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Abstract: The article deals with a production function of two factors with constant scale return where 

the elasticity of one of the factors is a function of first degree. After the examination of parameters 

conditions according to the axioms of the production functions, there are computed the main 

indicators. Also, the combination of factors is determined in order to maximize the total output under 

a given cost. 
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1. General Aspects of the Production Functions 

In any economic activity, obtaining a result of it implies, by default, there is a 

certain number of resources, supposedly indivisible needed for the proper 

functioning of the production process. 

We therefore define on R
2
 – the production space for two resources: K – capital 

and L - labor as SP=(K,L)K,L0 where xSP, x=(K,L) is an ordered set of 

resources. 

 Because in a production process, depending on the nature of applied technology, 

but also its specificity, not any amount of resources is possible, we restrict the 

production area to a subset DpSP called domain of production. 

In a context of the existence of the domain of production, we put the question of 

determining its output depending on the level of inputs of Dp. 
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It is called production function an application Q:DpR+, (K,L)Q(K,L)R+ 

(K,L)Dp. 

For an efficient and complex mathematical analysis of a production function, we 

impose a number of axioms both its definition and its scope. 

FP1. The domain of production is convex; 

FP2. Q(0,0)=0; 

FP3. The production function is of class C
2
 on Dp that is it admits partial 

derivatives of order 2 and they are continuous; 

FP4. The production function is monotonically increasing in each variable; 

FP5. The production function is quasiconcave that is: Q(x+(1-

)y)min(Q(x),Q(y)) [0,1] x,yRp. 

From a geometric point of view, a quasiconcave function having the property of 

being above the lowest value recorded at the end of a certain segment. The 

property is equivalent to the convexity of the set Q
-1

[a,) aR, where Q
-1

[a,)= 

{xRpQ(x)a}. 

 

2. The Main Indicators of Production Functions  

Consider now a production function: Q:DpR+, (K,L)Q(K,L)R+ (K,L)Dp. 

We call marginal productivity relative to an input xi: 
ix =

ix

Q




 and represents the 

trend of variation of production to the variation of xi. 

We call average productivity relative to an input xi: 
ixw =

ix

Q
 the value of 

production at a consumption of a unit of factor xi. 

We call partial marginal substitution rate of factors i and j the opposite change 

in the amount of factor j as a substitute for the amount of change in the factor i in 

the case of a constant level of production and we have: RMS(i,j)=

j

i

x

x




. 
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We call elasticity of output with respect to an input xi: 
ix =

i

i

x

Q

x

Q





=

i

i

x

x

w


 and 

represents the relative variation of production to the relative variation of the factor 

xi. 

Considering now a production function Q:DpR+ with constant return to scale that 

is Q(K,L)=


1
Q(K,L), let note =

L

K
. It is called the elasticity of the marginal 

rate of technical substitution =







)L,K(RMS

)L,K(RMS

. 

 

3. The Generalized Cobb-Douglas Function for Two Inputs 

Consider now a production function Q:DpR+, (K,L)Q(K,L)R+ (K,L)Dp 

with constant return to scale, where 
K

=()>0. 

Considering the function q such that: Q(K,L)=L  q  we have: 

K =
K

K

w


=







q

q

=
 

q

'q 
=(). 

From here we find that: 
   








q

'q
. Let F be a primitive function of 

 



. From 

 
 


'F

q

'q
 we obtain:     FCeq  where C - constant strictly positive. 

In particular, for ()= 



m

0k

k
k  we have: 

  D
k

lnddF
m

1k

kk
0

m

1k

1k
k

0

m

0k

k
k























  




  
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and the production function becomes (after an obvious renoting of C): 

    FCeq =
 


 

m

1k

kk

0 keC  

or other: 

 



 

m

1k
k

k
k

00 kL

K

1
eLCKL,KQ  

If ()=  10  then: 

  L

K

1
1

00 eLCKL,KQ




  

 

4. The Generalized Cobb-Douglas Function for Two Inputs and Linear 

Elasticity 

Consider now the production function: Q(K,L)= L

bK

a1a eLCK  , K,L0, a,b,C0. 

Because the function is elementary follows that it is of class C

 on the definition 

domain. 

We now have: 

Q
KL

aLbK

K

Q 





, 

 
Q

L

L1abK

x

Q
2

2







 

Considering bordered Hessian matrix: 

)Q(HB =
























































2

22

2

2

2

L

Q

LK

Q

L

Q

LK

Q

K

Q

K

Q
L

Q

K

Q
0

 

and the minors: 
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B
1 =

2

2

K

Q

K

Q
K

Q
0












=

2

K

Q












 , 

B
2 =

2

22

2

2

2

L

Q

LK

Q

L

Q

LK

Q

K

Q

K

Q
L

Q

K

Q
0
































=
2

22

2

222

L

Q

K

Q

K

Q

L

Q

LK

Q

L

Q

L

Q
2














































 

it is known that if B
1 <0, B

2 >0 the function is quasiconcave. Conversely, if the 

function is quasiconcave then: B
1 0, B

2 0. 

In the present case: 

B
1 =

  2

22

2

Q
LK

aLbK 
 , B

2 =
  3

42

222

Q
LK

L1aaabKL2Kb 
  

It is obvious that B
1 0. For B

2 0 it is necessary and sufficient that: 

  0L1aaabKL2Kb 222   K,L0. With the substitution 
L

K
  the 

statement is equivalent to   0aaab2b 222   0. 

Because the discriminant   22222 abaabba   follows that if 0 then 

. Therefore: 0, a0. We get: 

 












 
 ,0

b

aa
,

b

aa

L

K
=













 

b

aa
,0 . But 0

b

aa



 is 

equivalent to a(0,1). 

From the above, for a(0,1), b0, the function is quasiconcave on 

Dp=  















 0L,L
b

aa
K0L,K R

2
. 

Also, relative to the monotonically increasing in each variable, we have: 

Q
KL

aLbK

K

Q 





0 and because: 
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 L1abK    L1aL
b

aa
b 


=  L1a  0 we get 

 
Q

L

L1abK

L

Q
2







0. 

As an example, for C=1, a=0.2 and b=1 the graph is: 

 

Figure 1 

 

5 Main Indicators of the Generalized Cobb-Douglas Function for two 

Inputs and Linear Elasticity 

We can compute, after section 2, the main indicators for the production function 

defined above. We have therefore: 

 The marginal productivity: 

K = 
K

Q




= Q

KL

aLbK 
, L = 

L

Q




=

 
Q

L

L1abK
2


  

 The average productivity: 

Kw =
K

Q
, Lw =

L

Q
 

 The partial marginal substitution rate: 

RMS(K,L)=
 

  L1abKK

aLbKL




 , RMS(L,K)=

  
 aLbKL

L1abKK




  
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 The elasticity of output: 

K = 

K

Q
K

Q





=
K

K

w


=

L

aLbK 
, L = 

L

Q
L

Q





=
L

L

w


=

 
L

L1abK 
  

 The elasticity of the marginal rate of technical substitution: 

=

 

 






L,KRMS

L,KRMS

=
  1baba

b
1




  

 

6. The Problem of Determining the Maximum of Production in terms 

of Given Total Cost 

Let now the following problem: 













0L,K

0CTLpKp

)L,K(Qmax

LK  

where CT is the total cost of the production which is suppose to be a given 

constant. 

From the Karush-Kuhn-Tucker conditions we have the necessary and sufficient 

conditions (taking into account that the restriction is affine):  




















CTLpKp

p

L

Q

p

K

Q

LK

LK

 

From section 5 we get that the system becomes: 

 



















CTLpKp

p

L

L1abK

p

KL

aLbK

LK

L

2

K

 

or: 
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  









CTLpKp

0LapKLbpp1aKbp

LK

2
LLK

2
K  

In order to K,L exists, we must have from the first equation: 

       0b
p

p
b1a2

p

p
1appabp4bpp1a 2

L

K

2

L

K22
LLK

2

LK 


































  

Because the discriminant of the paranthesis is: ’=     22222
ab4b1ab1a  0 

we get: 

    
































 ,b

a1

1
b

a1

1
,0

p

p
22

L

K  

Also, from the existence condition of the production function, that is: 

b

aa

L

K
0


 , the first equation gives that it is always true. 

Substituting now from second in the first equation, we get: 

   0aCTKbpp1aCTKp 2
LK

22
K   

and finally we find: 

    

    


















CT
pp2

ap4bppa1bppa1
L

CT
p2

ap4bppa1bppa1
K

LK

2
K

2

LKLK

2
K

2
K

2

LKLK


 

Because 
    

































 ,b

a1

1
b

a1

1
,0

p

p
22

L

K  we have that: 

=    2
K

2

LK ap4bppa1  =     





 





  LK

2

LK

2

bppa1bppa1 0 
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As a conclusion, we have that if 
    

































 ,b

a1

1
b

a1

1
,0

p

p
22

L

K  the 

combination of factors which maximize the production when the total cost 

remaining constant is: 

    

    


















CT
pp2

ap4bppa1bppa1
L

CT
p2

ap4bppa1bppa1
K

LK

2
K

2

LKLK

2
K

2
K

2

LKLK


 

 

7. Conclusions 

The Generalized Cobb-Douglas function for two inputs and linear elasticity is 

determined from the condition that the linear elasticity of production with capital is 

linear expressed. The problem of determining the factors of production that 

maximizes output under a given total cost reveals that it has no choice but in terms 

of price limitations. 
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