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On the short-term, we have for constancy of K: STCL=
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4 The profit 

Now consider a sale price of output Q0: p(Q0). The profit is therefore: 

(Q0)= p(Q0)Q0-TC(Q0) 

It is known that in a market with perfect competition, the price is given and equals marginal cost. The 
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In particular, for the generalized CES function related to capital K and labor L: Q=   
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The condition of profit maximization for an arbitrarily price p, depending on the factors of production, 
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Because Q is quasi-concave the solution of the characteristic system is the unique point of maximum.  

The maximum profit is:  n1 x,...,x =
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For Q=   
1

LK LK  we have that: 
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5 The Hicks and Slutsky effects for the generalized CES production function 

Now consider the production function Q(x1,...,xn)=
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Because the objective function is quasi-concave and also the restriction (being affine) and the partial 

derivatives are all positive we find that the Karush-Kuhn-Tucker conditions are also sufficient. 
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From the first equations we obtain: 
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Substituting the first n-1 relations into the last we finally find that: 
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Suppose now that some of the prices of factors of production (possibly after renumbering, we may 

assume that they are: x1,...,xs) is modified to values s1 p,.,,p , the rest remain constant. 

From the above, it results: 
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We will apply in the following, the method of Hicks. To an input price change, let consider that the 

production remains unchanged, leading thus to a change of the total cost. We therefore have: 
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With the new total cost, the optimal amounts of inputs become: 
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The Hicks substitution effect which preserves the production is therefore: 
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The difference caused by the old cost instead the new total cost one is therefore: 
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For Q=   
1

LK LK  we have that, for s=1 (that is for a capital price change): 
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We shall apply now the Slutsky method for our analysis. 

At the modify of the price of the factors x1,...,xs, the total cost for the same optimal combination of 

factors is: 
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The appropriate production is: 
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The Slutsky substitution effect which not preserves the production is therefore: 
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and the difference caused by the old production instead the new production one is therefore: 
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For Q=   
1

LK LK  we have that, for s=1 (that is for a capital price change): 
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6 Production efficiency of generalized CES production function 

Let now two generalized CES production functions for two goods  ,   and a number of n inputs 

F1,...,Fn available in quantities n1 x,.,,x . Production functions of   or   are: 
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appropriate to the consumption of xk units of factor Fk, k= n,1 . 
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We have seen that: 
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1
n

1i
iii

n

1k
kk

1

iii

1
n

1i
ii

n

1k
kkk

1
ii

x,

x,

xxxxxB

xxxxA

i

i , i= n,1  

Dividing for ij: 

1
x

xx

x
x

i

ii
1

1

ji

ij

j

j


























 and for i=1: 

1
x

xx

x
x

1

11
1

1

j1

1j

j

j


























, j= n,2 . Finally, 

for x1= we have the equation of production contract curve: 
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If we consider now the input prices: p1,...,pn we have that for the production contract curve: 

x1=g1(),...,xn=gn(), R: 
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If the initial allocation of factors of production was  n1 a,...,ax   we have that 0)xa(p
n

1j
jjj 



 

therefore:   0

1
x

xa
x

ax

)a(
n

2j
12

1
1

1

j1

1j1
1

jj
1

1

1

j1

1j

j
1

jj

1 

















































































 










 from where it follows * . 

For this value we find now the final allocation: 
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7 The concrete determination of the generalized CES production function 

Considering an affine function: f:R
n
R, f(x1,...,xn)=1x1+...+nxn+n+1 and a set of m>n+1 data: 

 kk,nk,1 f,x,...,x , k= m,1  the problem of determining i, i= 1n,1   using the least square method is to 

minimize the expression:  


 
m

1k

2

k1nk,nnk,11 fx...x  that is to solve the system: 
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Considering the matrix: 
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and ij  the cofactor of the (i,j)-element in   we will obtain: 

1n1,i ,
det

fxf...xf
m

1k
ki,1n

m

1k
k,nkni

m

1k
k,1ki1

i 










  

Considering now a production function Q(x1,...,xn)=















1

n

1i
iixA  we put the problem of concrete 

determination of the parameters A, , , i, i= n,1 . 

Let therefore a set of m>n+1 data:  kk
n

k
1 Q,x,...,x , k= m,1 . 
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Considering the equation of Q in the form: 







 




n

1i
iixAQ  we will take for the beginning A=1 

(because A will enter in the structure of i) and we have: 


 
n

1i
iixQ . 

Considering fixed  and , we will modify the data set to the new one:  
kk,nk,1 Q,x,...,x , k= m,1 . 

From above, we will obtain the values of i, i= n,1 . For an accurate determination of Q we will vary 

the values of  and  till we will find the maximum value of the correlation coefficient. 

 

8 Conclusions 

The above analysis reveals several aspects. On the one hand were highlighted conditions for the 

existence of the generalized CES function. Also were calculated the main indicators of it and short and 

long-term costs. It has also been studied the dependence of long-term cost of the parameters of the 

production function. The determination of profit was made both for perfect competition market and 

maximize its conditions. Also we have studied the effects of Hicks and Slutsky and the production 

efficiency problem. 
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