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Abstract: Many papers treat the classical problem of the determination function’s extreme points 
subject to equality type restrictions. The well-known method of Lagrange’s multipliers gives 
necessary conditions but not sufficient. In this paper, it is shown that in additional hypotesys (like the 
linearity) the nature of a stationary point remains the same for the restricted function and for the 
initial one. 
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1 Introduction 

In microeconomic theory, very often it is use the method of Lagrange multipliers in 
order to determine the extremes of a function whose variables satisfy additional 
restrictions. Unfortunately, many times, it is considered that the solutions of the 
system of equations derived from the method of Lagrange multipliers, are 
automatically extreme points. What is certain is that the method of Lagrange 
multipliers involve necessary conditions for the extreme, but not sufficient. 

Given the importance of this method for a range of economic applications, such as 
the optimum choice when the consumer is given his income, the problem of the 
minimizing of the income providing a constant utility, minimizing the cost function 
under conditions of constant output or maximizing profit under restrictive 
conditions, we shall broach the problem of extreme points under additional 

                                                           
1 Associate Professor, PhD, Faculty of Economic Sciences, Danubius University of Galati, Romania, 
Address: 3 Galati Blvd, Galati, Romania, tel: +40372 361 102, fax: +40372 361 290, Coresponding 
author: catalin_angelo_ioan@univ-danubius.ro. 
2 PhD in progress, Faculty of Economic Sciences, Danubius University of Galati, Romania, Address: 
3 Galati Blvd, Galati, Romania, tel: +40372 361 102, fax: +40372 361 290, e-mail: gina_ioan@univ-
danubius.ro. 

AUDŒ, Vol 7, no 3, pp. 203-207 
 



ACTA UNIVERSITATIS DANUBIUS                                        Vol 7, No. 3/2011 
 

 204 

relationships, without using Lagrange multipliers, obtaining, finally, sufficient 
conditions of extreme. 

Let D an open subset in Rn and a function on D: U:D⊂Rn→R, C2-differentiable on 
D such that: (x1,...,xn)→U(x1,...,xn)∈R for any (x1,...,xn)∈D. 

Let also consider the restrictions: gk(x1,...,xn)=0, k= m,1 , m<n Let suppose that 
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From the implicit function theorem, there exist locally the family of functions ϕk, 

k= m,1 , such that: xn-m+k=ϕk(x1,...,xn-m) and 
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, k= m,1 . 

Substituting xn-m+1=ϕ1(x1,...,xn-m),...,xn=ϕm(x1,...,xn-m) in U, we find that the function 
u=U(x1,...,xn-m,ϕ1(x1,...,xn-m),...,ϕm(x1,...,xn-m)) is the restriction of U at 

D1={(x1,...,xn)∈Dgk(x1,...,xn)= 0, k= m,1 }. 

In what follows we shall inquire into the existence of a locally extreme of u, that is 

the locally extremum of U subject to the restrictions gk=0, k= m,1 . 

This problem it is classical and it is solved with Lagrange’s multipliers method. 
The problem arises from the fact that this method does not gives sufficiently 
conditions for the extreme. 

 

2 Main Theorem 

In what follows, we shall compute the second differential of u. 
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The second differential is: 
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Because xn-m+k=ϕk(x1,...,xn-m) we find that: dxn-m+k= ∑
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Theorem 

Let D an open subset in Rn and a function on D: U:D⊂Rn→R, C2-differentiable on 
D such that: (x1,...,xn)→U(x1,...,xn)∈R for any (x1,...,xn)∈D. Let also consider the 

restrictions: gk(x1,...,xn)=0, k= m,1 , m<n with 
)x,...,x(D

)g,...,g(D

n1mn

m1

+−

≠0 and ϕk such that: 

xn-m+k=ϕk(x1,...,xn-m), k= m,1 . 

a) If 
kmnx

U

+−∂
∂ ≥0, d2ϕk – positive half-definite for any k=m,1  and d2U – positive 

definite then d2u is positive definite; 

b) If 
kmnx

U

+−∂
∂ ≥0, d2ϕk – negative half-definite for any k=m,1  and d2U – negative 

definite then d2u is negative definite; 

c) If 
kmnx

U

+−∂
∂ ≤0, d2ϕk – positive half-definite for any k=m,1  and d2U – negative 

definite then d2u is negative definite; 

d) If 
kmnx

U

+−∂
∂ ≤0, d2ϕk – negative half-definite for any k=m,1  and d2U – positive 

definite then d2u is positive definite. 

Corrolary 1 

If ϕk are affine functions for any k=m,1  then d2u=d2U that is the nature of 
stationary points are the same for the function and for those with restrictions. 

Proof If ϕk are affine functions then d2ϕk=0 for any k= m,1 . 

 

3 Application 

One spectacular application is in the economical theory of consumer. Let a 
function of utility U which is supposed to be of class C2 and concave, that is d2U is 
negative definite. If for the goods G1,...,Gn with the corresponding prices p1,...,pn it 
is a limited budget V, the problem is to determine the optimal distribution in order 
to maximize the utility. 

In this case, if we note with x1,...,xn the desired quantities of G1,...,Gn, we have the 

restriction p1x1+...+pnxn=V therefore: xn= 1n
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restriction of U related at this condition is therefore: u=
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,x,...,xU . Because U is concave, follows that if u 

has a stationary point this is a maximum point. 
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