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On Homogeneous Functions

Catalin Angelo loan*

Abstract: The paper investigates some aspects of the behavior of homogeneous functions. After
determining the degree of homogeneity of partial derivatives of a homogeneous function, it is
determined their general form in the case of integer degree of homogeneity and they are defined in 0.
It also generalizes the Euler relation for homogeneous functions to the higher order partial
derivatives. Finally, it is determined a necessary condition for concavity of these functions.
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1. Introduction

The production functions are fundamental in the theory of producer behavior. One
of the basic requirements that needs to be satisfied is that of homogeneity, meaning
that an increase in inputs will result in an increase in the below sense of its
production. We will propose in what following, to determine some of their
fundamental properties, many of them very useful for economic research, but not
only.

2. Some Facts about Homogenous Functions

Definition 2.1 A non-constant function ¥:DcR"—R is said to be homogenous of
degree o0 if WY (AX)=A"¥(x) for any A>0, A1, xeD such that AxeD.

Theorem 2.1 Let W¥:DcR" >R a homogenous function of degree acR. If 0eD
then ¥(0)=0.

Proof. For x=0 we have: ¥ (0)=A"¥(0) therefore (A*-1)¥(0)=0. Because A=1, a0,
we have ¥(0)=0.
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Remark 2.1 If the relationship W (Ax)=A"¥(x) holds for a=0, and the function ¥ is
continous in 0D, then: ¥(AX)=¥(x) VxeD, hence, by passing to limit after A—0
we obtain: ¥ (x)=%(0)=constant.

Lemma 2.1 Let ¥:DcR"—>R a homogenous function of degree o. Then S—T is
X

homogenous of degree a-1 vi=1ln.

Proof. We have in an arbitrary point (xf,...,xo)eD:

a—lP(xf,...,xg)zlim ‘P(xfxf’thxﬂ)—‘P(xfx?xﬂ)
i t—0 t

But:

%(&Xf,...,kxg):liﬂg ‘P(xxf,...,kx?+t,...,kxﬂt)—‘P(kxf,...,kx?,...,xxﬂ):
I

i WX, 260 + 2, 2x ) - wx?, . ax0, . ax?)

tTg At -

"mk‘*‘P(xf,...,x?+t,...,xﬂ)—K“‘I’(xf,...,x?,...,xﬂ):

t—0 At

Xa1|im‘P(xf,...,x?+t,...,xg)—\P(xf,...,x?,...,xﬂ):xx16_‘1’()(0 XO)
t—0 t oX. 1y=afn Jr

Corollary 2.1 Let ¥:DcR"»R a homogenous function of degree o and of class
k N
Ck(D). Then 8—‘11 is homogenous of degree a-k Viy,...,ikx=1,n, k=1.
OX; .. OX;,
Theorem 2.2 Let ¥:DcR"—>R a non-constant function, homogenous of degree
k

agZ, 0D, lPeC""(D*). Then Ik=>1 Elil,...,ik=1,_n such that aa—\P is not

defined in 0.

Proof. Suppose that all the partial derivatives of V' are defined in 0. Because W is
k
4 .

homogenous of degree a, follows that axa— is homogenous of degree a-k

i ik
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- k
Vig,...,ik=1,n, k=1 and therefore, from the theorem 1 follows: aa—lP(O) =0.
i1--- Ik
Developing in Taylor series around to 0D, follows:
o*w -
P(x)= ‘P(O)+Z z ————(0)x;,..x;, =0 — contradiction.
k=Liy,...d; 18)( aXik

Theorem 2.3 Let ¥:DcR" >R a non-constant function, homogenous of degree

aeZ, 0D, ¥eC*(D). Then ¥= D cy o Xp.. X
0

Proof. From statement, follows that all the partial derivatives of ¥ are defined in 0.
k
. v o
Because W is homogenous of degree a follows that axa—x is homogenous of
il.-. Ik

degree o-k Viy,...i=Ln, k>1. For k=a. we have from remark 2.1:

“y ‘y
_oY =C; ; =constant Viy,...,i =Ln.Fori=..=i o=p= 1,n we get: 0 o
OX;, .0 o

where, by successive integrations with brespect to x, follows: Y=

=C

ZA (xl, KpseesX )x where A, are arbitrary functions. For i,#i;=...=i,1=p=

o

1,n follows: aa_\}' =C,. . We obtain now:

clox,
on!aA“'p(Xl""’)A(p""'X”)xp+(a—l)!aA“‘l’p(Xl""’)A(p""’X”)zCp’i
OX;. oX;. “
therefore: o “p(xlé;(_’kp’ ’ n)=0 Vigp therefore: A, (X Ko X, )
=a,=const. ’
From (o — 1)' _1”()(;)'(_’)A(p""'xn)chvia follows, analogously:
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n

Aa_lvp(xl,...,)A(p,...,Xn): bipXi . If we Contlnue
i=1
i#p
n
AOL—Z,p(le"'yXp;---,Xn): zcipXin etc.
i,j=1
i,}:tp

o
Finally: W= >'c, o xP..xb
=0

Lemma 2.2 Let ¥:DcR" >R’

+

a homogenous function of degree a and ®=In V.

Then Sﬁ is homogenous of degree -1.

Proof. We have: ®(AXi,...AX)=In W(AXy,..,.AX)=aln A+In P(Xq,...,X,)=a In
A+D(Xy1,...,Xn)

The partial derivatives in a point (xf,...,xﬂ)eD are:

aﬂ(xfxﬂ): lim CD(xf,...,x? +t,...,x2)— (D(xfx?xg)
oX; -0 t
o0 X X+ 102X X D)

—(kxf,...,kxo)z lim

n t—0 t

i O, X 2t 2D )= Df? XD xE)
t—0 M

alnk+®(xf,...,x° +t,...,x2)—a|nk—d)(xf,... x? ...,xﬂ)_

lim | JARLLLLY

t—0 At
llim CD(xf,...,x? +t,...,xg)—CD(xf,...,x?,...,xg):182( 0. 2)
A 50 t A OX;

Theorem 2.4 Let ¥:DcR"—>R a C’-differentiable function on an open subset D,
¥(0)=0. The following statements are equivalent:

1. IFI-R, IR, f(A)#0 VA el such that: W(Ax)=f(L)¥(x) VxeD VAel;
nooo¥Y

2. Ja.eR such that: ij—zoc‘l’;
j=1 6XJ-
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n 2 _
3. JaeR such that: Y’ x; o :(a—l)é—\P,jzl, :
i=1 i i aXJ-
k n k+1
4. JoeR Jk>1 such that: a—\P(O)=0 and ina—‘{lz
6Xi1...axik i=1 aXiaXil...aXik

oY . —
(a—k)m, |1,...,|k:1,n.

I Ik
Proof. 1)=2) If Y(AX)=f(A)¥(X) VxeD VAiel then, differentiating with A:
ixja—\P(XX)zf'(x)‘P(x) vxeD Viel. For A=1 we have: ixja—q](x)z
f'(Q)W¥(x) and 2) follows for a=f'(1) .

2)=1) From Zx Y~ we have: Zxx (kx) =a'¥(Ax) or: XM
j=1 GXJ j=1 6 j

=o' (Ax). But this is equivalent with: leO‘X) from where: ¥ (AX)=A"C(X).
Y(\x) k

For A=1 we have: ¥ (x)=C(x) therefore: ¥ (Ax)=A"¥(x) and 1) follows for f(A)=A".

2)=3) |If ija—\yza‘l’ then differentiating with x;, we have:

j=1 5Xj
n n 2
X o + Y 0% fom where: X o =(a- )a_\{f
i1 OX0X;  OX; oX; i1 OX0X; oX;
n 2
3)=2) From > x; ok =(OL—1)a—\P integrating with respect to x; we have:
a[g;y+CDj(xl,...,>?j,...,xn)J
X. + D, (X,4,.. e Xn) | H1X j dx. =
z (ax, e )] I X .

I¢]

(o —1)® +A(x1,...,>“<j,...,xn)]

where ®; and A are arbitrary functions.

Integrating through parts:
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2 oY ov i
éx (ax, + @ (Xg,.. ..,Xn)}Lx,—[@Tj+(1)j(x1,...,xj,...,xn)J_
i#]
oY i
I[aTHD (Xqs-.. ..,Xn)dej :(a—l)(‘P+A(xl,...,xj,...,xn))
J
Further:

ZX[ + D, (Xyyens ,.,xn)]+xj(g%’+CDj(x1,...,>?j,...,xn)J—
j

i#]

Y= O(Xy, e Ko X) =@ Xy K e X )X :(oc—l)(‘l’+A(x1,...,>?j,...,xn))

where © is an arbitrary function. We have therefore, finally:

n n
Zx, a——oc‘P (0 =)Ao X e X )+ OXgy e Ko X ) = DX D (K X i X)
i=1

i= i
i#]j

Because the right side does not depend from x; and x; was arbitrary chosen, we

have that: Zx S—T—a‘l’ =p=constant or: Zx g—ly—oc‘l‘ﬂ% Because ¥(0)=0 we

=1 X; i=1 X

n
have: $=0 and the relation becomes: > x; N o,
i=1 Xi
D oy oY
3)=4) Let P(k): JaeR such that: > X —————=(a—K)————
(k): Joue .é L OXi0X;. .. OX;, ( X, .0,

1,n, k>1. From 3) follows that P(1) is true. Suppose that P(K) is true.

y 1y lk=

Differentiating with respect to x;  we have:

n ak+2\P ak+llP ak+l\P

> x> oK
i1 iOX; ..OX; OX; ax LOX; OX;, OX;, ..OX; OX;
of where:

n k+2 k+1

i1 OX;OX; ..0X; OX; OX; ..0X; O, |

therefore P(k+1) is true.
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ak+2\P ak+l\P . .
4)=3) Suppose that: X, ———= —k—l—, i, ik =
PP > DX, ok t3 o .

i=1 i k+1

1n, k1. Integrating with respect to x; we have:

n ak+1lP

Xi| —————— + (X, X)) |+
i; I[axi@Xil--ﬁX (% 'k1 n)J
i

k+1
6 87‘{’ q)l (Xl’ I an)
k+1 kl .

Jx et dax, =(a-k-1) —2F L A@x,... ‘)

Tkat 8Xik+1 Kl P L0, 110 |k+1 Xy

where @; ~and A has arbitrary functions. Integrating through parts:

n 6k+1\P R akJrl\P
Z Xi(m+®i(Xl""’xik+1""’xn)]+Xik+1(W+ |k+1(X1' |k+1 .y n)
[ PR Y iy

i=1 Tks1

i¢ik+1
ak+1\P ak\}]

— =+t Xy Xi e X ) X =(a—k=1) ————— + A(X,,... X
j[ax axlki Ikl( ' Ikﬁ n)} Ikﬁ ( {axlla |k ( ' Ikl n)
Further:

n ak+1\P ak+1\P

Xi| ————————+D,(Xy,... X)) [+ X | —m—m— XipeernXi ey X)) | —
; '(axiaxil...ax O Xy, )J 'kﬂ(axil...axik Py Koo Xi 0%
i#ikﬂ +1

o*y _

k
(a—k—l{aa—lg+A(xl, i ,Xn)]

where © has an arbitrary function. We have therefore, finally:
n k+1 k
oY (k) oY

2 X

S — o R
i=1 6XI6XI1"'axlk aXil...aXik
ZX (CD (le |k+1 ’Xn))

I7t|k+1

(=K =DAXy e X1 X) + O(Xy e

Ikl .
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Because the right side does not depend from x; —and x; was arbitrary chosen,

n k+1 k
we have that: D X; _oY —(a— k)a—qj
i1 OX{0X; ..0X;, OX; ...OX

I I

=B=constant or:

n k+1 k k
ina—\yz(a—k)a—qjﬂi Because 6—‘11(0):0 we have:
i1 OXiOX; ..0X;, OX; ..0X; OX; ..0X;

I Ik I Ik

n k+1 k
B=0 and the relation becomes: ZXia—\Pz(a—k)é—\P
i OX0X; ..0X;, OX; ..0X

i i
induction after k we will find that 3) holds. Q.E.D.

. From

Corollary 2.2 Let ¥:DcR"->R a homogenous function of degree o, of class

k-1
v (0) =0 then:
OX; ..0X;

I Ik

C*(D), ¥(0)=0. If 3k>1 such that:

n 6k\P
B o, = ka2

ik

n k
Proof. From Theorem 2.4 ) x; A S (0 —k+1)
i OX OX; ..0X;

o<y —
— iy, k=N
OX; ...0X: 2k

i i
Multiplying with X; ,...,X; and summing after X; ,...,x; we obtain:
U ¢ A 4

— X .X, =la—k+1 ——X;_ .. X
ilv'zji:l aXI ...aXi " 'k ( )IZ!EJ:k:l aXI ...8Xi ‘2 'k
1 k 2 k

Through induction, follows:
N oY
— X ..
Z:]_ aXil...aXik Il

iy,

X, =(a—k+1L)a—k+2).aU.

Corollary 2.3 Let ¥:DcR"—-R a homogenous function of degree 1 and of class

2
C¥(D), ¥(0)=0. Then: det(aé ks Jzo.

XiOX
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Proof. From the theorem, we have that for a homogenous function of degree 1 for

n 2

L .. oY n
which in addition ¥(0)=0 we have that  x. — =¥ and » X.
© ,Z:; ' ox; Z‘ ' OX;0X;

:0, J:ﬁ

2
Because the equality holds for any x;,...,x, we find that: det{ai ;’( j =0.
i9%]

3. The Concavity of the Functions

We will present in this section some of the remarkable results of concavity of
functions.

Definition 3.1 A subset DcR" is called convex if Vx,yeD Vie[0,1]=Ax+(1-
A)yeD.

Definition 3.2 A function ¥:DcR"—>R is called convex if vx,yeD VAe[0,1]
follows
W (AX+(1-L)Y)SAY (X)+(1-1) P (y).

Definition 3.3 A function ¥:DcR"—>R is called concave if Vx,yeD VAe[0,1]
follows
W(AXH(L-L)Y)>AW (X)+(1-1) ().

Definition 3.4 A function f:DcR"—>R is called strictly convex if vx,yeD
VA e(0,1) follows f(Ax+(1-1)y)<Af(x)+(1-L)f(y).

Definition 3.5 A function f.DcR"—>R is called strictly concave if Vx,yeD
VAe(0,1) follows f(Ax+(1-A)y)>Af(X)+(1-1)F(y).

Suppose now that ¥:DcR"R., 0D, ¥(0)=0, is homogenous of degree o and
convex. From the definition 3.2, for y=0 follows: ¥ (AX)<A¥(X) VxeD. From the
homogenity of the function, follows: (L*-A)¥(x)<0 Vie(0,1) VxeD. Since ¥ (x)>0
we obtain: A%<\ VAe(0,1). The function g(t)=A" being decreasing we obtain o>1.
Analogously, if the function W is concave then: a<1. In the case of strictly
convexity we will have, analogously: a>1, and of strictly concavity: a<1.

Theorem 3.1 Let ¥:DcR"—R., 0D, ¥(0)=0, homogenous of degree a.. Then:
1. If a<1 then the function ¥ cannot be convex;

2. If a>1 then the function ¥ cannot be concave;

3. If a<1 then the function ¥ cannot be strictly convex;

4

. If a>1 then the function ¥ cannot be strictly concave.
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