A Study of Cobb-Douglas
 Production Function with Differential Geometry

Alin Cristian Ioan ${ }^{1}$

Abstract

In this paper we shall made an analysis of Cobb-Douglas production function from the differential point of view. We shall obtain some interesting results about the nature of the points of the surface, the total curvature, the conditions when a production function is minimal and finally we give the equations of the geodesics on the surface i.e. the curves of minimal length between two points.

Keywords: production functions; metric; curvature; geodesic; Cobb-Douglas
JEL Classification: E23

1. Introduction

In the theory of production functions, all computations and phenomenons are studied for a constant level of production. In order to detect many aspects of them, a complete analysis can be made only at the entire surface.
We therefore define on \mathbf{R}^{2} - the production space for two resources: K - capital and L - labor as $S P=\{(\mathrm{K}, \mathrm{L}) \mid \mathrm{K}, \mathrm{L} \geq 0\}$ where $\mathrm{x} \in \mathrm{SP}, \mathrm{x}=(\mathrm{K}, \mathrm{L})$ is an ordered set of resources. Because in a production process, depending on the nature of applied technology, but also its specificity, not any amount of resources are possible, we restrict the production area to a subset $D_{p} \subset S P$ called domain of production.

It is called a Cobb-Douglas production function an application:

$$
\mathrm{Q}: D_{p} \rightarrow \mathbf{R}_{+},(\mathrm{K}, \mathrm{~L}) \rightarrow \mathrm{Q}(\mathrm{~K}, \mathrm{~L})=\mathrm{cK}^{\alpha} \mathrm{L}^{\beta} \in \mathbf{R}_{+} \forall(\mathrm{K}, \mathrm{~L}) \in D_{p}, \alpha, \beta \in \mathbf{R}_{+}^{*}, \mathrm{c}>0
$$

The production function is C^{∞}-differentiable and homogenous of degree $\alpha+\beta$.

[^0]
2. The Differential Geometry of Cobb-Douglas Surface

The graph representation of a production function is a surface.
Let note in what follows:
(1) $\mathrm{p}=\frac{\partial \mathrm{Q}}{\partial \mathrm{L}}, \mathrm{q}=\frac{\partial \mathbf{Q}}{\partial \mathrm{K}}, \mathrm{r}=\frac{\partial^{2} \mathrm{Q}}{\partial \mathrm{L}^{2}}, \mathrm{~s}=\frac{\partial^{2} \mathrm{Q}}{\partial \mathrm{L} \partial \mathrm{K}}, \mathrm{t}=\frac{\partial^{2} \mathrm{Q}}{\partial \mathrm{K}^{2}}$

We have after simple calculations:
(2) $\mathrm{p}=\frac{\beta \mathrm{Q}}{\mathrm{L}}, \mathrm{q}=\frac{\alpha \mathrm{Q}}{\mathrm{K}}, \mathrm{r}=\frac{\beta(\beta-1) \mathrm{Q}}{\mathrm{L}^{2}}, \mathrm{~s}=\frac{\alpha \beta \mathrm{Q}}{\mathrm{KL}}, \mathrm{t}=\frac{\alpha(\alpha-1) \mathrm{Q}}{\mathrm{K}^{2}}$

The bordered Hessian:
(3) $H_{f}=\left(\begin{array}{lll}0 & q & p \\ q & t & s \\ p & s & r\end{array}\right)=\left(\begin{array}{ccc}0 & \frac{\alpha Q}{K} & \frac{\beta Q}{L} \\ \frac{\alpha Q}{K} & \frac{\alpha(\alpha-1) Q}{K^{2}} & \frac{\alpha \beta Q}{K L} \\ \frac{\beta Q}{L} & \frac{\alpha \beta Q}{K L} & \frac{\beta(\beta-1) Q}{L^{2}}\end{array}\right)$
therefore, because:
(4) $\Delta^{B}{ }_{1}=\left|\begin{array}{cc}0 & \frac{\alpha \mathrm{Q}}{\mathrm{K}} \\ \frac{\alpha \mathrm{Q}}{\mathrm{K}} & \frac{\alpha(\alpha-1) \mathrm{Q}}{\mathrm{K}^{2}}\end{array}\right|=-\frac{\alpha^{2} \mathrm{Q}^{2}}{\mathrm{~K}^{2}}<0$,
$\Delta^{B}{ }_{2}=\left|\begin{array}{ccc}0 & \frac{\alpha Q}{K} & \frac{\beta Q}{L} \\ \frac{\alpha Q}{K} & \frac{\alpha(\alpha-1) Q}{K^{2}} & \frac{\alpha \beta Q}{K L} \\ \frac{\beta Q}{L} & \frac{\alpha \beta Q}{K L} & \frac{\beta(\beta-1) \mathrm{Q}}{L^{2}}\end{array}\right|=\frac{\alpha \beta(\alpha+\beta) \mathrm{Q}^{3}}{\mathrm{~K}^{2} L^{2}}>0$
we obtain that Q is quasiconcave, that is for any $\mathrm{a} \in \mathbf{R}, \mathrm{Q}^{-1}\left([\mathrm{a}, \infty)\right.$) is convex in \mathbf{R}^{2}.
For a constant value of one parameter we obtain a curve on the surface, that is $\mathrm{Q}=\mathrm{Q}\left(\mathrm{K}, \mathrm{L}_{0}\right)$ or $\mathrm{Q}=\mathrm{Q}\left(\mathrm{K}_{0}, \mathrm{~L}\right)$ are both curves on the production surface. They are obtained from the intersection of the plane $\mathrm{L}=\mathrm{L}_{0}$ or $\mathrm{K}=\mathrm{K}_{0}$ with the surface $\mathrm{Q}=\mathrm{Q}(\mathrm{K}, \mathrm{L})$.
In the study of the surfaces, two quadratic forms are very useful.

The first fundamental quadratic form of the surface is:
(5) $g=g_{11} d L L^{2}+2 g_{12} d L d K+g_{22} \mathrm{dK}^{2}$
where: $\mathrm{g}_{11}=1+\mathrm{p}^{2}, \mathrm{~g}_{12}=\mathrm{pq}, \mathrm{g}_{22}=1+\mathrm{q}^{2}$.
In our case:
(6) $g_{11}=1+\beta^{2} c^{2} K^{2 \alpha} L^{2 \beta-2}, g_{12}=\alpha \beta c^{2} K^{2 \alpha-1} L^{2 \beta-1}, g_{22}=1+\alpha^{2} c^{2} K^{2 \alpha-2} L^{2 \beta}$

The area element is:
(7) $\mathrm{d} \sigma=\sqrt{\mathrm{g}_{11} \mathrm{~g}_{22}-\mathrm{g}_{12}^{2}} \mathrm{dKdL}=\sqrt{\Delta} \mathrm{dKdL}=\sqrt{1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2 \beta-2}} \mathrm{dKdL}$
and the surface area A when $(K, L) \in R$ (a region in the plane K-O-L) is $A=\iint_{R} d \sigma d K d L$.

The second fundamental form of the surface is:
(8) $h=h_{11} d L^{2}+2 h_{12} d L d K+h_{22} d K^{2}$
where: $\mathrm{h}_{11}=\frac{\mathrm{r}}{\sqrt{1+\mathrm{p}^{2}+\mathrm{q}^{2}}}, \mathrm{~h}_{12}=\frac{\mathrm{s}}{\sqrt{1+\mathrm{p}^{2}+\mathrm{q}^{2}}}, \mathrm{~h}_{22}=\frac{\mathrm{t}}{\sqrt{1+\mathrm{p}^{2}+\mathrm{q}^{2}}}$.
In our case:
(9) $\mathrm{h}_{11}=\frac{\beta(\beta-1) \mathrm{cK}^{\alpha} \mathrm{L}^{\beta-2}}{\sqrt{1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2 \beta-2}}}$,
$h_{12}=\frac{\alpha \beta c K^{\alpha-1} \mathrm{~L}^{\beta-1}}{\sqrt{1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2 \beta-2}}}$,
$\mathrm{h}_{22}=\frac{\alpha(\alpha-1) \mathrm{cK}^{\alpha-2} \mathrm{~L}^{\beta}}{\sqrt{1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2 \beta-2}}}$
Considering the quantity $\delta=\mathrm{h}_{11} \mathrm{~h}_{22}-\mathrm{h}_{12}{ }^{2}$ we have that:

$$
\begin{equation*}
\delta=-\frac{\alpha \beta(\alpha+\beta-1) \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta-2}}{1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2 \beta-2}} \tag{10}
\end{equation*}
$$

- If $\delta>0$ in each point of the surface, we will say that it is elliptical. Such surfaces are the hyperboloid with two sheets, the elliptical paraboloid and the ellipsoid.
- If $\delta<0$ in each point of the surface, we will say that it is hyperbolic. Such surfaces are the hyperboloid with one sheet and the hyperbolic paraboloid.
- If $\delta=0$ in each point of the surface, we will say that it is parabolic. Such surfaces are the cone surfaces and the cylinder surfaces.

From (10) we find that:

- $\alpha+\beta<1$: the production surface is elliptical;
- $\alpha+\beta=1$: the production surface is parabolic;
- $\alpha+\beta>1$: the production surface is hyperbolic

The curvature of a curve is, from an elementary point of view, the degree of deviation of the curve relative to a straight line. Considering a surface S and an arbitrary curve through a point P of the surface who has the tangent vector v in P , let the plane π determined by the vector v and the normal N in P at S. The intersection of π with S is a curve C_{n} named normal section of S. Its curvature is called normal curvature.

If we have a direction $\mathrm{m}=\frac{\mathrm{dL}}{\mathrm{dK}}$ in the tangent plane of the surface in an arbitrary point P we have that the normal curvature is given by:

$$
\begin{equation*}
\mathrm{k}(\mathrm{~m})=\frac{\mathrm{h}_{11} \mathrm{~m}^{2}+2 \mathrm{~h}_{12} \mathrm{~m}+\mathrm{h}_{22}}{\mathrm{~g}_{11} \mathrm{~m}^{2}+2 \mathrm{~g}_{12} \mathrm{~m}+\mathrm{g}_{22}} \tag{11}
\end{equation*}
$$

The extreme values k_{1} and k_{2} of the function $k(m)$ are called the principal curvatures of the surface in that point. They satisfy also the equation:

$$
\begin{equation*}
\left(g_{11} g_{22}-g_{12}^{2}\right) k^{2}-\left(g_{11} h_{22}-2 g_{12} h_{12}+g_{22} h_{11}\right) k+\left(h_{11} h_{22}-h_{12}^{2}\right)=0 \tag{12}
\end{equation*}
$$

The values of m, who give the extremes, call principal directions in that point.
They also satisfy the equation:

$$
\begin{equation*}
\left(g_{11} \mathrm{~s}-\mathrm{g}_{12} \mathrm{r}\right) \mathrm{m}^{2}+\left(\mathrm{g}_{11} \mathrm{t}-\mathrm{g}_{22} \mathrm{r}\right) \mathrm{m}+\left(\mathrm{g}_{12} \mathrm{t}-\mathrm{g}_{22} \mathrm{~s}\right)=0 \tag{13}
\end{equation*}
$$

The curve $\frac{\mathrm{dL}}{\mathrm{dK}}=\mathrm{m}$ (where m is one of the principal directions) is called line of curvature on the surface. On such a curve we have the maximum or minimum variation of the value of Q in a neighborhood of P.
The quantity $K=k_{1} k_{2}$ is named the total curvature in the considered point and $\mathrm{H}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{2}$ is named the mean curvature of the surface in that point.

We have therefore:

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{h}_{11} \mathrm{~h}_{22}-\mathrm{h}_{12}^{2}}{\mathrm{~g}_{11} \mathrm{~g}_{22}-\mathrm{g}_{12}^{2}}=\frac{\delta}{\Delta}=-\frac{\alpha \beta(\alpha+\beta-1) \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta-2}}{\left(1+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha-2} \mathrm{~L}^{2 \beta}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} L^{2 \beta-2}\right)^{2}} \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
H=\frac{g_{11} h_{22}-2 g_{12} h_{12}+g_{22} h_{11}}{g_{11} g_{22}-g_{12}^{2}}= \tag{15}\\
-\frac{c K^{\alpha-2} L^{\beta-2}\left(\alpha(1-\alpha) L^{2}+\beta(1-\beta) K^{2}+\alpha \beta(\alpha+\beta) c^{2} K^{2 \alpha} L^{2 \beta}\right)}{\left(1+\alpha^{2} c^{2} K^{2 \alpha-2} L^{2 \beta}+\beta^{2} c^{2} K^{2 \alpha} L^{2 \beta-2}\right)^{\frac{3}{2}}}
\end{gather*}
$$

A surface with $K=$ constant call surface with constant total curvature and if $\mathrm{H}=0$ call minimal surface. In our case we can see that $\mathrm{K}=0$ if and only if: $\alpha+\beta=1$.
If we consider now in the tangent plane π at the surface in a point P a direction m , if $h_{11} m^{2}+2 h_{12} m+h_{22}=0$ we will say that m is an asymptotic direction, and the equation: $h_{11}\left(\frac{d L}{d K}\right)^{2}+2 h_{12} \frac{d L}{d K}+h_{22}=0$ gives the asymptotic curves of the surface in the point P.
In our case, the asymptotic directions are:

$$
\begin{equation*}
m_{1}=\frac{\alpha \beta+\sqrt{\alpha \beta(\alpha+\beta-1)}}{\beta(1-\beta)} \frac{L}{\mathrm{~K}}, \mathrm{~m}_{2}=\frac{\alpha \beta-\sqrt{\alpha \beta(\alpha+\beta-1)}}{\beta(1-\beta)} \frac{\mathrm{L}}{\mathrm{~K}} \tag{16}
\end{equation*}
$$

If $\alpha+\beta=1$ then both asymptotic directions are equal.
With notations $x^{1}=L, x^{2}=K$, let define now the Christoffel symbols of first order:

$$
\begin{equation*}
|\mathrm{ij}, \mathrm{k}|=\frac{1}{2}\left(\frac{\partial \mathrm{~g}_{\mathrm{jk}}}{\partial \mathrm{x}^{\mathrm{i}}}+\frac{\partial \mathrm{g}_{\mathrm{ik}}}{\partial \mathrm{x}^{\mathrm{j}}}-\frac{\partial \mathrm{g}_{\mathrm{ij}}}{\partial \mathrm{x}^{\mathrm{k}}}\right) \tag{17}
\end{equation*}
$$

and of second order:

$$
\left|\begin{array}{c}
\mathrm{i} \tag{18}\\
\mathrm{jk}
\end{array}\right|=\mathrm{g}^{\mathrm{i} 1}|\mathrm{jk}, 1|+\mathrm{g}^{\mathrm{i} 2}|\mathrm{jk}, 2|
$$

where $\mathrm{g}^{11}=\frac{1}{\Delta} \mathrm{G}, \mathrm{g}^{12}=-\frac{1}{\Delta} \mathrm{~F}, \mathrm{~g}^{22}=\frac{1}{\Delta} \mathrm{E}$ are the components of the inverse matrix of $\left(\begin{array}{ll}g_{11} & g_{12} \\ g_{12} & g_{22}\end{array}\right)$.

We have now:
(19) $|11,1|=\frac{1}{2} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~L}},|11,2|=\frac{\partial \mathrm{g}_{12}}{\partial \mathrm{~L}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}},|12,1|=\frac{1}{2} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}},|12,2|=\frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}}$,
$|22,1|=\frac{\partial \mathrm{g}_{12}}{\partial \mathrm{~K}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}},|22,2|=\frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~K}}$
(20) $\quad\left|\begin{array}{l}1 \\ 11\end{array}\right|=\mathrm{g}^{11}|11,1|+\mathrm{g}^{12}|11,2|=\frac{1}{\Delta}\left[\frac{1}{2} \mathrm{~g}_{22} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~L}}-\mathrm{g}_{12}\left(\frac{\partial \mathrm{~g}_{12}}{\partial \mathrm{~L}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}}\right)\right]$,
$\left|\begin{array}{l}2 \\ 11\end{array}\right|=\mathrm{g}^{21}|11,1|+\mathrm{g}^{22}|11,2|=\frac{1}{\Delta}\left[-\frac{1}{2} \mathrm{~g}_{12} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~L}}+\mathrm{g}_{11}\left(\frac{\partial \mathrm{~g}_{12}}{\partial \mathrm{~L}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}}\right)\right]$,
$\left|\begin{array}{c}1 \\ 12\end{array}\right|=\mathrm{g}^{11}|12,1|+\mathrm{g}^{12}|12,2|=\frac{1}{\Delta}\left[\frac{1}{2} \mathrm{~g}_{22} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}}-\frac{1}{2} \mathrm{~g}_{12} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}}\right]$,
$\left|\begin{array}{c}2 \\ 12\end{array}\right|=\mathrm{g}^{21}|12,1|+\mathrm{g}^{22}|12,2|=\frac{1}{\Delta}\left[-\frac{1}{2} \mathrm{~g}_{12} \frac{\partial \mathrm{~g}_{11}}{\partial \mathrm{~K}}+\frac{1}{2} \mathrm{~g}_{11} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}}\right]$,
$\left|\begin{array}{c}1 \\ 22\end{array}\right|=\mathrm{g}^{11}|22,1|+\mathrm{g}^{12}|22,2|=\frac{1}{\Delta}\left[\mathrm{~g}_{22}\left(\frac{\partial \mathrm{~g}_{12}}{\partial \mathrm{~K}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}}\right)-\mathrm{g}_{12} \frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~K}}\right]$,
$\left|\begin{array}{c}2 \\ 22\end{array}\right|=\mathrm{g}^{21}|22,1|+\mathrm{g}^{22}|22,2|=\frac{1}{\Delta}\left[-\mathrm{g}_{12}\left(\frac{\partial \mathrm{~g}_{12}}{\partial \mathrm{~K}}-\frac{1}{2} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~L}}\right)+\frac{1}{2} \mathrm{~g}_{11} \frac{\partial \mathrm{~g}_{22}}{\partial \mathrm{~K}}\right]$
From the upper we find that:
(21) $|11,1|=(\beta-1) \beta^{2} c^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{-3+2 \beta},|11,2|=\alpha(\beta-1) \beta \mathrm{c}^{2} \mathrm{~K}^{-1+2 \alpha} \mathrm{~L}^{-2+2 \beta}$,
$|12,1|=\alpha \beta^{2} \mathrm{c}^{2} \mathrm{~K}^{-1+2 \alpha} \mathrm{~L}^{-2+2 \beta},|12,2|=\alpha^{2} \beta \mathrm{c}^{2} \mathrm{~K}^{-2+2 \alpha} \mathrm{~L}^{-1+2 \beta}$,
$|22,1|=\alpha(\alpha-1) \beta c^{2} \mathrm{~K}^{-2+2 \alpha} \mathrm{~L}^{-1+2 \beta},|22,2|=\alpha^{2}(\alpha-1) \mathrm{c}^{2} \mathrm{~K}^{-3+2 \alpha} \mathrm{~L}^{2 \beta}$
(22) $\left|\begin{array}{l}1 \\ 11\end{array}\right|=\frac{(\beta-1) \beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}+\mathrm{L}^{3}\left(\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha}+\mathrm{K}^{2} \mathrm{~L}^{-2 \beta}\right)}$,
$\left|\begin{array}{c}2 \\ 11\end{array}\right|=\frac{\alpha(\beta-1) \beta c^{2} K^{1+2 \alpha} L^{2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}}$,

$$
\begin{aligned}
& \left|\begin{array}{c}
1 \\
12
\end{array}\right|=\frac{\alpha \beta^{2} \mathrm{c}^{2} \mathrm{~K}^{1+2 \alpha} \mathrm{~L}^{2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}}, \\
& \left|\begin{array}{c}
2 \\
12
\end{array}\right|=\frac{\alpha^{2} \beta \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{1+2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}}, \\
& \left|\begin{array}{c}
1 \\
22
\end{array}\right|=\frac{\alpha(\alpha-1) \beta \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{1+2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}} \\
& \left|\begin{array}{c}
2 \\
22
\end{array}\right|=\frac{\alpha^{2}(\alpha-1) \mathrm{c}^{2} \mathrm{~L}^{2+2 \beta}}{\mathrm{~K}^{3-2 \alpha} \mathrm{~L}^{2}+\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{3} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{KL}^{2+2 \beta}}
\end{aligned}
$$

A geodesic is in common language the shortest curve between two points. It is useful when we try to determine the shortest way to go from a production at other in a minimum time. The equation of a geodesic is:
(23) $\frac{d^{2} x^{i}}{d s^{2}}+\left|\begin{array}{c}i \\ j k\end{array}\right| \frac{d x^{j}}{d s} \frac{d x^{k}}{d s}=0$
that is:

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{ds}^{2}}+\left|\begin{array}{c}
1 \\
1
\end{array}\right|\left(\frac{\mathrm{dL}}{\mathrm{ds}}\right)^{2}+2\left|\begin{array}{c}
1 \\
12
\end{array}\right| \frac{\mathrm{dL}}{\mathrm{ds}} \frac{\mathrm{dK}}{\mathrm{ds}}+\left|\begin{array}{c}
1 \\
22
\end{array}\right|\left(\frac{\mathrm{dK}}{\mathrm{ds}}\right)^{2}=0 \tag{24}\\
& \frac{\mathrm{~d}^{2} \mathrm{~K}}{\mathrm{ds}^{2}}+\left|\begin{array}{c}
2 \\
1
\end{array}\right|\left(\frac{\mathrm{dL}}{\mathrm{ds}}\right)^{2}+2\left|\begin{array}{c}
2 \\
12
\end{array}\right| \frac{\mathrm{dL}}{\mathrm{ds}} \frac{\mathrm{dK}}{\mathrm{ds}}+\left|\begin{array}{c}
2 \\
22
\end{array}\right|\left(\frac{\mathrm{dK}}{\mathrm{ds}}\right)^{2}=0 \tag{25}
\end{align*}
$$

or, with the quantities determined:
(24)

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{ds}^{2}}+\frac{(\beta-1) \beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}+\mathrm{L}^{3}\left(\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha}+\mathrm{K}^{2} \mathrm{~L}^{-2 \beta}\right)}\left(\frac{\mathrm{dL}}{\mathrm{ds}}\right)^{2}+ \\
& 2 \frac{\alpha \beta^{2} \mathrm{c}^{2} \mathrm{~K}^{1+2 \alpha} L^{2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}} \frac{\mathrm{dL}}{\mathrm{ds}} \frac{\mathrm{dK}}{\mathrm{ds}}+\frac{\alpha(\alpha-1) \beta \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{1+2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}}\left(\frac{\mathrm{dK}}{\mathrm{ds}}\right)^{2}=0
\end{aligned}
$$

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathrm{~K}}{\mathrm{ds}}+\frac{\alpha(\beta-1) \beta \mathrm{c}^{2} \mathrm{~K}^{1+2 \alpha} L^{2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}}\left(\frac{\mathrm{dL}}{\mathrm{ds}}\right)^{2}+ \tag{25}\\
& 2 \frac{\alpha^{2} \mathrm{Bc}^{2} \mathrm{~K}^{2 \alpha} \mathrm{~L}^{+2 \beta}}{\beta^{2} \mathrm{c}^{2} \mathrm{~K}^{2+2 \alpha} \mathrm{~L}^{2 \beta}+\alpha^{2} \mathrm{c}^{2} \mathrm{~K}^{2 \alpha} L^{2+2 \beta}+\mathrm{K}^{2} \mathrm{~L}^{2}} \frac{\mathrm{dL}}{\mathrm{ds}} \frac{\mathrm{dK}}{\mathrm{ds}}+\frac{\left.\alpha^{2}(\alpha-1)\right)^{2} \mathrm{~L}^{2+2 \beta}}{\mathrm{~K}^{3-2 \alpha} L^{2}+\beta^{2} c^{2} \mathrm{~K}^{3} \mathrm{~L}^{2 \beta}+\alpha^{2} c^{2} \mathrm{KL}^{2+2 \beta}}\left(\frac{\mathrm{dK}}{\mathrm{ds}}\right)^{2}=0
\end{align*}
$$

The equations of geodesics are: $\mathrm{L}=\mathrm{L}(\mathrm{s}), \mathrm{K}=\mathrm{K}(\mathrm{s})$ where s is the element of arc on the curves.

3. References

Arrow, K.J., Chenery, H.B., Minhas, B.S. \& Solow, R.M. (1961). Capital Labour Substitution and Economic Efficiency. Review of Econ and Statistics, 63, pp. 225-250.
Cobb, C.W. \& Douglas, P.H. (1928). A Theory of Production. American Economic Review, 18, pp. 139-165.

Ioan, C.A. (2007). Applications of the space differential geometry at the study of production functions. Euroeconomica, 18, pp. 30-38.

Ioan, C.A. (2004). Applications of geometry at the study of production functions. The Annals of Danubius University, Fascicle I, Economics, pp. 27-39.

Kadiyala, K.R. (1972). Production Functions and Elasticity of Substitution. Southern Economic Journal, 38(3), pp. 281-284.

Kmenta, J. (1967). On Estimation of the CES Production Function. International Economic Review, 8(2), pp. 180-189.
Liu, T.C. \& Hildebrand, G.H. (1965). Manufacturing Production Functions in the United States, 1957. Ithaca: Cornell Univ. Press.

Mishra, S.K. (2007). A Brief History of Production Functions. Shillong, India: North-Eastern Hill University.

Revankar, N.S. (1971). A Class of Variable Elasticity of Substitution Production Functions. Econometrica, 39(1), pp. 61-71.
Sato, R. (1974). On the Class of Separable Non-Homothetic CES Functions. Economic Studies Quarterly, 15, pp. 42-55.

[^0]: ${ }^{1}$ Nicolae Oncescu College, Romania, Address: 1-3 Şos. Brăilei, Ianca, Braila County, Romania, Tel.: +40239668494, Corresponding author: alincristianioan@yahoo.com.

