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Abstract: The article presents a method of determining the center of a graph based on Bellman-Kalaba’s algorithm. There is 

also a software to determine it in Mathematica 9.0. 
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1. Introduction 

The problem of determining the center of a graph (the node for which the sum of the distancies to the 

other nodes in minimal) comes as a complement to localization theory.  

The problem lies in determining the point (points) for which the sum of distances at fixed points is 

minimal. If for arbitrary points in plan, the problem is very difficult (for three points being solved in 

the mid-century XVII by Pierre de Fermat in a letter to Evangelista Torricelli), for arbitrary number of 

points it is very difficult. In a previous paper (Ioan & Ioan, 2014, pp. 141-148), we tried to give an 

algorithm for this question. 

In the case of a graph the problem is more simple. Let the fixed nodes Ak, k= n,1 , n2 and As – the 

target node. The Bellman-Kalaba algorithm ([1]) states that we build for each node Ak, the effective 

distances matrix D=(dij), dij=d(Ai,Aj), i,j= n,1  where d(Ai,Aj) is the length arc connecting Ai to Aj if 

exists, d(Ai,Aj)= if between Ai and Aj is no arc and d(Ai,Ai)=0. Note now 1,1min  - the minimum 

length of roads from Ai to As consists of a single arc. Obviously, they are in the column “s” of the 

matrix D. If we note now at the step p: p,imin  - the minimum length of roads from Mi to Ms consisting 

of at most p arcs, we have:  1p,kik
n,1k

p,i mindminmin 


 . It is clear that unless there is a path between 

Mi and Ms with at most p arcs we get p,imin =. To do this, we will construct the matrix Dp obtained 

from the addition of each line of the matrix D of the vector 1p,imin  . The vector p,imin  will be 

obtained from the matrix Dp by finding the minimum of the elements in the i-th line. The process is 

continued till we will obtain p,imin = 1p,imin  , i= n,1 . Finally, the vector  p,np,1p min,...,minmin   

will have like components the minimal distances from As to each of the points Ak, k= n,1 . The sum of 

the components of pmin  namely Ss will give total distancies from As to the other nodes. If we repeat 

                                                   
1 Associate Professor, PhD, Danubius University of Galati, Corresponding author: catalin_angelo_ioan@univ-danubius.ro. 
2 Senior Lecturer, PhD, Danubius University of Galati, Department of Economics, E-mail: ginaioan@univ-danubius.ro. 

mailto:ginaioan@univ-danubius.ro


J o u r n a l  o f  A c c o u n t i n g  a n d  M a n a g e m e n t          I S S N :  2 2 8 4  –  9 4 5 9          J A M  v o l .  8 ,  n o .  1 ( 2 0 1 8 )  

24 

this algorithm for each As, s= n,1  and taking finally s
n,1s
Smin


 we shall find the desired node – the center 

of the graph. 

 

2. The Software 

The authors wrote a software in Mathematica 9.0 in order to determine the center of the graph. For 

exemple, we consider the graph: 

 

Figure 1 

Clear[“Global`*”]; 

numberofnodes=12; 

infinite=1000; 

temporaryarray1=Table[0,{i,1,numberofnodes},{j,1,numberofnodes}]; 

temporaryarray2=Table[0,{i,1,numberofnodes},{j,1,numberofnodes}]; 

temporaryarray3=Table[0,{i,1,numberofnodes}]; 

(*The initialization of edge lengths*) 

For[i=1,i<=numberofnodes,i++,For[j=1,j<=numberofnodes,j++,a[i,j]=infinite;vector[i,j]=0]; 

a[i,i]=0]; 

(*The introduction of the actual edges lengths*) 

a[1,2]=5;a[1,3]=10;a[1,4]=6;a[2,3]=2;a[2,5]=4;a[2,7]=7;a[3,4]=1;a[3,5]=3;a[3,6]=9;a[4,8]=3; 

a[4,9]=4;a[5,6]=8;a[6,7]=3;a[7,8]=6;a[8,9]=4;a[8,10]=10;a[9,11]=8;a[10,11]=2;a[11,12]=13; 

For[i=1,i<=numberofnodes,i++,For[j=1,j<=i,j++,a[i,j]=a[j,i]]]; 

(*The determination of the amount of distances from one node to the others*) 

determination[node_,step_]:=Module[{x=node, stepmodule=step},For[i=1,i<=numberofnodes,i++, 
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For[j=1,j<=numberofnodes,j++,temporaryarray1[[i]][[j]]=vector[stepmodule,j]+a[i,j]]; 

vector[stepmodule+1,i]=Min[temporaryarray1[[i]]]; 

temporaryarray2[[stepmodule+1]][[i]]=vector[stepmodule+1,i]]]; 

Print[“Temporary computations:”] 

For[nod=1,nod<=numberofnodes,nod++, 

  For[i=1,i<=numberofnodes,i++,vector[1,i]=a[i,nod];temporaryarray2[[1]][[i]]=vector[1,i]]; 

  determination[nod,1]; 

  determination[nod,2]; 

  step=2; 

-1] ],determination[nod,step+1];step++]; 

sumdistances=0;For[i=1,i<=numberofnodes,i++, 

sumdistances=sumdistances+temporaryarray2[[step+1]][[i]]]; 

  Print[temporaryarray2[[step+1]],", Total distancies=",sumdistances]; 

If[nod==1,minimal=sumdistances;minimalnode=1; 

temporaryarray3[[step+1]]=temporaryarray2[[step+1]], 

If[sumdistances<minimal,minimal=sumdistances;minimalnode=nod; 

temporaryarray3=temporaryarray2[[step+1]]]]]; 

Print["*****************************************************************************

****"]; 

Print[“Center of graph is the node”,minimalnode, “, with total distancies=", minimal," and separated 

distancies:"]; 

Print[temporaryarray3] 

The results of execution are: 
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Figure 2 

 

3. Conclusions 

The software presented above allows us to determine the graph center with applications in the location 

of control centers or distribution points of goods so that the sum of actual distances (on roads) being 

minimal. 

 

4. References 

Ioan, C.A. & Ioan, G. (2012). Methods of mathematical modeling in economics. Galați: Zigotto Publishers. 

Ioan, C.A. & Ioan, G. (2014). The Localization Problem. Euroeconomica, no. 2(33), pp. 141-148. 


