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Abstract: Support Vector Machines (SVMs)have found many applications in various fields. They 
have been introduced for classification problems and extended to regression. In this paperI review the 
utilization of SVM for classification problems and exemplify this with application on IRIS datasets. I 
used the Matlab programming language to implement linear and nonlinear classificators and apply 
this on the dataset.  
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1 Introduction 

Support vector machines have a relatively short history being recently introduced, 

in the early 1990s. However, they are based on decades of research in 

computational learning theory done by Russian mathematicians Vladimir Vapnik 
and Alexey Chervonenkis. This theory, presented in the book of Vapnik from 1982 

Estimation of Dependences Based on Empirical Data, was called Vapnik-

Chervonenkis theory or simply VC theory (Vapnik, 2006). This book describes the 

implementation of support vector machines for linearly separable data (Cortes & 
Vapnik, 1995). A number of important extensions were made to the SVM. In 1992, 

Boser, Guyon and Vapnik proposed the use of kernel trick of Aizerman's to 

classify data separable using polynomial functions or radial basis functions. In 
1995, Cortes and Vapnik extended the theory so that it can be applied for the 

training data inseparable, using a cost function. Later, in 1996 (Drucker, 1996), 

was developed a method for regression based on support vector.  

It should be noted that there are many different algorithms for SVMs like SVM 

Lagrangian (LSVM), Lagrangian finite Newton SVM (NLSVM) or finite Newton 

SVM (NSVM), a comparison between different methods is shown in (Shu-Xia Lu, 

2004).  
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A Support Vector Machine (SVM) is a machine learning that can be used in 

classification problems (Cortes & Vapnik, 1995) and regression problems (Smola, 
1996).  

In order to perform classification, SVMs seek an optimal hyperplane that separates 

data into two classes. In Figure 1are presented some possibilities of linear 
separation of two sets of elements.  

 

Figure 1. Different variants of linear separation of two sets  

(Guggenberger, 2008) 

Support vector machine are also called classifiers with maximum edge. This means 
that the resulted hyperplane maximizes the distance between the closest vectors 

from different classes taking into account the fact that a greater margin provides 

increased SVM generalization capability.  
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Figure 2. Optimal separating hyperplane. The vectors on dotted lines are support 

vectors  

(Guggenberger, 2008) 

The elements closest to the optimal separating hyperplane are called support 

vectors and only they are considered by the SVMs for the classification task. All 

other vectors are ignored.  

 

2. Optimal Separating Hyperplane 

The basic problem that SVM learns and solves is that of classification in two 

categories of a data set.  

Classification problem implies a set of observations represented as pairs (xi, yi), i = 

1, …, r, where xi∈ℝn
 and yi∈{-1, 1}. Each observation contains an n-dimensional 

vector and an associated class. The aim is to determine the optimal separation 

hyperplane, that is the hypersurface (n-1)-dimensional, which best separates the 

two classes Figure 3.  



ACTA UNIVERSITATIS DANUBIUS                                          Vol 8, no. 5/2012 

 

 210 

 

Figure 3. Optimal Separating Hyperplane  

(Gunn, 1998) 

The simplest situation is that there exist a hyperplane defined by a normal vector w, 

which separates the classes,  

 0, bxw  (1) 

Because this hyperplane is invariant to scalar multiplication, we can choose w and 

b so as to meet the requirement 

 1,min  bxw i
i

 (2) 

Constraint in equation (2) tells us that the norm of weight vector w must be equal to 

the inverse distance from the nearest point of the dataset to hyperplane.  

Also, the equation (2) leads to a breakdown of points in two categories.  

 1, bxw i  (3) 

 1, bxw i  (4) 

Assuming that the first category corresponds to points labeled 1 and the second 

category to points labeled -1, the two inequalities are rewritten as 

   ribxwy ii ,...,1,1,  .  (5) 

1,  bxw i and 1, bxw i  are two hyperplans parallel with separating 

hyperplane. This is represented in Fig. 2., where the separating hyperplane is 
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represented by a solid line and those two parallel hyperplans by dotted lines. 

Dotted lines contain some of the training points. These points are called support 
vectors and completely determines the solution of classification problem. The 

distance between the dotted lines is called margin and is to be maximized.  

The margin is  
w

bwρ
2

,   and the maximization of margin is equivalent with 

maximization of the function  

   2

2

1
wwL   (6) 

with constraints (5).  

The solution to optimization problem (6) with constraints (5) is given by the saddle 
point of Lagrange functional (Minoux, 1986),  

     



r

i

i bxwyαwαbwL ii

1

2
1,

2

1
,,  (7) 

wereα  is the vector of the Lagrange multipliers.  

The Lagrangian must be minimized in rapport with w, b and maximized in function 

of 0α . Classic theory of Lagrange duality allow us to transform the primal 

problem (7) in the dual problem, which is easier to solve. The dual problem has the 
form,  

    





 αbwLαW

bwαα
,,minmaxmax

,
 (8) 

That is  
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and the solution is given by 
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with constraints 
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Solving equation (10) with constraints (11) is determined Lagrange multipliers and 

optimal separating hyperplane, given by 

 

,,
2

1 **

1

*

sk

r

i

iii

xxwb

xyαw






 (12) 

where kx  and sx  are any of support vectors coming from the two classes, that 

satisfy relations 0, sk αα and 1,1  sk yy .  

Then, the hard classifier (inflexible edges)  

    **,sgn bxwxf  .  (13) 

From Kuhn-Tucker conditions,  

    ribxwyα iii ,...,1,01,  ,  (14) 

result that only points ix that satisfy 

   1,  bxwy ii ,  (15) 

will have nonzero Lagrange multipliers. These points are called support vectors 

(SV). If the data is linearly separable all support vectors will be on edge and their 
number can be very small. Consequently, the hyperplane is determined by a small 

subset of the training set. Eliminating from the training set points that are not 

support vectors and recalculate the optimal separating hyperplane will achieve the 
same result. Thus, support vector machines (SVM) are used to summarize 

information contained in the training data using support vector.  

 

3. Generalised Optimal Separating Hyperplane 

Most times the data provided for classification are not linearly separable. One way 

to perform classification in such cases is generalized optimal separating 
hyperplane. It separates linear data supporting classification errors. In Fig. 4. we 
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have an intuitive graphical representation of generalized optimal separating 

hyperplane.  

 

Figure 4. Generalized Optimal Separating Hyperplane  

(Gunn, 1998) 

Cortes and Vapnik introduced variables 0iξ  that mesures the classification 

errors (Cortes & Vapnik, 1995).  

In these conditions, the optimization problem will minimize classification errors. 

Constraints for the inseparable case will be of the form 

   riξbxwy iii ,...,1,1,  .  (16) 

where 0iξ .  

Generalized optimal separating hyperplane is determined by the vector w  that 

minimize the functional 

   



r

i

iξCwξwL
1

2

2

1
,  (17) 

with constraints (16), where C is a given constant.  



ACTA UNIVERSITATIS DANUBIUS                                          Vol 8, no. 5/2012 

 

 214 

The solution of minimization of the functional (17) with constraints (16) is given 

by the saddle point of the following Lagrangian (Minoux, 1986),  

     
 
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2
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2

1
,,,, ,  (18) 

whereα  and β  are the Lagrange multipliers. The Lagrangian must minimized 

about w, b, x and maximized about α , β . To solve this optimization problem is 

recalled, as in the classical case at the dual problem  

    




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 (19) 

Explicitly, the dual problem is written 

   












 

 

r

k

k

r

i

r

j

ji
αα

αxxyyαααW jiji

11 1

,
2

1
maxmax  (20) 

and the solution is 
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with constraints 
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The solution of minimization problem in the case of linearly inseparable data is 
identical to those from data linearly separable case except the bounds of Lagrange 

multipliers. Yet, there was an additional problem, namely determining the 

coefficient C. This parameter offers new possibilities to control over the classifier. 

Blanz and collaborators have used the value C = 5 (Blanz et al, 1996), other 
researchers regard C as directly related to a regularization parameter (Smola & 

Scholkopf, 1998), but eventually C must be chosen so that to reflect the knowledge 

of noise from data (Gunn, 1998).  
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4. Generalization in Multidimensional Feature Space 

Another approach to separate two classes is to transfer, using a nonlinear 
applications, the input space into a feature space with higher dimension in which 

data can be separated using optimal separating hyperplane Fig. 5.  

The idea is based on the method introduced by Aizerman and colleagues 
(Aizerman, Braverman & Rozonoer, 1964) which eliminates problems arising from 

increasing the dimension (Bellman, 1961).  

Nonlinear functions that can be used must meet certain conditions, known as 
Mercer conditions. Among the most used functions that satisfy these requirements 

we mention the polynomial, the base radial and sigmoidal functions.  

 

 

Figure 5. Using a higher dimension space for the linear separation of data  

(Lovell & Walder, 2006) 

The optimization problem in this case, can be written 
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where ),( K  is the kernel function that performs nonlinear translation of input 

space to feature space and the constraints are the same as for generalized linear 
case 
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It solves the optimization problem (23) with the restrictions (24) and determine the 

Lagrange multipliers. With this is build a hard classifier in feature space 

    
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where 
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with kx  and sx  any of the support vectors coming from the two classes.  

 

5. Case Study Iris Dataset 

For exemplification of SVM classification we use Iris data set (Fig. 6. ). It consists 
of 150 observations, 50 Iris setosa, 50 Iris versicolor and Iris virginica 50, with 4 

characteristics: length of sepals, sepals width, length of petals and petals width.  
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Figure 6. Representations of Iris data set based on pairs of two features  

(http://en. wikipedia. org/wiki/File:Anderson%27s_Iris_data_set. png, accessed in 2012) 

Iris data set has been extensively used for exemplification of classification and 
grouping methods because in binary representations have both linearly separable 

classes (iris setosa - iris versicolor and iris setosa - iris virginica) and classes that 

are not linearly separable (iris virginica - iris versicolor).  

For exemplification of different methods of classification we use the graphic 

representation sepals length versus petals length.  

http://en.wikipedia.org/wiki/File:Anderson%27s_Iris_data_set.png
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Figure 7. The representation sepals length versus petals length of iris dataset  

For linear separation we use classes Iris setosa and Iris versicolor (Fig. 8. ) And for 

nonlinear classification we exemplify using classes iris virginica and iris versicolor 

(Fig. 10. ).  

 

Figure 8. Iris versicolor and iris setosa according to the length of sepals and the length 

of petals 

 

Figure 9. Linear separation of classes iris setosa and iris versicolor with highlighting 

of support vectors 
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Figure 10. Iris versicolor and iris virginica according to the length of sepals and the 

length of petals  

In this case we note that data are not linearly separable, so we use linear classifier 
with flexible edges and nonlinear classifiers.  

 

Figure 11. Linear separation with flexible edges of classes iris virginica and iris 

versicolor with highlighting of support vectors  

 

Figure 12. Nonlinear separation using a polynomial kernel of classes iris virginica and 

iris versicolor with highlighting of support vectors  
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Figure 12. represents a case of using a polynomial kernel of order 3 and Fig 13. a 

situation encountered for a kernel of type radial basis function.  

 

Figure 13. Nonlinear separation using a kernel of type radial basis function of classes 

iris virginica and iris versicolor with highlighting of support vectors  

 

Figure 14. Nonlinear separation using a kernel of type quadratic function of classes 

iris virginica and iris versicolor with highlighting of support vectors  

For a quadratic kernel In the case of a kernel of multilinear perceptron type.  

 

Figure 15. Nonlinear separation using a kernel of type multilinear perceptron of 

classes iris virginica and iris versicolor with highlighting of support vectors  
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5. Conclusion 

SVM is one of the most promising algorithms in machine learning field and there 
are many examples in which SVMs are successfully used, for example, text 

classification, face recognition, character recognition (OCR - Optical Character 

Recognition), Bioinformatics. On these datasets SVMs apply very well and often 
exceeds the performance of other traditional techniques. Of course, this is not a 

magic solution as set forth in (Bennett & Campbell, 2000), there are still some 

open issues, such as incorporation of domain knowledge, a new model selection 
and interpretation of results produced by SVMs.  

SVMs have been used in several real-world problems: 

 classification of text (and hypertext); 

 image classification; 

 in bioinformatics (protein classification, classification of types of cancer); 

 classification of music; 

 handwritten character recognition.  

In (Chen, Jeong & Hardie, 2008), the authors propose a method GARCH 

(Generalized AutoRegressive Conditional Heteroscedasticity) based on recurrent 
SVR whose performance exceeds other approaches such as moving average, 

recurrent neural networks and parameterized GARCH in terms of their ability to 

predict the financial market volatility. Important aspect that recommend the use of 
SVM we mention the absence of local minima, control solution capacity (Christiani 

& Shawe-Taylor, 2000) and the ability to effectively use multidimensional data 

(Cortes & Vapnik, 1995).  

Strengths of SVM: 

• Training is relatively easy to achieve; 

• No local optimal, unlike neural networks; 

• Suitable for multidimensional data relatively well; 
• Non-traditional data such as strings and trees can be used as input to SVM, 

instead of feature vectors; 

• The compromise between complexity and classification error can be 
controlled explicitly; 

• By performing logistic regression (sigmoidal) with SVM on a set of output 

data, SVM can be interpreted in terms of probability.  

Weaknesses of SVM: 

• It needs a good choice for kernel function; 

• Training takes a long time.  

In graphic representations can see the small number of support vectors, basically 
those who are using the classifier. Due to the small number of support vector 

classification of new cases require scarce resources of time and computing power.  
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The best classification for linearly inseparable case, were obtained for polynomial 

and radial basis kernels which underlines once again the importance of a correct 
choice for the kernel function used.  
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