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Abstract: The paper investigates some aspects of the behavior of homogeneous functions. After 

determining the degree of homogeneity of partial derivatives of a homogeneous function, it is 

determined their general form in the case of integer degree of homogeneity and they are defined in 0. 

It also generalizes the Euler relation for homogeneous functions to the higher order partial 

derivatives. Finally, it is determined a necessary condition for concavity of these functions. 

Keywords: production functions; convexity; concavity; homogenous functions 

JEL Classification: E17; E27 

 

1. Introduction 

The production functions are fundamental in the theory of producer behavior. One 

of the basic requirements that needs to be satisfied is that of homogeneity, meaning 

that an increase in inputs will result in an increase in the below sense of its 

production. We will propose in what following, to determine some of their 

fundamental properties, many of them very useful for economic research, but not 

only. 

 

2. Some Facts about Homogenous Functions 

Definition 2.1 A non-constant function :DR
n
R is said to be homogenous of 

degree 0 if (x)=

(x) for any 0, 1, xD such that xD.

 

Theorem 2.1 Let :DR
n
R a homogenous function of degree R. If 0D 

then (0)=0. 

Proof. For x=0 we have: (0)=

(0) therefore (


-1)(0)=0. Because 1, 0, 

we have (0)=0. 
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Remark 2.1 If the relationship (x)=

(x) holds for =0, and the function  is 

continous in 0D, then: (x)=(x) xD, hence, by passing to limit after 0 

we obtain: (x)=(0)=constant. 

Lemma 2.1 Let :DR
n
R a homogenous function of degree . Then 
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Corollary 2.1 Let :DR
n
R a homogenous function of degree  and of class 

C
k
(D). Then 

k1 ii

k

x...x 


 is homogenous of degree -k i1,...,ik= n,1 , k1. 

Theorem 2.2 Let :DR
n
R a non-constant function, homogenous of degree 

Z, 0D, C

(D

*
). Then k1 i1,...,ik= n,1  such that 

k1 ii

k

x...x 


 is not 

defined in 0. 

Proof. Suppose that all the partial derivatives of  are defined in 0. Because  is 

homogenous of degree , follows that 

k1 ii

k

x...x 


 is homogenous of degree -k 
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i1,...,ik= n,1 , k1 and therefore, from the theorem 1 follows: )0(
x...x

k1 ii

k




=0. 

Developing in Taylor series around to 0D, follows: 

(x)=  


  




1k

n

1i,...,i
ii

ii

k

j1

k1

k1

x...x)0(
x...x

)0( =0 – contradiction. 

Theorem 2.3 Let :DR
n
R a non-constant function, homogenous of degree 

Z, 0D, C

(D). Then = 









n1
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n1
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...
0,...,

n1... x...xc . 

Proof. From statement, follows that all the partial derivatives of  are defined in 0. 

Because  is homogenous of degree  follows that 

k1 ii

k

x...x 


 is homogenous of 

degree -k i1,...,ik= n,1 , k1. For k= we have from remark 2.1: 










i...i

ii
1

1

C
x...x

=constant i1,...,i= n,1 . For i1=...=i=p= n,1  we get: p

p

C
x









 

where, by successive integrations with brespect to xp follows: =

 


0u

u
pnp1p,u xx,...,x̂,...,xA  where Au,p are arbitrary functions. For ii1=...=i-1=p=

n,1  follows: 












i,p
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C
xx

. We obtain now: 
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!1x
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!  

therefore: 
 




 

i

np1p,

x
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=0 ip therefore:  np1p, x,...,x̂,...,xA

=ap=const. 

From  
 













i,p

i

np1p,1
C

x

x,...,x̂,...,xA
!1  follows, analogously: 
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Lemma 2.2 Let :DR
n
 *

R  a homogenous function of degree  and =ln . 

Then 
ix


 is homogenous of degree -1. 

Proof. We have: (x1,...,xn)=ln (x1,...,xn)=ln +ln (x1,...,xn)= ln 

+(x1,...,xn) 

The partial derivatives in a point  0
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Theorem 2.4 Let :DR
n
R a C

2
-differentiable function on an open subset D, 

(0)=0. The following statements are equivalent: 

1. f:IR, IR, f()0 I such that: (x)=f()(x) xD I; 

2. R such that: 
 

n

1j j

j
x

x =; 
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3. R such that: 
 

n

1i ji

2

i
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where i and  are arbitrary functions. 

Integrating through parts: 
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4)3) Suppose that: 
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Because the right side does not depend from 
1ki

x


 and 
1ki
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 was arbitrary chosen, 

we have that:  
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Corollary 2.2 Let :DR
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R a homogenous function of degree , of class 
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Corollary 2.3 Let :DR
n
R a homogenous function of degree 1 and of class 

C
k
(D), (0)=0. Then: det
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Proof. From the theorem, we have that for a homogenous function of degree 1 for 

which in addition (0)=0 we have that 
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x = and 
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3. The Concavity of the Functions 

We will present in this section some of the remarkable results of concavity of 

functions. 

Definition 3.1 A subset DR
n
 is called convex if x,yD [0,1]x+(1-

)yD. 

Definition 3.2 A function :DR
n
R is called convex if x,yD [0,1] 

follows 

(x+(1-)y)(x)+(1-)(y). 

Definition 3.3 A function :DR
n
R is called concave if x,yD [0,1] 

follows 

(x+(1-)y)(x)+(1-)(y). 

Definition 3.4 A function f:DR
n
R is called strictly convex if x,yD 

(0,1) follows f(x+(1-)y)f(x)+(1-)f(y). 

Definition 3.5 A function f:DR
n
R is called strictly concave if x,yD 

(0,1) follows f(x+(1-)y)f(x)+(1-)f(y). 

Suppose now that :DR
n
R+, 0D, (0)=0, is homogenous of degree  and 

convex. From the definition 3.2, for y=0 follows: (x)(x) xD. From the 

homogenity of the function, follows: (

-)(x)0 (0,1) xD. Since (x)0 

we obtain: 

 (0,1). The function g(t)=

t
 being decreasing we obtain 1. 

Analogously, if the function  is concave then: 1. In the case of strictly 

convexity we will have, analogously: 1, and of strictly concavity: 1. 

Theorem 3.1 Let :DR
n
R+, 0D, (0)=0, homogenous of degree . Then: 

1. If 1 then the function  cannot be convex; 

2. If 1 then the function  cannot be concave; 

3. If 1 then the function  cannot be strictly convex; 

4. If 1 then the function  cannot be strictly concave. 
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