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Abstract: This study re-examines the Ricardian Equivalence theorem (RET) by using advanced time 
series econometric models to investigate updated data of the U.S. budget deficits and real interest 
rates. We employ a multi-model approach to thoroughly investigate the properties of two time series, 
namely the U.S. federal budget deficits (BDEF) and real interest rates (INTRATE) for the study 
period from 1798 to 2009. It is found that BDEF and INTRATE are I(0) processes. The AR (2) is the 
most appropriate model for the BDEF series, while the ARMA (3,2) is the proper model for the 
INTRATE series. The estimated VAR (2) model, comprising the two stationary series BDEF and 
INTRATE, implies that the BDEF series has no effect on the INTRATE series. The Granger-causality 
test also shows that there is no direction of causality from the BDEF series to the INTRATE series. 
Our findings are consistent with what the Ricardian Equivalence theorem predicts and, therefore, 
support the proposition that the budget deficits are neutral. This study significantly contributes to the 
extant literature of the relationship between the budget deficits and the real interest rates by applying 
the multi-model approach. Furthermore, our long time series dataset enables us to make reliable 
inferences. 
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1. Introduction and Brief Literature Review 

The Ricardian equivalence theorem (RET) implies that budget deficits are neutral. 
Given that the RET holds, real economic variables, such as real interest rates, will 
not be affected by the budget deficits (Rose & Hakes, 1995). However, the 
relationship between budget deficits and real interest rates, in fact, is one of the 
most controversial issues in macroeconomics (Aisen & Hauner, 2013; Laubach, 
2009). Economics theory and empirical evidence provide inconclusive answers for 
this relationship (Laubach, 2009; Thomas & Danhua, 2009). For example, a recent 
study of Thomas and Danhua (2009), using the data of the United States (the U.S.) 
in the period from 1983 to 2005, shows that the relationship between budget 
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deficits and real interest rates is statistically significant and economically relevant. 
Similarly, applying the system Generalized Method of Moments (GMM) to explore 
a large panel dataset from emerging economies, Aisen and Hauner (2013) conclude 
that budget deficits have a significantly positive impact on interest rates. Laopodis 
(2012, p. 547) employs vector auto-regression (VAR) and Granger causality 
analyses to investigate data of the United States from 1960 to 2006 and states that 
“budget deficits negatively affect the equity market through increases in interest 
rates”. This implies that the Ricardian Equivalence theorem is violated. Whereas, 
using the Markov regime-switching model to examine data from the U.S. economy, 
Choi and Holmes (2011) point out that the relationship between budget deficits and 
real long-term interest rates switches between an insignificant relationship 
(Ricardian Equivalence regime) and a positive relationship (traditional viewpoint).  

Following Choi and Holmes (2011); and Laopodis (2012), we investigate the 
relevance of the Ricardian Equivalence theorem for the nexus between the budget 
deficits and the real interest rates time series by using a multi-model approach. 
More specifically, we employ appropriate ARMA models and VAR models to 
investigate this relationship. We also use the Granger test to find out the nature of 
causality between BDEF and INTRATE. The null hypothesis in each case is that 
INTRATE does not ‘Granger cause’ BDEF and vice versa. We find that the real 
interest rates may not be affected by the U.S. federal budget deficits. Our finding, 
therefore, is consistent with what the Ricardian Equivalence theorem has predicted.  

This study contributes to the extant literature of the relationship between budget 
deficits and the real interest rates by applying the multi-model approach. In our 
opinion, this approach allows us to thoroughly examine the link between the two 
time series. Furthermore, the technique of impulse response functions is adopted to 
trace out the response of the dependent variables in the VAR system to shocks in 
the error terms. We also apply variance decomposition technique to measure the 
contribution of each type of shock to the forecasted error variance of the variables 
in the VAR model. Finally, to the best of our knowledge, our time series data, 
covering a long period from 1798 to 2009, is the biggest dataset that has ever been 
used in the relevant literature. This facilitates using advanced econometric 
estimations to explore the dynamic nature of the budget deficits-real interest rates 
relation. A long time series dataset enables us to make reliable inferences as well.  

The remainder of the paper is structured as follows. Section 2 will summarize the 
concept on stationarity of a time series and discuss how one can find out if a time 
series is stationary through its autocorrelation function. The formal tests of 
stationarity (augmented Dickey-Fuller test, and Phillips-Perron test) will be briefly 
presented. ARMA models, VAR model, and the relevant procedures of estimation 
will be then introduced to set the theoretical foundation of applications in the next 
section. The sources of data are also indicated in this section. The illustration of the 
above econometric procedures and their inferences, which employs annual data of 
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the United States for the period from 1798 to 2009, will be presented in section 3. 
Finally, there will be some concluding remarks as well as the implications of the 
results for the Ricardian Equivalence theorem. 

 

2. Data and Methods 

2.1. Data 

This study uses annual data on the U.S. federal budget deficits (measured as the 
percentage of GDP) and the U.S. real interest rates for the study period from 1798 
to 2009. These series are respectively denoted as BDEF and INTRATE. The BDEF 
time series are obtained from http://www.usgovernmentDEBT.us/. The nominal 
interest rates and price data, which are used to compute a measure of INTRATE 
time series, are obtained from http://measuringworth.com/datasets.html. Table 1 
presents descriptive statistics of BDEF and INTRATE series. The mean value of 
BDEF is 1.16% while the mean value of INTRATE is 7.16%. There are 211 
observations for each series. Jarque-Bera statistics of the two series show that the 
two series are not normally distributed 

Table 1 Descriptive Statistics  

  BDEF INTRATE 
 Mean  1.165687  7.163307 
 Median  0.020000  6.217515 
 Maximum  28.05000  28.06066 
 Minimum -4.33000 -9.349151 
 Std. Dev.  3.823536  6.075390 
 Skewness  4.165189  0.754984 
 Kurtosis  24.74265  4.238390 
 Jarque-Bera  4766.299  33.52802 
 Probability  0.000000  0.000000 
 Sum  245.9600  1511.458 
 Sum Sq. Dev.  3070.079  7751.176 
 Observations  211  211 

 

2.2. Methods 

Stationary Stochastic Processes 

The important requirement of time series analysis is that the underlying time series 
is stationary, which implies that the distribution of the variable does not depend 
upon time (strictly stationary). However, in most practical situations, a weak 
stationary process often suffices. In short, a weak stationary time series (hereinafter 
referred to as the term “stationary process” or “stationary time series”) {Yt} is 
characterized by: 
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 (1) 

(2) 

(3) 

If a time series does not simultaneously satisfy the above-mentioned characteristics 
of (1), (2), and (3), it is called a non-stationary time series. In other words, a non-
stationary time series will have a time-varying mean or a time-varying variance, or 
both. 

Tests of Stationarity 

At the informal level, the correlogram of a time series, which is a graph of 
autocorrelation at various lags, can be employed to check whether it is stationary or 
not. For stationary time series, the correlogram tapers off quickly. For non-
stationary time series, it dies off gradually. For a purely random series, the 
autocorrelations at all lags 1 and greater are zero. At the formal level, stationarity 
can be identified by finding out if the time series contains a unit root. The ADF 
tests and Phillips-Perron test can be used for this purpose. If the time series is not 
stationary, difference it one or more times to obtain stationarity. 

General ARMA Processes 

First, we define a moving average process of order q, denoted as an MA (q) 
process, as the equation (4): 

 (4) 

An autoregressive process of order p, denoted as an AR (p), is written as the 
following equation (5): 

 (5) 

Where: ɛt is a white noise process which has zero mean, constant variance, and is 
serially uncorrelated; yt = Yt - µ is the demeaned series, with Yt is the original 
series. 

Many stochastic processes cannot be modeled as purely autoregressive or as purely 
moving average, since they have the qualities of both types of processes. The 
logical extension of the models is autoregressive moving average process of order 
(p,q), denoted as ARMA(p, q), and its equation is written as equation (6): 

 (6) 
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The Box-Jenkins (BJ) Methodology 

Having tested the stationarity of a time series, we can apply the BJ strategy to build 
its appropriate ARMA models. This strategy consists of three main steps as 
follows. 

Identification: Choose the most appropriate values for p, q of tentative model. The 
sample autocorrelation function (SAC) and the sample partial autocorrelation 
function (SPAC) of the stationary process are computed to find out if the series is 
purely autoregressive, or purely of the moving average type, or the mixture of the 
two. Model AR (p) is chosen if SPAC correlogram has significant spikes through 
lags p and cuts off after p; and SAC correlogram dies down. Model MA (q) is 
chosen if SAC correlogram has significant spikes through lags q and cuts off after 
p; and SPAC correlogram dies down. In the absence of any of these two situations, 
a combined ARMA model may provide an appropriate representation of the data. 

Estimation: Choose the most appropriate values for the tentative model parameters. 
Ordinary least square method (OLS method) is often used to estimate these 
parameters. 

Diagnostic checking: Examine the residuals from the tentative model just estimated 
to find out if they are a white noise process. If they are, the tentative model is 
probably a good approximation to the process. If they are not, the BJ procedure 
will be started all over again. 

Vector Autoregressive Models (VAR) 

The VAR models consider several time series at a time. Here, all variables are 
treated as endogenous in a simultaneous system. If we have two variables, Yt and 
X t, the VAR includes two equations. The first order VAR would be given by 
equations (7) and (8): 

 (7) 

 (8) 

If each equation contains the same number of lagged variables in the system, OLS 
method can be used to estimate their parameters. However, determining the lag 
length is one of the practical challenges in VAR modeling. A reasonable strategy is 
to estimate VAR models for various lag lengths and then choose the most 
appropriate model on the basic of Akaike or Schwarz information criteria. 

  

1 11 1 12 1 1t t t tY Y Xδ θ θ ε− −= + + +

2 21 1 22 1 2t t t tX Y Xδ θ θ ε− −= + + +
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3. Results and Discussion 

3.1. Tests of Stationarity of BDEF and INTRATE 

Graphical Analysis 

Before we conduct formal tests of stationarity, it is very helpful to get some initial 
impression about the likely nature of the two time series by plotting them. Figure 1 
and Figure 2 show that BDEF and INTRATE series fluctuate around their means 
over the period of study and tend to return to their means in the long run (called 
mean reversion). These give an intuitive clue about the stationarity of the two 
series. 

Correlogram and Statistical Significance of Autocorrelation Coefficients 

The correlogram up to 20 lags of the BDEF series (Figure 3) shows that its 
autocorrelations decline rapidly as the lags increase (we are 95% confident that the 
true autocorrelation coefficients (ACs) from lag 4 onward are zero, except the ACs 
at lags 1, 2 and 3). This, once again, reinforces our feel from previous subsection 
that the BDEF series may be stationary.  

 

Figure 1. The Time Series BDEF (1798-2009) 

 

Figure 2. The Time Series INTRATE (1798-2009) 
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Figure 3. Correlogram of the Time Series: BDEF 

Figure 4 depicts the correlogram up to 20 lags of INTRATE time series that gives 
us an unclear impression of the stationarity. The SACs decay to zero quite slowly 
and have significant peaks up to lag 10 (at the 5% level). 

 

Figure 4. Correlogram of the Time Series: INTRATE 

The Augmented Dickey-Fuller Test (ADF Test) 

In this subsection, we test the presence of unit root in BDEF and INTRATE time 
series by the ADF procedure. On the basis of the above graphical analysis, the 
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“trend” term will be excluded from the ADF test equations of BDEF and 
INTRATE series. The test results are respectively given in Table 2 and Table 3.  

Table 2. ADF Unit Root Test on BDEF 

    t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -6.265051  0.0000 
Test critical values: 1% level -3.461478   
  5% level -2.875128   
  10% level -2.57409   
Note: *MacKinnon (1996) one-sided p-values.   
Null Hypothesis: BDEF has a unit root   
Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=14)   

Table 2 presents ADF unit root test on BDEF series. The t value of BDEFt-1 

coefficient is -6.265 which (in absolute terms) is much larger than even the 1% 
critical t value of -3.461. Hence, the null hypothesis that the time series has a unit 
root is rejected at 1% significant level. This means the BDEF series is stationary. 
ADF unit root test on INTRATE series is given in Table 3. The ADF test statistic -
7.08 is so large in absolute terms that the null hypothesis cannot be accepted at any 
conventional levels of significant (Table 3). The conclusion is that the INTRATE 
series is stationary. 

Table 3. ADF Unit Root Test on INTRATE 

    t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -7.084427  0.0000 
Test critical values: 1% level -3.461478   
  5% level -2.875128   
  10% level -2.57409   
Note: *MacKinnon (1996) one-sided p-values.   
Null Hypothesis: BDEF has a unit root   
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=14)   

The Phillips-Perron Test 

The Phillips-Perron unit root tests presented in Table 4 give us similar awareness 
about the stationarity of BDEF and INTRAT time series to the results from the 
ADF tests. The null hypothesis that the BDEF time series has a unit root is rejected 
at 1% level (Phillips-Perron test statistic = -4.748, p-value = 0.0001). Similarly, the 
null hypothesis that the INTRATE time series has a unit root is also rejected at 1% 
level (Phillips-Perron test statistic = -7.106, p-value = 0.0000). Then both BDEF 
and INTRATE are said to be I(0) processes. 

The results from the Augmented Dickey-Fuller test and the Phillips-Perron test 
imply that BDEF and INTRATE series have limited memories of their past 
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behavior. The impacts of a particular random shock, which may be due to policy 
interventions, on such time series are temporary. It must be mentioned, however, 
that although INTRATE time series is stationary and its correlogram (Figure 4) 
provides us with an ambiguous impression of the stationarity. We can see that even 
with stationarity, it takes a quite long period for INTRATE series to return to its 
long run average. 

Table 4. Phillips-Perron Unit Root Test on BDEF and INTRATE 

    Adj. t-Stat   Prob.* 
Phillips-Perron test statistic for BDEF -4.748796  0.0001 
Phillips-Perron test statistic for INTRATE -7.105677  0.0000 
Test critical values: 1% level -3.461327   
  5% level -2.875062   
  10% level -2.574054   
Note: *MacKinnon (1996) one-sided p-values.   

  3.2. Estimate Appropriate ARMA Models for BDEF and INTRATE 

We have noted that the BDEF and INTRATE processes (in level form) are 
stationary. We can now apply the ARMA (p, q) model to them.  

ARMA Model for BDEF 

From Figure 3, two facts stand out: (1) the SACs decline up to lag 3, then the rest 
of them is statistically not different from zero; and (2) SPACs drop dramatically 
and all SPACs after the second lag are statistically insignificant. This suggests that 
MA (3); or AR (2); or ARMA (2, 3) may be tentative models. These three models 
were estimated by OLS method (the detail results are not reported). For AR (2) 
model, we obtain the equation (9) as follows: 

(9) 

The equation (9) shows that all of model’s parameters are statistically significant. 
The F-value =153.77 is so high that we can reject the null hypothesis that 
collectively all the lagged terms are statistically insignificant. We also see AR (2) 
model provides a slightly better fit than the others, which is confirmed by the 
smallest value of the Akaike information criterion (AIC = 4.66). The adjusted R-
squared of the regression is 0.59, implying that equation (9) can explain about 59% 

1 2

 (2.286)    (14.012)         (-3.772)

2
         R =0.59            d=1.98

         AIC=4.66          F = 153.77

ˆ1.309 0.96 0.258

        

t t t t
bdef bdef bdef ε− −= + − +
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of the movement of BDEF series while the remaining 41% is explained by other 
factors. 

The estimated SACs and SPACs of residuals from equation (9) are given in Figure 5. 
This figure shows that none of the auto-correlations and partial auto-correlations is 
individually statistically significant. Moreover, as we can see from the last column 
of Figure 5, the p-value of the LB statistic up to lag 36 is larger than 5%. Thus, the 
null hypothesis that the sum of 36-squared ACs is zero cannot be rejected. This 
suggests that the series of residuals estimated from equation (9) is a white noise 
process. Hence, the above AR (2) may be the most appropriate model for BDEF 
series. 

ARMA Model for INTRATE 

A similar procedure of estimation (with the technical assistance of add-ins 
‘Automatic ARIMA selection’ on EVIEWS 7.1) is applied for the INTRATE time 
series. The ARMA (3, 2) model for INTRATE series is shown in Table 5. Based on 
the AIC =5.80, this model is preferred to others (the detail results of the other 
models are not reported). The correlogram of the residuals obtained from ARMA 
(3,2) for INTRATE (unreported to save space) gives the impression that the 
residuals correspond to a white noise process. If the ARMA (3, 2) is accepted as 
the most appropriate estimation, it will be able to explain about 49% the behavior 
of the INTRATE series. 
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Figure 5. Correlogram of the Residuals Obtained from AR(2) Model for BDEF  

Table 5. ARMA (3,2) Model for INTRATE 

Variable Coefficient Std. Error t-Statistic Prob. 
C 7.186804 0.976407 7.360462 0 

AR(1) -0.667808 0.099515 -6.710632 0 
AR(2) 0.184886 0.079036 2.339266 0.0203 
AR(3) 0.532881 0.061353 8.685557 0 
MA(1) 1.395079 0.105177 13.26406 0 
MA(2) 0.685288 0.094367 7.261936 0 

R-squared 0.506713 Mean dependent var 7.12311 
Adj. R-squared 0.494503 S.D. dependent var 6.10916 

F-statistic 41.49961 Durbin-Watson stat 1.93599 
Prob(F-statistic) 0 

 

3.3. VAR Model for BDEF and INTRATE Time Series 

The Empirical VAR Model 

In this section, we will consider a bivariate VAR model comprising two stationary 
series BDEF and INTRATE. This model explains current BDEF in terms of lagged 
INTRATE and lagged BDEF, and current INTRATE in terms of lagged INTRATE 
and lagged BDEF. We assume that each equation contains p lag values of BDEF 
and INTRATE, which will be selected on the basis of the smallest value of the 
FPE, AIC, SC or HQ criteria. As presented in Table 6, we find that p = 2 is the 
appropriate lag order determined by the SC and HQ criteria. 

Table 6. Selections of the VAR Lag Length 

 Lag FPE AIC SC HQ 
0  501.0583  11.89248  11.92512  11.90568 
1  132.2747  10.56063  10.65856  10.60025 
2  122.7958  10.48626   10.64947*   10.55229* 
3  122.9690  10.48763  10.71613  10.58007 
4  124.7741  10.50214  10.79592  10.62100 
5  118.5174  10.45060  10.80967  10.59587 
6  117.5714  10.44245  10.86680  10.61412 
7   114.6191*   10.41683*  10.90647  10.61492 
8  117.9504  10.44523  11.00015  10.66973 
Note: * indicates lag order selected by the criterion 

FPE: Final prediction error 

AIC: Akaike information criterion 

SC: Schwarz information criterion 

HQ: Hannan-Quinn information criterion 
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We obtain the estimated parameters of the two equations given in Table 7. First, 
consider the BDEF regression. Most coefficients are statistically significant except 
INTRATE at lag 1 and intercept coefficient. However, the F-value = 84.58 is large 
enough to reject the null hypothesis that the various lagged coefficients 
simultaneously equal to zero. Second, for the INTRATE regression, we can see 
that the coefficients of BDEF at lag 1 and 2, and INTRATE at lag 2 are not 
statistically significant, but collectively, they are significant on the basis of the 
standard F test. (F-statistic = 30.63). However, the adjusted R-squared of this 
regression is low (~ 36.29%). Both these imply that BDEF may have no effect on 
INTRATE.  

We conducted autocorrelation LM test for the residuals obtained from the above-
mentioned VAR (2) model to test whether or not there is serial correlation. The 
null hypothesis that there is no serial correlation is accepted at almost lag orders 
suggesting that there is no serial correlation in the residual series (presented in 
Table 8). 

Table 7. A Standard VAR (2) Model Comprising BDEF and INTRATE 

  BDEF INTRATE 
BDEF(-1)  0.924840  0.048694 
  [ 13.5620] [ 0.34901] 
BDEF(-2) -0.278194 -0.054921 
  [-4.13805] [-0.39929] 
INTRATE(-1) -0.009237  0.576817 
  [-0.26400] [ 8.05768] 
INTRATE(-2)  0.101921  0.050860 
  [ 2.89415] [ 0.70589] 
C -0.241804  2.646330 
  [-0.88659] [ 4.74247] 
 R-squared  0.623842  0.375215 
 Adj. R-squared  0.616466  0.362965 
 Sum sq. resides  1154.066  4830.929 
 S.E. equation  2.378484  4.866315 
 F-statistic  84.58137  30.62812 
Note:  t-statistics are presented in [ ] 
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Table 8 Autocorrelation LM Test for the Residuals Obtained from the VAR(2)  

Lags LM-Stat Prob 
1  3.513770  0.4758 
2  6.806446  0.1465 
3  3.575570  0.4665 
4  9.398860  0.0519 
5  18.89568  0.0008 
6  0.376483  0.9844 
7  1.229621  0.8732 
8  7.861581  0.0968 
9  2.508513  0.6431 
10  5.431874  0.2458 
11  1.518727  0.8233 
12  1.580891  0.8122 
Note: Probes from chi-square with 4 degree of freedom. 

Granger-Causality Tests 

Damodar (2004, p. 22) notes that “[…] although regression analysis deals with the 
dependence of one variable on other variables, it does not necessarily imply 
causation. In other words, the existence of a relationship between variables does 
not prove causality or the direction of influence”. Thus, in this subsection, we will 
use the Granger test to find out the nature of causality between BDEF and 
INTRATE. The null hypothesis in each case is that INTRATE does not ‘Granger 
cause’ BDEF and vice versa. It is important to note that the term ‘causes’ in 
‘Granger causes’ does not mean contemporaneous causality between the two 
variables. Granger causality implies a relationship between the current value of one 
variable and the lagged values of other ones.  

Table 9. Granger Causality Test 

Dependent variable: BDEF   
Excluded Chi-sq df Prob. 
INTRATE  11.43328 2  0.0033 
All   11.43328 2  0.0033 
Dependent variable: INTRATE   
Excluded Chi-sq df Prob. 
BDEF  0.165668 2  0.9205 
All  0.165668 2  0.9205 

The results given in Table 9 show that the direction of causality is from INTRATE 
to BDEF (INTRATE ‘Granger causes’ BDEF). Meanwhile, there is insufficient 
information in the data to reject the null hypothesis that BDEF does not “Granger 
cause” INTRATE. This is another way to say that there is no direction of causality 
from BDEF to INTRATE. 
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Analyzing the Impulse Responses and Variance Decompositions 

The impulse response functions (IRFs) trace out the response of the dependent 
variables in the VAR system to shocks in the error terms, while the variance 
decompositions measure the contribution of each type of shock to the forecast error 
variance of the variables in the VAR model (Damodar, 2004; Verbeek, 2004). The 
results of IRFs appear in four figures form Figure 6 to Figure 9. 

Figure 6 and Figure 7 depict the response in BDEF series and INTRATE series to a 
shock in them, respectively. We can see shocks are not persistent and their effects 
eventually die out because these series are stationary.  

 

Figure 6. Impulse-Response Analysis: Response of BDEF to BDEF 

 

Figure 7. Impulse-Response Analysis: Response of INTRATE to INTRATE 

Figure 8 shows that BDEF is generally higher after the INTRATE increases, 
reaching a maximum of nearly 0.7% points higher in year 5. Then the response in 
BDEF series gradually converges to zero. 
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Figure 8. Impulse-Response Analysis: Response of BDEF to INTRATE 

Figure 9 shows that a one-standard deviation increase in the BDEF creates a small 
response in INTRATE. After a small brief change, the response in the INTRATE 
falls to zero quickly (implying that INTRATE will return to its initial level). The 
results of variance decompositions are represented in Table 10, which shows three 
key characteristics as follows:  

− Most of the variance of BDEF and INTRATE series is explained by their 
own shocks;  

− The proportion of the movement in BDEF series, which is due to shocks in 
INTRATE series, is generally higher than that in INTRATE series, which 
is due to shocks in BDEF series;  

− At the year 10-time horizon, approximately 10.92% of the forecast error 
variance of BDEF series in the VAR can be explained by exogenous 
shocks to the INTRATE series. Conversely, this number is only 
approximately 4.63% in the case of INTRATE series. 

 

Figure 9. Impulse-Response Analysis: Response of INTRATE to BDEF 
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Table 10. Variance Decompositions 

Variance Decomposition of BDEF: 
Period S.E. BDEF INTRATE 
1 2.378484 100.0000 0.000000 
2 3.233737 99.98151 0.018495 
3 3.572845 98.60817 1.391829 
4 3.722628 95.54609 4.453905 
5 3.801976 92.61318 7.386817 
6 3.844946 90.71086 9.289145 
7 3.866112 89.73407 10.26593 
8 3.875362 89.30637 10.69363 
9 3.878991 89.13961 10.86039 
10 3.880297 89.07982 10.92018 
Variance Decomposition of INTRATE: 
Period S.E. BDEF INTRATE 
1 4.866315 4.280202 95.71980 
2 5.630991 4.726771 95.27323 
3 5.934594 4.778104 95.22190 
4 6.062131 4.727782 95.27222 
5 6.116136 4.680489 95.31951 
6 6.138519 4.653850 95.34615 
7 6.147501 4.641634 95.35837 
8 6.150988 4.636621 95.36338 
9 6.152304 4.634692 95.36531 
10 6.152791 4.633976 95.36602 
Note: Cholesky Ordering: BDEF-INTRATE 

From an economic point of view, Rose and Hakes (1995, p. 57) document that “an 
implication of Ricardian equivalence is that deficits are neutral. That is, deficits fail 
to affect real variables such as real interest rates”. Our previous analyses provide 
evidence that is consistent with what the RET predicts. This means the U.S. federal 
budget deficits (BDEF) will have no impact on real interest rates (INTRATE). 

 

4. Conclusion 

This study investigates the relationship between the U.S. federal budget deficits 
and the real interest rates time series. We estimated appropriate ARMA models and 
VAR models for the BDEF and INTRATE, as well as discussed the implications of 
the results for the RET. It is found that the real interest rates will not be affected by 
the U.S. federal budget deficits. This conclusion is in agreement with what the RET 
predicts. However, it is noteworthy that although our empirical evidence does not 
support the significant influences of the deficits on the real interest rates, such an 
evidence “should not make us confident that larger future deficits will also fail to 
increase interest rates”, as what Rose and Hakes (1995, p. 64) have warned. 
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