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Abstract: The article is the second in a series that will treat underlying conditions to generate a production function. The 

importance of production functions is fundamental to analyze and forecast the various indicators that highlights different 

aspects of the production process. How often forgets that these functions start from some premises, the article comes just 

meeting these challenges, analyzing different initial conditions. On the other hand, where possible, we have shown the 

concrete way of determining the parameters of the function. 
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1. Introduction 

We define on Rn the production space for n fixed resources as: 

SP=(x1,...,xn)xi0, i= n,1  

where xSP, x=(x1,...,xn) is an ordered set of inputs and a restriction of the production space to a 

subset DpSP called production domain. 

It is now called production function (output) an application: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

which satisfies the following axioms: 

1. The production domain Dp is convex i.e. x=(x1,...,xn), y=(y1,...,yn)Dp [0,1] follows 

(1-)x+y=((1-)x1+y1,...,(1-)xn+yn)Dp 

2. Q(0,0,...,0)=0 

3. The production function is continuous 

4. The production function is of class C2(Dp) i.e. admits 2nd order continous partial derivatives 

5. The production function is monotonically increasing in each variable 

6. The production function is quasi-concave that is Q(x+(1-)y)min(Q(x),Q(y)) [0,1] x,yRp 

At the end of this introduction, let note that a function is called homogeneous if rR such that: 

Q(x1,...,xn)=rQ(x1,...,xn) R*. r is called the degree of homogeneity of the function. We will say 

that a production function Q:DpR+ is with constant return to scale if Q(x1,...,xn)=Q(x1,...,xn), with 

increasing return to scale if Q(x1,...,xn)>Q(x1,...,xn) and with decreasing return to scale if 

Q(x1,...,xn)<Q(x1,...,xn) (1,) (x1,...,xn)Dp. 
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In what follows we will consider only functions of two variables: K – capital and L – labor: Q=Q(K,L) 

and we will note =
L

K
. 

We will call the marginal productivity relative to the capital K: K =
K

Q




 and with respect to the labor: 

L =
L

Q




. 

Also, we define wK=
K

Q
 - called the productivity of capital, and wL=

L

Q
 - the productivity of labor 

being the average productivity relative to the production factor K, respectively L. 

From [5], we have that in the general case of the variation of all inputs, for K0 units of input K and L0 

units of input L, and Q(KL)=0: 

Q(K0,L0)=  
1

0

00L0

1

0

00K0 dt)tL,tK(Ldt)tL,tK(K  

We will call also the marginal rate of technical substitution of the factors K and J the opposite change 

in the amount of factor L to substitute a variation of the quantity of factor K in the situation of 

conservation production level and note: RMS(K,L)=
K

L

dx

dx
 =

L

K




 in an arbitrary point x =  L,K  and 

analogously: RMS(L,K)=
L

K

dx

dx
 =

K

L




=

)L,K(RMS

1
. 

It is called elasticity of production in relation to K: K =

K

Q
K

Q





=
K

K

w


 - the relative variation of 

production at the relative variation of K and also the elasticity of production in relation to L: 

L =

L

Q
L

Q





=
L

L

w


 - the relative variation of production at the relative variation of L. 

If the production function is homogenous of degree r, after Euler’s relation: 

rQ
L

Q
L

K

Q
K 









 we obtain that rLK  . 

We finally define the marginal rate of substitution elasticity: =







)L,K(RMS

)L,K(RMS

. 

Let suppose now that the function is homogenous of degree r. 

Because Q(K,L)=  L,LQ  =  1,QLr   we will note  q =  1,Q   and we have: Q(K,L)=  qLr . We 

have therefore: 
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 K =
K

Q




=  

K
'qLr




 =   'qL 1r  

 L =
L

Q




=    

L
'qLqL r1r




 =      'qqL 1r  

 wK=
K

Q
=

 


 qL 1r

 

 wL=
L

Q
=   qL 1r  

 RMS(K,L)=
)K,L(RMS

1
=

L

K




=

 
   



'qq

'q
 

 =
 )('q)(q)('q

)("q)(q

)L,K(RMS

)L,K(RMS












. 

 

2. Conditions of Marginal Rate of Substitution Elasticity 

Let suppose in what follows that: =f(), Q being homogenous of degree r. 

We have the following differential equation: 
 

 



f

)('q)(q)('q

)("q)(q
 that is: 

 
 

)(q

)('q
f)('q

f
)("q

2









  or 

 
 

2
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f

)(q

)('qf

)(q
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. 

Let 
)(q

)('q
)(y




 . We have: 2

2

2

2

)( y
)(q

)("q

)(q

)('q

)(q

)("q

)(q

)('q)(q)("q
)(' y 



























   

The equation becomes: 

 
   2)( yf1)( y

f
)(' y 




  

Again, if we note: 
)(y

1
)(x


  we obtain by dividing at y2(): 

 
  









f1

)( y

1f

)( y

)(' y
2

  
 

  



 f1)( x

f
)(' x  - a linear equation of first degree. 

The solution of homogenous equation 
 

)( x
f

)(' x 



  is:  

 





f
' )(xln   

 
 



 d

f
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Ce)(x
d
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. 
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Returning at the nonhomogenous equation, let 
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f

e)(C)(x . We find that: 
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therefore   
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We have now: 
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and therefore: 
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Returning to the definition of the function y: 

 

 

  
 

Cdef1

e
' )(qln

d
f

d
f






 





 




  

 

  
 

Dd

Cdef1

e
)(qln

d
f

d
f





 


 





 




 therefore: 

 

  
  

 
 





 






d

Cdef1

e

d
f

d
f

De)(q  

Let F be an indefinite integral of 
 


f
 that is:  

 
 



 d

f
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f
'F . We can write: 

 

     
  




d
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e
F

F
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But 
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   deede FFF =
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We have finally: 
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F  and, of course: Q(K,L)= 









L

K
qLr . 
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2.1.  χf ==constant 

  



  lndF  from where: 

If -1: 
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and Q(K,L)=   1

1
111r CLKDL    

For r=1 we obtain the CES production function. 

If =-1: 

 

  
 



d
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e
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ln
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1
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1
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and Q(K,L)= 1C

1
r
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1

LDK 


  - the Cobb-Douglas production function homogenous of degree r. 

2.2.  χf =+ 
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We have therefore: 
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In particular for =1, we have, after developing in series: 
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