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Abstract: Currency market is recently the largest world market during the existence of which there 

have been many theories regarding the prediction of the development of exchange rates based on 

macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the 

adequate model for the prediction of non-stationary time series of exchange rates and then use this 

model to predict the trend of the development of European currencies against Euro. The uniqueness 

of this paper is in the fact that there are many expert studies dealing with the prediction of the 

currency pairs rates of the American dollar with other currency but there is only a limited number of 

scientific studies concerned with the long-term prediction of European currencies with the help of the 

integrated ARMA models even though the development of exchange rates has a crucial impact on all 

levels of economy and its prediction is an important indicator for individual countries, banks, 

companies and businessmen as well as for investors. The results of this study confirm that to predict 

the conditional variance and then to estimate the future values of exchange rates, it is adequate to use 

the ARIMA (1,1,1) model without constant, or ARIMA [(1,7),1,(1,7)] model, where in the long-term, 

the square root of the conditional variance inclines towards stable value.  
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1 Introduction: Literature Review 

In today‟s global economy, the crucial importance for any future investments is the 

accuracy in predicting the foreign exchange rates or at least the correct prediction 

of the trend. There already are a great number of methods for predicting the 

exchange rates. It was shown by Robert Meese (MEESE R., 1983) that models 

based on the random walk hypothesis in predicting exchange rates are better than 

those based on macroeconomic indicators. However, this does not apply for the 
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long-term prediction, which was proved by examining the prediction of USD 

exchange rate against four other currencies during seventeen years (MARK N., 

1995).  

Predictions of exchange rates made with the use of ARIMA models were started in 

nineties by economists Bellgard and Goldschmidt (BELLGARD C., 1999). 

However, they concluded that these models are not very suitable for predicting the 

exchange rates.  Dunis and Huang (DUNIS C., 2002) who were using ARMA (4,4) 

were of the opposite opinion; their results were, however, insignificant.  

Another example of a study using Box Jenkins models is for instance the paper 

“Exchange-rates forecasting: exponential smoothing techniques and ARIMA 

models”, in which the authors investigated the behavior of daily exchange rates of 

the Romanian Leu against Euro, United States Dollar, British Pound, Japanese 

Yen, Chinese Renminbi and the Russian Ruble (FĂT M., 2011). 

Weisang and Awazu (WEISANG G., 2008) presented three ARIMA models which 

used macroeconomic indicators to model the USD/EUR exchange rate. They 

discovered that over the time period from January 1994 to October 2007, the 

monthly USD/EUR exchange rate was best modeled by a linear relationship 

between its preceding three values and the current value. These authors also 

concluded that ARIMA (1,1,1) is the most suitable model for the prediction of the 

time series of USD/EUR exchange rate. 

Another often used method for predicting the trend of exchange rates is the ANN 

model (Artificial Neural Network). Kamruzzaman J. a Ruhul A. Sarker 

(KAMRUZZAMAN J., 2003) developed and investigated three ANN based 

forecasting models using Standard Backpropagation (SBP), Scaled Conjugate 

Gradient (SCG) and Backpropagation with Baysian Regularization (BPR) for 

Australian Foreign Exchange to predict six different currencies against Australian 

dollar. 

One of the recent studies (ROUT M., 2013) uses the hybrid model combining an 

adaptive autoregressive moving average (ARMA) architecture and differential 

evolution (DE) based on training of its feed-forward and feed-back parameters. The 

results of the developed model are compared with other four competitive methods 

such as ARMA-particle swarm optimization (PSO), ARMA-ca t swarm 

optimization (CSO), ARMA-bacterial foraging optimization (BFO) and ARMA-

forward backward least mean square (FBLMS). The derivative based ARMA-

FBLMS forecasting model exhibits the least suitable prediction performance of the 

exchange rates. Compared to that, ARMA-DE exchange rate prediction model 

possesses superior short and long range prediction potentiality compared to others. 

Many studies are dealing with the prediction of USD/EUR, USD/YEN or 
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USD/RON. The originality of this paper lays in the prediction of EUR against other 

European currencies for the long-term time horizon (2014-2020).  

 

2. Methodology 

In this paper, there are models of time series of monthly exchange rates of the 

national currencies not including the common European currency, for the time 

period of 12/1998 to 12/2013. These currencies are of the Czech republic (CZK), 

Poland (PLN), Great Britain (GBP), Romania (RON), Sweden (SEK) and Hungary 

(HUF). The data were obtained from the ECB database and they contain values of 

the selling price of each currency, specifically the average value for each month at 

the foreign exchange market FOREX. In total, there are 180 observations in the 

time series. Countries that do not use Euro but have fixed exchange rate were not 

included in this prediction. This applies for Bulgaria (1EUR=1,95583BGN), 

Denmark (1EUR=7,46038DKK) and Lithuania (1EUR=3,4528LTL).  

To obtain the adequate ARIMA (p, d, q) model, the series stationarity was tested 

by applying the ADF-Augmented Dickey-Fuller (DICKEY&FULLER, 1979) and 

PP-Phillips-Perron unit root tests (PHILLIPS P., 1988). ADF was performed for 

the scenario with a constant, without a constant and with a trend. The most suitable 

appears to be the model with a constant, the results of which are shown below in 

the table no. 1 for different currencies. The results of these tests regarding non-

stationarity of the indices are the same, namely the series EUR/RON, EUR/SEK, 

EUR/GBP, EUR/HUF are non-stationary (the null hypothesis of the unit root 

existence cannot be rejected, i.e. it is not a stationary time series). 

 
Table 1. Augmented Dickey-Fuller (ADF) test with a constant for the currencies 

CZK/SEK/GBP/PLN/HUF/RON  

Results/currency CZK SEK GBP PLN HUF RON 

Estimated value γ -0,001 -0,03 -0,01 -0,06 -0,01 0,003 

Test statistics: t -0,36 -1,81 -0,75 -2,82 -0,22 0,96 

Asymptotic p-value 0,56 0,38 0,39 0,06 0,61 0,91 

Source: author (SW Gretl) 

 

If we do not reject the null hypothesis and the given series is non-stationary, it is 

necessary to proceed to its transformation, as the Box Jenkins (AR, MA, ARMA or 

ARIMA) models are based on the time series stationarity, in the form of 



ŒCONOMICA 

 

 31 

Yn = a1Yn-1 + a2Yn-2 +….+ ap Yn-p – b1n-1 - b2n-2 - ….bqn-q +n   (1) 

(1-a1L-a2L
2
 - …apL

p
)Yn = (1-b1L- … - bqL

q
)n    (2) 

L)Yn L)n       (3) 

 
Where p is the order of the autoregressive part, while q is the order of the moving 

average part, and n represents the white noise. 

Validation of ARMA (p,q) models is based on minimizing the AIC (Akaik‟s 

information criterion) and BIC (Schwarz‟s information criterion) criteria, as well as 

on the verification of the correlation of the error terms of the model and finally on 

measuring the divergence from the normality of these values. If it is needed for the 

time series to have one differential operation to achieve stationarity, it is a I(1) 

series. Time series is I(n) in case it is to be differentiated for n times to achieve 

stationarity. Therefore, ARIMA (p,d,q) models are used for the non-stationary time 

series, specifically the autoregressive integrated average models, where d is the 

order of differentiation for the series to become stationary. Therefore the ARIMA 

(p,d,q) model may be rewritten as follows: 

L) (1-L)d Yn L)n      (4)

 

where L is the lag operator and the order of differentiation is equal to: 

dYn (1-L)d Yn       (5) 

The identification of modeling the conditional mean value is based on the analysis 

of estimated autocorrelation and partial autocorrelation function (ACF, PACF). 

These estimations may be strongly inter-correlated, it is therefore recommended 

not to insist on unambiguous determination of the model order, but to try more 

models. We must not forget to carry out the verification, which is based on 

retrospective review of the assumptions imposed on the random errors. Given that 

financial data are very often characterized by high volatility, it is necessary to test 

the model for ARCH effect, i.e. presence of conditional heteroscedasticity. 

Regarding heteroscedasticity it is therefore a situation where the condition of finite 

and constant variance of random components is violated. The following model 

illustrates the conditional heteroscedasticity: 

(𝑙𝑛𝑋𝑡 − 𝑙𝑛𝑋𝑡−1)
2
 = 𝛼 + ρ (𝑙𝑛𝑋𝑡−1 − 𝑙𝑛𝑋𝑡−2)

2
 + 𝑢𝑡    (6) 

where Xt, Xt- represent values in the time series when time t is changed by one 

unit. The parameter 𝛼 is calculated with the use of OLS and 𝑢𝑡 is a random 

component. If the parameter ρ (regressive parameter) is equal to zero, we cannot 

talk about heteroscedasticity. 
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3. Results 
Based on the priori information about the behavior of the exchange rates, it may be 

concluded that the specification of the ARIMA (1,1,1) type is an adequate choice. 

To verify this estimation, we generated the correlograms ACF and PACF which for 

most of the analyzed currencies confirm the legitimacy of the identification of the 

data generating process with the use of ARIMA (1,1,1). The exception is Swedish 

crown and Hungarian forint. Based on comparing the information criteria (AIC, 

BIC),ARIMA (1,1,1) model without constant was identified for the Swedish 

currency (SEK) and ARIMA [(1,7),1,(1,7)] model for the Hungarian currency.  

Note. The model with a constant was also developed but compared to the 

significance of the p-value and by comparing the information criteria, it seems 

optimal to exclude the constant. For illustration, two ACF and PACF correlograms 

for the first difference for the Romanian Leu and Hungarian forint are shown 

below. 
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Figure 1. ACF and PACF correlograms for the first difference (RON, HUF) 

Source: Author (SW Gretl) 

CZK coefficient direct. error z p-value 

phi_1 0,283049 0,0734204 3,855 0,0001*** 

theta_1 0,850331 0,0606456 14,02 1,15E-44*** 

SEK coefficient direct. error z p-value 

phi_1 -0,527872 0,101123 -5,22   1,80e-07 *** 

theta_1 0,850349 0,0606514 14,02 1,15e-44 *** 

GBP coefficient direct. error z p-value 

phi_1 0,186398 0,0736146 2,532 0,0113*** 

theta_1 -1 0,0233473 -42,83 0** 

PLN coefficient direct. error z p-value 

phi_1 0,391535 0,0691388 5,663 0,0000000149*** 

theta_1 -1 0,0148063 -67,54 0*** 

HUF coefficient direct. error z p-value 

phi_1 0,342549 0,0850299 4,029 0,0000561*** 

phi_7 -0,21342 0,0702948 -3,036 0,0024*** 

theta_1 -1,09445 0,0527216 -20,76 1,02E-95*** 
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theta_7 0,101755 0,0563949 1,804 0,0712* 

RON coefficient direct. error z p-value 

phi_1 0,346849 0,0752846 4,607 0,00000408*** 

theta_1 -0,972696 0,0248644 -39,12 0*** 

Figure 2. The estimation of the ARIMA for exchange rates with the use of 180 

observations for the time period of 1.1999 – 31.12.1999 – 31.12.2013 

Source: own calculations 

Note. const = constant generated by SW Gretl, phi_1 = regressive coef. of AR processes at 

the 1. delay, theta_1: regressive coef. of MA processes at the 1. delay, z = test statistics. 

 

From the table, we can conclude that parameters of AR member as well as of MA 

member are statistically significant at least on the 5 % level for all examined 

currencies. Then we tested the model for autocorrelation (H0: There is no 

autocorrelation in the model, H1: There is autocorrelation in the model). The result 

is the rejection of H1 in favor of null hypothesis, i.e. that there is no autocorrelation 

in the model, thus the chosen ARIMA (1,1,1) specification is adequate (eventually 

for HUF ARIMA [(1,7),1,(1,7)] model).  

This is followed by testing the stationarity in the data generating process and 

finding, whether the model is invertible. This verification is based on discovering 

the absolute values of AR and MA roots.  

 

CZK SEK GBP PLN HUF RON 

AR: Root 1 – abs. value 3,533 -1,8949 5,3649 2,5541 1,2963 2,8831 

MA: Root 1 – absolute value 1,023 -1,176 1,001 1,005 1,0219 1,0281 

Figure 3. Outputs of AR and MA roots 
Source: author 

Note. Hungary: absolute value of other six roots (in AR and MA) was higher than one. 

The absolute value of all roots is higher than one, i.e. the model is stationary and 

invertible. Based on these results, we developed the prediction of exchange rates up 

to 2020, which is shown on the following pictures.  
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Figure 2. Prediction of exchange rates with the use of ARIMA model (RON, SEK, 

HUF, CZK, GBP, PLN) 

Source: Author (SW Gretl) 

Note: blue line = prediction, green line = 95% interval  
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The prediction shows decreasing trend of the Czech crown. Throughout the years, 

it should come to the evaluation of CZK against Euro but only slowly as according 

to the prediction the average exchange rate should be 24,52CZK/EUR in 2020. 

There is a slight decline also for the Swedish crown. For other currencies, the trend 

is rising or almost constant (Polish currency). From 2014 to 2020, Romania should 

register a rapid development of its currency. This rapid depreciation of the 

exchange rate (from 4,57RON/EUR in 2014 to 5,87RON/EUR in 2020) could 

cause pressure to increase the export by which the balance of payment deficit could 

be partly improved as Romania is currently overloaded with import. 

Results of these models were subsequently verified with the use of the select 

autocorrelation function of standardized residues which verified their non-

correlation. The final part of the verification was to test the normality of 

standardized residues and then, with the use of ARCH test, we determined, whether 

these residues have constant variance, i.e. whether they are conditionally 

homoscedastic. We tested the null hypothesis, i.e. that there is no ARCH effect 

present in the residues. If p-value is higher that the importance level of 0,05, we 

accept this hypothesis.  

Currency  p-value Result of the testing (presence of ARCH effect) 

CZK 0,0348396 Residues are conditionally heteroscedastic 

SEK 1,32E-05 Residues are conditionally heteroscedastic 

GBP 0,00197651 Residues are conditionally heteroscedastic 

PLN 0,11284 Residues are conditionally homoscedastic 

HUF 0,098173 Residues are conditionally homoscedastic 

RON 0,312715 Residues are conditionally homoscedastic 

Figure 4.  Detection of ARCH effect 

Source: author 

From the above shown table follows that heteroscedasticity was found at three 

currencies (i.e. presence of ARCH effect). Because the variances of the random 

components are not equal, the OLS method has not the optimal properties in this 

form of generalized linear regressive model, specifically it does not provide 

substantial estimations, however, these estimations are still impartial and may be 

used for further research. Polish, Hungarian and Romanian currency shows 

constant variance of the residues (homoscedasticity). 

 

4. Conclusion 

In this study, exchange rates of the six European currencies were predicted with the 

use of ARIMA (1,1,1) or with the use of ARIMA [(1,7),1,(1,7)]. The results are 

different for each selected currency – according to the prediction there will be 
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appreciation as well as depreciation of the currency against Euro. It is however 

necessary to consider the limitations of using the ARIMA models which presented 

certain problems in estimating and validating the model and which are more 

effective in rendering the medium-term value (for several months). This long-term 

prediction should primarily show the future trend of the development of currencies 

exchange rates and at the same time identify the optimal model of the Box Jenkins 

models for predicting the European exchange rates. Both of these conditions were 

fulfilled. 
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