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1. Introduction 

Let consider n goods: G1, ...,Gn whose elasticity of utility is constant, their prices being p1, ..., pn. For a 

consumer whose available income is V, the utility function corresponding to the consumption of xp 

units of good Gp, p= n,1 :  n1 x,...,xU = n1

n1 x...Ax


 where p is the elasticity of utility in relation to the 

good Gp, and A is a positive constant. 

The issue of maximizing the utility relative to the restriction: Vxp
n
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Considering the Lagrangeian: 
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By re-replacing, we get the optimal solution to the problem: 
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Let us also consider a producer with a number of K capital units, having the price of pK and L workers 

whose hourly wage is w for a working time t. If the elasticity of production in relation to capital and 

labor are constant, the function of production is:    LCKL,K,tQ  where  and  are the elasticities 

of production in relation to the capital, respectively the labor, C being a constant. 

Total cost of production: twLKpCT K   leads to a gross profit corresponding to a sales price p: 

    twLKpLCpKCTL,K,tpQL,K,t K   . 

For a given production Q0, the profit maximization condition returns to minimizing the total cost, so to 

the problem: 
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Considering the Lagrangeian: 
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The maximum profit is: 
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2. The Model 

Suppose there are a number of n firms: F1, ...,Fn each having a number of Li employees, i= n,1  where 

we will include, for simplification, the entrepreneur of the firm. Let wi - the average hourly wage for 

Fi, ti - the working time during the analysis period in Fi. We will also assume that Fi produces a single 

good (of constant elasticity): Gi whose sales price is pi. 

From the total revenue received, each employee pays a tax quota to the state budget  . 

For health insurance, pensions and other services that will later be paid back to employees, they pay a 

share   of the salary received. Let us consider the providers of these services (a single service Gn+j, 

j= m,1  for each firm) as being the firms Fn+1, ...,Fn+m each having Ln+j, j= m,1  employees (including the 

entrepreneur), with wn+j - the average hourly wage corresponding to the company Fn+j and tn+j - the 

working time worked during the analysis period in Fn+j. The service price offered by Fn+j will be pn+j, 

j= m,1 . 

Therefore, the tax paid by each employee will be: Tb= iitw , i= mn,1   and for public services: 

Ts= iitw , i= mn,1  . 

The revenues available to Fi staff are therefore (for each individual employee): Vi=   iitw1  , 

i= mn,1  . 

On the other hand, the amount of salaries received by service providers comes from the share   

therefore: 
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The entrepreneur of Fi, i= mn,1   will allocate the profits made for investments that will be considered 

as goods produced by firms. Let us consider the output of Fi as: Qi(t,Ki,Li)= ii

iii LKC


 where βi and i 

represent the constantly assumed elasticities of production relative to Ki, respectively Li, Ci - positive 

constant. At a price of capital 
iKp , the total cost of production in Fi becomes: CTi= iiiiK LwtKp

i
 . 

Therefore, at a sale price pi of the Gi asset, Fi's profit is: 

i=   iiiiKiiii LwtKpL,K,tQp
i
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i

ii 
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The Fi's firm's entrepreneur income will therefore be just that i, i= mn,1  . 

Let considering the set S of social assistants (pensioners, people without income etc.) with a number of 

M people whose incomes represents a share   of the taxes paid by employees (the remainder being 

allocated to government consumption, public works etc.). Their income will therefore be: 
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In the following, we will consider that the utility function of any employee of a production, service or 

social assistance company will be the same for all consumers within the category (it may be different 

from company to company – as an example, the utility of books is different for employees of an 

educational establishment and another for meat producers). In addition, we will assume that all the 

production of a company will be sold. 

Consider the utility functions for an employee of Fi:  mn,i1ii x,...,xU
~

 = mn,i1i

mn,i1ii x...xA 


 , i= mn,1   

where xij represents the quantity of good Gj consumed by an employee of Fi and for social assistants: 

 mn1S x,...,xU
~

 = mn1

mn1 x...Ax 



 where xj represents the amount of good Gj consumed by a social 

assistant. 

The utility functions of the entrepreneurs in the investment activity will be: 
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

, i= mn,1   where yij represents the amount of good Gj consumed by the 

Fi’s entrepreneur. 

Every employee and entrepreneurs want to maximize their utilities in the context of disposable 

income, so problems arise: 
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It follows from the above that the optimum quantities of products are: 
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Therefore, the amount of required Gj needed is: 
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Returning to the problem of maximizing Fj's profit for the quantity Qj we have: 
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Noting for simplicity: 
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we find that: 
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or, in other words: 
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Noting again: 
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The system solution will provide the optimal number of employees of each firm as well as the required 

capital. 

On the other hand, provided that: 
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By replacing the above optimal solutions, we obtain the link between the two quotas (the only ones 

that are imposed at government level):   (tax) and   - for health insurance, pensions and other 

services. 
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