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Abstract: In this paper we shall made an analysis of Cobb-Douglas production function from the 

differential point of view. We shall obtain some interesting results about the nature of the points of 

the surface, the total curvature, the conditions when a production function is minimal and finally we 

give the equations of the geodesics on the surface i.e. the curves of minimal length between two 

points. 
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1. Introduction 

In the theory of production functions, all computations and phenomenons are 

studied for a constant level of production. In order to detect many aspects of them, 

a complete analysis can be made only at the entire surface. 

We therefore define on R
2
 – the production space for two resources: K – capital 

and L - labor as SP=(K,L)K,L0 where xSP, x=(K,L) is an ordered set of 

resources. Because in a production process, depending on the nature of applied 

technology, but also its specificity, not any amount of resources are possible, we 

restrict the production area to a subset DpSP called domain of production. 

It is called a Cobb-Douglas production function an application: 

Q:DpR+, (K,L)Q(K,L)=cK

L

R+ (K,L)Dp, ,R

*
+, c0 

The production function is C

-differentiable and homogenous of degree +. 
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2. The Differential Geometry of Cobb-Douglas Surface 

The graph representation of a production function is a surface. 

Let note in what follows: 

(1) p=
L

Q




, q=

K

Q




, r=

2

2

L

Q




, s=

KL

Q2




, t=

2

2

K

Q




 

We have after simple calculations: 

(2) p=
L

Q
, q=

K

Q
, r=

 
2L

Q1
, s=

KL

Q
, t=

 
2K

Q1
 

The bordered Hessian: 

(3) Hf=
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therefore, because: 

(4) 
B

1=  
2K

Q1

K

Q
K

Q
0





=
2

22

K

Q
 0, 


B

2=
 

 
2

2

L

Q1

KL

Q

L

Q
KL

Q

K

Q1

K

Q
L

Q

K

Q
0







=
 

22

3

LK

Q
0 

we obtain that Q is quasiconcave, that is for any aR, Q
-1

([a,)) is convex in R
2
.  

For a constant value of one parameter we obtain a curve on the surface, that is 

Q=Q(K,L0) or Q=Q(K0,L) are both curves on the production surface. They are 

obtained from the intersection of the plane L=L0 or K=K0 with the surface 

Q=Q(K,L). 

In the study of the surfaces, two quadratic forms are very useful. 
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The first fundamental quadratic form of the surface is: 

(5) g=g11dL
2
+2g12dLdK+g22dK

2
 

where: g11=1+p
2
, g12=pq, g22=1+q

2
. 

In our case: 

(6) g11=
22222 LKc1  , g12=

12122 LKc  , g22=
 22222 LKc1  

The area element is: 

(7) d= 2

122211
ggg  dKdL=  dKdL= dKdLLKcLKc1 2222222222    

and the surface area A when (K,L)R (a region in the plane K-O-L) is 

A=  
R

dKdLd . 

The second fundamental form of the surface is: 

(8) h=h11dL
2
+2 h12dLdK+ h22dK

2
 

where: h11=
22 qp1

r


, h12=

22 qp1

s


, h22=

22 qp1

t


. 

In our case: 

(9) h11=
 

2222222222

2

LKcLKc1
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2222222222
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LKcLKc1

LcK








, 

h22=
 

2222222222

2

LKcLKc1

LcK1








 

Considering the quantity =h11h22-h12
2
 we have that: 

(10) =
 

2222222222

22222

LKcLKc1

LKc1







  

 If >0 in each point of the surface, we will say that it is elliptical. Such surfaces 

are the hyperboloid with two sheets, the elliptical paraboloid and the ellipsoid. 

 If 0 in each point of the surface, we will say that it is hyperbolic. Such 

surfaces are the hyperboloid with one sheet and the hyperbolic paraboloid. 
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 If =0 in each point of the surface, we will say that it is parabolic. Such surfaces 

are the cone surfaces and the cylinder surfaces. 

From (10) we find that: 

 1 : the production surface is elliptical; 

 1 : the production surface is parabolic; 

 1 : the production surface is hyperbolic 

The curvature of a curve is, from an elementary point of view, the degree of 

deviation of the curve relative to a straight line. Considering a surface S and an 

arbitrary curve through a point P of the surface who has the tangent vector v in P, 

let the plane  determined by the vector v and the normal N in P at S. The 

intersection of  with S is a curve Cn named normal section of S. Its curvature is 

called normal curvature. 

If we have a direction m=
dK

dL
 in the tangent plane of the surface in an arbitrary 

point P we have that the normal curvature is given by: 

(11) k(m)=
2212

2

11

2212

2

11

gmg2mg

hmh2mh




 

The extreme values k1 and k2 of the function k(m) are called the principal 

curvatures of the surface in that point. They satisfy also the equation: 

(12) (g11g22-g12
2
)k

2
-(g11h22-2g12h12+g22h11)k+(h11h22-h12

2
)=0 

The values of m, who give the extremes, call principal directions in that point. 

They also satisfy the equation: 

(13) (g11s-g12r)m
2
+(g11t-g22r)m+(g12t-g22s)=0 

The curve 
dK

dL
=m (where m is one of the principal directions) is called line of 

curvature on the surface. On such a curve we have the maximum or minimum 

variation of the value of Q in a neighborhood of P. 

The quantity K=k1k2 is named the total curvature in the considered point and 

H=
2

kk
21


 is named the mean curvature of the surface in that point. 

We have therefore: 
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(14) K=
2

122211

2

122211

ggg

hhh




=



=

 

 22222222222
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LKcLKc1
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  

(15)

 H=
2

122211

112212122211

ggg

hghg2hg




=

      

 2
3

2222222222

2222222

LKcLKc1

LKcK1L1LcK
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  

A surface with K=constant call surface with constant total curvature and if H=0 

call minimal surface. In our case we can see that K=0 if and only if: +=1. 

If we consider now in the tangent plane  at the surface in a point P a direction m, 

if h11m
2
+2 h12m+h22=0 we will say that m is an asymptotic direction, and the 

equation: 0h
dK

dL
h2

dK

dL
h

2212

2

11









 gives the asymptotic curves of the surface 

in the point P. 

In our case, the asymptotic directions are: 

(16) m1=
 

  K

L

1

1




, m2=

 
  K

L

1

1




 

If +=1 then both asymptotic directions are equal. 

With notations x
1
=L, x

2
=K, let define now the Christoffel symbols of first order: 

(17) ij,k= 





















k

ij

j

ik

i

jk

x

g

x

g

x

g

2

1
 

and of second order: 

(18) 
kj

i
=g

i1
jk,1+g

i2
jk,2 

where g
11

=


1
G, g

12
=-



1
F, g

22
=


1
E are the components of the inverse matrix of 










2212

1211

gg

gg
. 
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We have now: 

(19) 11,1=
L

g

2

1
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


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K

g

2

1

L

g
1112









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K
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2
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


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L
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1
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


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1

K
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
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




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(20) 
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1
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
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From the upper we find that: 

(21) 11,1=    23222 LKc1 , 11,2=    22212 LKc1 , 

12,1=  222122 LKc , 12,2=  212222 LKc ,  

22,1=    21222 LKc1 , 22,2=    22322 LKc1  

(22) 
11

1
=

 
 






2222232222

2222
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 
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

, 
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12

1
=

222222222222

22122
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



, 
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2
=

222222222222
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LKLKcLKc
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
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



, 
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1
=
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
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
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22222322223

2222

KLcLKcLK
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A geodesic is in common language the shortest curve between two points. It is 

useful when we try to determine the shortest way to go from a production at other 

in a minimum time. The equation of a geodesic is: 

(23) 0
ds

dx

ds

dx

jk

i
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xd kj

2

i2

  

that is: 

(24) 0
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


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


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






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(25) 0
ds

dK
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2
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dL
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2
2
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11

2
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2

2
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















  

or, with the quantities determined: 
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 
 

 
0

ds

dK
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ds
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LKc
2

ds

dL

LKKcLLKc

Kc1
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2

222222222222
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222222222222
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2

2222232222
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2

2










































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(25)

 

 
0

ds

dK

KLcLKcLK

Lc1

ds

dK

ds

dL

LKLKcLKc

LKc
2

ds

dL
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ds
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2

22222322223
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222222222222
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2

222222222222

2212

2

2
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










































 

The equations of geodesics are: L=L(s), K=K(s) where s is the element of arc on 

the curves. 
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