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Abstract: This paper treats from an axiomatic point of view the notions of indifference and 

preference, relative to the consumption of goods. After the introduction and analysis of indifference 

classes, the notion of the utility function is introduced naturally, a number of axioms giving 

consistency and rigor. The concept of marginal utility is presented in both differentiable and, 

especially, in the discretized case. There are introduced new types of discretized marginal utility that 

adapts better when analyzing discrete the differential situation. The marginal rate of substitution is 

addressed globally, for n goods, obtaining the notions of hyperplane or minimal vector of substitution. 

Also, in the discretized case, there are introduced the marginal rates of substitution to the left, right or 

bilateral, as well as the adjusted rates, which give more precisely the possibility of consumption of a 

good when replaced another. 
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1. Introduction 

From moments of impasse that has passed mathematics at the end of the nineteenth 

century, when it was forced relocation and reconstruction of the foundations of 

rigorous, any scientific theory that any aims to be sustainable and, above all, 

rigorous, has a urge to be built on solid bases, axiomatized. This field theory make 

a distance from the field of speculations or circumstantial situations, giving 

durability and at the same time, rigorous scientific reasoning. Any economic 

activity involves the existence of two distinct entities, but complementary, namely 

at least one manufacturer and a single consumer. 

A manufacturer can not operate without a specific guarantee the possibility of 

purchase of his goods by at least one buyer as such it can not exist an applicant 

without the real creator of the product to be asked. It is natural to assume that each 

of the two parties follows a well-defined purpose. A manufacturer which would not 

pursue its profit maximization (even if this approach is somewhat simplistic) were 

closer to a charitable institution, rather than an economic entity. On the other hand, 

a beneficiary (which departs net from the notion of consumer) that would purchase 
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products without having to follow a specific purpose (food needs, comfort, travel, 

etc.) could easily turn into a collector therefore, it would affect another individual 

needs. 

It is very difficult to be measured or quantified the consumer‟s “need”. A concept, 

largely controversial, satisfying to some extent, provided the “primary concept” in 

any axiomatic theory, is the utility. 

There are a number of theories that define, more or less axiomatic notion of utility 

directly related to consumer preference for certain combinations of assets. What is 

a consumer preference but a good over another? The answer can only return to the 

same concept just try to explain it. We will not deviate too much from this line 

(even it is questionable from many points of view), but we will try a systematic and 

consistent increase in scientific endeavor. 

 

2. Consumer Preferences 

Before defining the consumer space, we consider first, that all goods for 

consumption are indefinitely divisible. We will see, a little later, that this 

convention is to a point, benefit, meaning that differential techniques can be 

applied in the analysis of consumer behavior. On the other hand, the findings 

obtained will be applied with great caution, especially when we want to establish a 

consumer verdict. 

We thus define the consumer space on R
n
 for n fixed assets as 

SC=(x1,...,xn)xi0, i= n,1  where xSC, x=(x1,...,xn) is a consumption basket 

or basket of goods. 

In relation to the issues raised above, is a natural question: considering two 

elements x,ySC, how do we characterize that a consumer will choose the basket x 

or y? It seems then that will have to establish a certain choice between a basket or 

another. In order not to enter the above vicious circle, we define the so-called 

preference relations, external in the generation of the rigorous theory, but effective 

in implementation. 

We will define the relationship of indifference on SC noted, in what follows, 

with: . If two baskets x and y are in relation xy, this means that any combination 

of goods x and y is indifferent for the consumer. Also, we note that x ~ y the fact 

that x is not indifferent to y. 

We will impose the condition of indifference to be a relationship of equivalence 

that is: 
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I.1. xSCxx (reflexivity); 

I.2. x,ySC, xyyx (symmetry); 

I.3. x,y,zSC, xy, yzxz (transitivity). 

The interpretation of these axioms is natural. Thus, reflexivity is not merely say 

that a basket of goods is indifferent in his choice himself, and symmetry that 

indifference between x and y implies choice, inevitably, the indifference of y and x. 

Transitivity is not always obvious, in that there may be situations (more or less 

forced) the indifference between x and y, then y and z between not involve the 

binding of x and z. Usually, the deviation from transitivity can occur when the 

relation of indifference is not “perfect”, small differences between the three baskets 

leading to a significant distance between the extremes. 

Let therefore the consumer space endowed with the relationship of indifference 

defined upper (SC,) and xSC. The equivalence class of x: [x]=ySCyx 

will consist in all consumer‟s baskets indifferent respected to x. We will call [x] – 

the indifference class of x. 

From the properties of equivalence classes follow some remarkable conclusions, 

namely: 

 x and y are indifferent if and only if they have identical indifference classes; 

 for any two baskets of goods x and y, their indifference classes are either 

identical or disjoint (i.e. if exists z such that xz, but y ~ z then for any ux will 

result that u ~ y; 

 the set of all baskets of goods or, in other words, the consumer space is the 

union of all classes of consumer indifference. 

A system of representatives for the relationship of indifference  will consist of all 

consumer baskets such that any two such entities are not indifferent and any 

consumer basket are whatever exactly one of the elected representatives. 

Before continuing, let recall that a norm on the linear space R
n
 is an application: 

:R
n
R, x x  xR

n
 such that the following axioms are satisfied: 

N.1. x =0x=0; 

N.2. x = x  xR
n
 R; 

N.3. yxyx   x,yR
n
. 

The pair (R
n
,  ) is called the normed n-dimensional linear space. 
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Considering therefore an arbitrary norm   on R
n
 we will add a first additional 

axiom to the relationship of indifference named the axiom of continuity: 

I.4. x,ySC, xy, x  y zSC such that: xz and x  z  y . 

The axiom of continuity, not simply say that switching to a basket of goods to 

another indifferent with it, is done continuously, without “jumps”. 

For xSC, we will call, in the assumption of continuity axiom, the indifference 

class of x as the indifference hypersurface or for n=2 – the indifference curve. 

Because the indifference classes are either identical or disjoint, we have that the 

intersection of indifference hypersurfaces or curves are impossible. 

A second additional axiom of indifference with respect to the above relationship 

refers to the condition of the lower bound of indifference classes namely: 

I.5. xSCux such that u  v  vx 

The axiom I.5 describes the condition that in a class of indifference to be a basket 

at a least “distance” of origin or, in other words, with the lowest total (with respect 

to the norm) number of goods in his structure. 

We will call a basket of goods like in the axiom I.5 - minimal basket in the sense 

of norm with respect to the indifference class of xSC and we will note m(x). It 

should be noted that we do not necessarily guarantee the uniqueness of the 

existence of such a basket, but his norm is really unique. 

Moreover, if xy then )x(m = )y(m . Indeed, if xy then )x(m  v  vx so , 

in particular: )x(m  )y(m  because m(y)[x] and hence m(y)x. Analogously, 

)y(m  )x(m  hence the above statement. 

To define the relationship of preference, we will formulate differently the problem. 

If a basket of goods will be some x preferred to another y, it is logical to assume 

that any other basket z indifferent to x will also preferred to y. Therefore, we will 

consider instead of SC, the factor set SC relative to  which consists in the 

indifference classes of SC, denoted with SC/. 

Thus, to define the relationship of the classes marked in the following with   

through the following axioms: 

P.1. [x]SC/[x] [x] (reflexivity); 

P.2. [x],[y]SC/, [x] [y], [y] [x][x]=[y] (antisymmetry); 

P.3. [x],[y],[z]SC/, [x] [y], [y] [z][x] [z] (transitivity) 
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We will impose to this relationship four additional axioms: 

P.4. x,ySC[x] [y] or [y] [x] (the condition of total ordering); 

P.5. xSCySC such that y ~ x and [y] [x]; 

P.6. [x] [y] if and only if )x(m  )y(m  (the condition of the compatibility 

with the existence of minimal baskets); 

P.7. x,ySC, xy[x] [y] and x ~ y (the condition of the compatibility with 

the strict inequality relationship). 

At first glance, the relationship of preference seems to depart from the nature of the 

goods, operating on indifference classes which represents set of goods indifferent 

between them. 

On the other hand, however, the advantage of considering the indifference classes 

lies from the axiom P.2 which with P.1 and P.3 give the order relation character. 

Otherwise, if the relationship would be defined strictly preferably baskets of goods, 

from the fact that the other one was preferred and the second to the first, result that 

they are not identical, but that they are indifferent, so just classes equal 

indifference. 

The total ordering condition states that any two baskets of goods are comparable in 

meaning preference for one of them. 

The P.5 axiom guarantees the existence for any basket of goods of one not 

indifferent with it with and be at least as much preferred the former. 

The axiom P.6 states that a class is preferred to another if and only if the norm of 

the first basket is greater than or equal to those of the minimal basket of the second. 

The P.7 axiom states that a small additional quantity of a good from a basket leads 

to a preference superior to the original. The axiom also shows the existence for any 

basket of goods of one superior relative to the preference and, analogously, lower 

like preference. 

Let now xSC and m(x)=( 1x ,..., nx )[x]. 

We will define the relationship of preference noted, in the following, without the 

danger of ambiguity, also with  , by: x,ySC x y if and only if [x] [y]. 

The relationship will keep the properties of reflexivity, transitivity and total 

ordering, but the antisymmetry becomes: 

P.2'. x,ySC/ x y, y xxy 
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The interpretation of the axioms is obvious. If any indifference class of a basket of 

consumer is preferred at least as much itself (reflexivity), follows that for an 

arbitrary basket x, any basket y indifferent to x, will be at least as preferred much 

as x. 

The symmetry states that if a basket z indifferent to x and a basket t indifferent to y 

are each preferred by at least as much the other, then the two consumer baskets 

belonging to the same classes, so they are indifferent between them. 

The transitivity can have violations in practice, but will usually be excluded from 

the analysis. It is possible that if relations preferably slightly offset time or applied 

to different situations, not to achieve transitivity. To have ensured transitivity, it 

must first be satisfied the simultaneity of the moments of choice and, on the other 

hand, it must apply to the same circumstantial situation. 

We will define now on SC the strict preference relationship as a relationship 

class, denoted   and defined by [x] [y] if and only if [x] [y] and [x][y] (which 

is equivalent to [x][y]=). 

Similarly, we now define the strict preference relationship denoted in the 

following, without the danger of confusion, by  :  x,ySC x y if and only if 

[x] [y]. 

The strict preference relationship on classes is not, obviously, reflexive because if 

for [x]SC/ implies [x] [x] then [x][x] which is a contradiction. Also, the 

antisymmetry states that: [x],[y]SC/ [x] [y], [y] [x][x]=[y]. But [x] [y] 

implies [x][y] so a contradiction with the statement of conclusion. Relative to 

transitivity, if [x], [y], [z]SC/, [x] [y], [y] [z] implies [x] [y], [x][y ], [y]

 [z], [y][z] therefore: [x] [z]. The fact that [x][z] does not result from any 

assertion, therefore it can not be proven the transitivity in this axiomatic 

framework. 

For this reason, we will use below only indifference or preference relations (not 

strictly), in order to make full use of “power” property of the relations of 

equivalence or order. 

Consider now an arbitrary consumer basket xSC. We will call the preferred 

area of consumer of x, the set: ZC (x)={ySC[y] [x]} that is the set of those 

baskets that consumer prefers at least as much of x. 

It notes that under the axiom P.5, ZC(x)-[x] that is in the preferred are of 

consumption of x is at least one basket y strictly preferred to x. 
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Let us note that if yZC(x) then for any zZC(y) we have: [z] [y] [x] from 

where, by virtue of transitivity: [z] [x] so zZC(x). Therefore: 

yZC(x)ZC(y)ZC(x) 

From the axiom P.5 zSC such that z ~ x and [z] [x]. From the above results we 

have that ZC(z)ZC(x). It is clear that xZC(z), otherwise having [x] [z] and 

from antisymmetry, results [x]=[z] so xz – contradiction. After this observation 

we have that for any xSC y1ZC(x) such that ZC(y1)ZC(x), ZC(x)-ZC(y1) 

(that is the inclusion is strictly). Analogously y2ZC(y1) such that 

ZC(y2)ZC(y1), ZC(y1)-ZC(y2). 

Therefore, for any xSC (yn)n1SC such that: 

ZC(x)ZC(y1)ZC(y2)... ZC(yn)... 

the inclusions being strictly, so the underlying consumption of some basket, 

contains an infinity of different baskets. 

Examples 

1. Considering any two goods, the relationship xy defined by: ax1+bx2=ay1+by2 

x=(x1,x2), y=(y1,y2)SC where a,b0 is one of indifference. The indifference 

classes relative to  are for any x=(x1,x2): [x]={ySCay1+by2=ax1+bx2} 

2. Considering any two goods and the indifference relation defined in the first 

example, the relationship [x] [y] defined by: ax1+bx2ay1+by2 x=(x1,x2)[x], 

y=(y1,y2)[y]SC where a,b0 is a preference relationship. Considering now 

xSC, x=(x1,x2), ax1+bx2=U, we have ZC(x)={(y1,y2)ay1+by2U}. 

At the end of this section, we ask the normal question: how can we define 

concretely in practice, the relations of indifference or preference? 

A first approach would be the income of the consumer is willing to spend on a 

basket of some goods. Considering two baskets of goods x=(x1,...,xn) and 

y=(y1,...,yn) we can believe that xy if a consumer is willing to devote the same 

amount of money for the purchase of x and y, respectively. The problem of 

preference is much more complicated. Considering the amount of the money S that 

the consumer is willing to spend to purchase a basket of goods (with some fixed 

structure) we could say that x y if the sum Sx necessary to obtain x is greater than 

or equal to the corresponding Sy for the purchasing y, both amounts being less than 

or equal to S. This type of choice is quite limited but its concrete applicability. On 

the one hand, even if the price of a particular good would be identical to the market 

(otherwise, the consumer could purchase basket of goods from various sources and 
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the relationship of preference could be, in some cases, reverse to the income 

allocated) the internal structure basket could lead to situations of exclusion in 

certain parts of it. 

Consider, for example, a customer that has disposable an income of 12 monetary 

units wishing to purchase two products, namely bread whose price is 3 u.m./pcs. 

and toothpaste with the price 5 u.m./pcs. Considering pairs of goods of the form 

(p,d) where p - number of breads and d - the number of tubes of toothpaste, all 

baskets will be made admissible in pairs: (0,1) - 5 u.m., (0,2 ) - 10 u.m., (1,0) - 3 

u.m., (1,1) - 8 u.m., (2,0) - 6 u.m., (2,1) - 11 u.m., (3,0) - 9 u.m., (4,0) - 12 u.m. The 

consumption basket that will surpass all others will contain, from this point of 

view, 4 breads and no toothpaste. The consumer then allocated the entire amount 

available, but satisfaction does not seem in any case, being the greatest because, on 

the one hand, did not buy any toothpaste (which had actually needed), and on the 

other, bought four breads that, if he lives alone, could be much more than its food 

needs. In the idea that he can not eat more one bread per day, most rational choice 

would be (1,1), but not willing to be spent maximizing income! Another choice 

that would ensure the two products could be (2,1) but, again, would bring an extra 

supply of breads which may not need them. 

We see therefore that, in principle, the space of consumption SC should be limited 

according to consumer needs. On the other hand, a strict monetary approach to 

consumer preferences may lead to extreme situations that cause, in fact, 

dissatisfaction. 

 

3. The Convexity of the Areas of Consumption 

Considering a set A in R
n
 this is called convex if x,yA [0,1]x+(1-

)yA. Considering the line segment passing through points M(x) and N(y) we 

have that a set is convex if the segment MN (noted also [x,y]) is entirely in it. 

In particular, we assume in what follows, that for any consumption basket xSC, 

ZC (x) is a convex set. 

What significance has this fact and where it is the origin for this restriction? 

The problem is quite complicated and, at first glance, seems somewhat common 

sense to take this restriction. If y,zSC(x) then y and z are preferred to x. It seems 

natural to believe that any combination of intermediate goods between y and z will 

be preferred to x. 
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Figure 1. The convexity of the consumption area 

Unfortunately, not always so! Consider, as an example a person who wants to 

travel to work effectively. If x=“walking”, then y=“bus travel” and z=“travel by 

cab” will be the preferred choices of x (ignoring here the actual distances or 

transport costs). A combination of y and z will be, for a relatively short distance, 

always disadvantageous to the first, because waiting times flowed into the travel 

mode change. 

We believe however that most of the areas of consumption is convex, for several 

reasons. On the one hand, a basket of goods x, generating non-convex consumer 

area, is too unstable to be taken into account by a “rational” consumer. Any 

combination of consumer goods within the area can lead potentially to a reduction 

of its satisfaction with respect to x. On the other hand, even if our analysis is static, 

in reality, the migration is dynamic (it takes place in some time) and it is hard to 

believe that the consumer will go through a period of consumer dissatisfaction 

reach, for example, from y to z. 

Formalizing, we will say that xSC, ZC(x) is a convex set that is y,zSC such 

that y x and z x follows y+(1-)z x [0,1]. 

From the condition of convexity of ZC, we get that for any x,y,zSC such that [y]

 [x] and [z] [x] then [y+(1-)z] [x] [0,1]. 
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4. The Utility Functions 

In the previous section, we have noted the difficulty of the mathematical approach 

of indifference and preference concepts. We will try in this part an axiomatic 

introducing of a concept, even though disputed by many economists, will bring 

some light in the treatment of previous notions. For a mathematical analysis of 

efficient consumer preferences could be useful to introduce a function with 

numerical values to enable their hierarchy. 

We thus define the utility function as: 

U:SCR+, (x1,...,xn)U(x1,...,xn)R+ (x1,...,xn)SC 

satisfying the following axioms: 

U.1. x,ySC: xy  U(x)=U(y); 

U.2. x,ySC: x y  U(x)U(y); 

U.3. U(0)=0 

We can reformulate the definition of utility function in terms of indifference 

classes as follows: 

U:SC/{0}R+, [x]U([x])R+ [x]SC/ 

satisfying the following axioms: 

U.1'. x,ySC/: [x]=[y]  U([x])=U([y]); 

U.2'. x,ySC/: [x] [y]  U([x])U([y]); 

U.3'. U(0)=0 

We note that axiom U.1' does not mean anything other than injectivity of the utility 

function on the set of indifference classes. 

Analyzing carefully the definition of utility, we see that, in fact, it brings nothing 

new concept in relation to the relations of indifference or preference. 

Indeed, considering an arbitrary function, strictly increasing (with respect to the 

non-total order relation ), U:SCR+, we can define on SC the relationship of 

indifference as: x,ySC: xyU(x)=U(y). The relationship satisfies the axioms 

I.1, I.2 and I.3 of the previous definition of indifference. We can also define the 

relationship of preference by: x,ySC/: [x] [y]U([x])U([y]). The axioms 

P.1, P.2, P.3, P.4 and P.5 are also satisfied. 

From the axiom P.7 we have that if x,ySC such that xy then [x] [y] therefore 

U(x)U(y). The utility function is therefore strictly increasing relatively to the 

relationship of strictly inequality. Let us note however that due to the impossibility 
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of defining a relationship of total order on R
n
 we can not speak of a strict 

monotony of the overall definition scope. 

Under the two definitions, we can characterize the class of indifference relative to a 

basket xSC like [x]=ySCU(y)=U(x) and the consumer's area of x: 

ZC(x)=ySCU(y)U(x). 

Consider now xSC and U(x)=aR+. We have therefore: 

[x]=ySCU(y)=a 

If y,z[x] then: U(y)=U(z)=a. We have seen, above, from the convexity of ZC(x) 

that: [y+(1-)z] [x] or, in terms of utility: U(y+(1-)z)U(x)=a=a+(1-

)a=U(y)+(1-)U(z). 

We obtained thus: 

U(y+(1-)z)U(y)+(1-)U(z) [0,1] z,y[x] xSC 

The above condition is nothing but than the concavity of a function. In the case of a 

continuous function, the concavity is expressed geometrically by the fact that any 

chord determined by two points on the graph function is located below it. 

Therefore, the restriction of the utility function to a class of indifference of an 

arbitrary basket is concave. 

We will extend this requirement to the whole space SC, thus requiring the utility 

function the following condition: 

UC.1. The utility function is concave. 

While not necessarily essential to the fundamental properties, we must sometimes 

still an additional condition: 

UC.2. The utility function is of class C
2
 on the inside of SC. 

The differentiability of the utility function automatically implies its continuity on 

the interior domain of definition. In the case UC.2 the concavity axiom that 

function is equivalent to the fact that the second differential of U is defined 

negatively. 

Considering d
2
U=

 

n

1j,i
ji

ji

2

dxdx
xx

U
 and the attached quadratic form: H=


 

n

1j,i
ji

ji

2

hh
xx

U
, the fact that H is negatively defined is shown by Gauss method or 

by that of Jacobi. 
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Also, in the case of the differentiability, let note that 















n

1i

2

i
x

U
0 that is at least 

one of the first order partial derivatives is nonzero at any point. Indeed, if there is a 

point such that: 
i

x

U




=0 i= n,1  then, from the concavity of U it follows that it is a 

local maximum. On the other hand, the axiom P.7 imposed the hypothesis of non-

existence of local maximum or minimum points. 

We can not conclude this section without a perfectly legitimate question: how we 

will effectively build the utility function? 

In principle, we can assign arbitrary values to the indifference classes, which will 

be satisfied only condition being that if x is preferred to y then the value assigned 

to the class of x to be equal to or greater than that attributed to class y. In this case, 

the detailed rules for the award is very relative. 

If we are not interested than order of preference for a basket of goods and another, 

serial numbers can be assigned arbitrarily (e.g. order of preference indexed by non-

zero natural numbers), that will do a hierarchy of the baskets of goods. In this case, 

we say that we are dealing with an ordinal utility. 

Its disadvantage is, on the one hand, that we have not an uniqueness in assignment 

and, on the other hand, the utility thus defined can not be used in complex 

mathematical calculations (because of dependence by the arbitrary allocation). 

Another way the award is related to external factors which contribute to the 

expression of preference for a basket of goods or another. We can define the utility 

for the purposes of income the consumer is willing to allocate for purchase a basket 

of goods. Thus, a consumer who has 7 u.m. put in a position to choose between 

buying a basket of soft drink with a price 2 u.m. and a sandwich of 3 u.m. and one 

of two drinks a 3 u.m. (together) and a sandwich for the same price he chooses, 

most often, the latter combination. 

Also, we can define the utility as the consumer‟s economy that makes reference to 

a standard basket of goods in the choice amounts to the same invoice. We could 

give an example where a person is indifferent where to go in it‟s free time: to the 

theater, the cinema or a concert. If a theater ticket will cost 20 u.m., at the cinema - 

10 u.m. and 30 u.m. at the concert, he will take the concert like standard and if he 

go to the theater will have a utility of 10 u.m. (30-20) and analogously, to the 

cinema - 20 u.m. (30-10). 

Another approach may be of utility in terms of satisfaction in the future purchase 

act. Thus, an individual who is in a position to choose between a TV and a 
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computer having identical prices, choose the TV if it has no notions about 

computers and choose the computer that is definitely going to write a book about 

the theory of utility! 

However we put the problem, it is agreed that an allocation of utility which abides 

the axioms and will meet the above conditions can be addressed mathematically 

more correct once it has been precisely defined. We call such an allocation: 

cardinal utility. 

Let now a concrete way to approach the construction of utility functions. 

Considering xSC, we will define U(x)= )x(m . The definition is correct under 

axiom I.5 that for any class of indifference to a basket of certain guarantees the 

existence of a basket of minimum norm. 

From the axiom I.5, we saw that if xy then )x(m = )y(m  so U(x)=U(y). 

Therefore, U.1 axiom is satisfied. 

If x y then, from the axiom P.6, we have that m(x)m(y) therefore: U(x)U(y) so 

just axiom U.2. 

Considering now a utility function U:SCR+ and an application monotonically 

increasing f:R+R+, the function fU defined by fU(x)=f(U(x)) is also an utility 

function. Indeed, if xy then U(x)=U(y) from where f(U(x))=f(U(y)) and if x y 

then U(x)U(y) and f(U(x))f(U(y)). We therefore conclude that the utility 

function is determined up to a monotone increasing application. 

Finally, let mention that for aR+, the graph corresponding to the equation 

solutions U(x)=a is called isoutility curve (in R
2
) or isoutility hypersurface (in R

n
). 

From [3] and the fact that U is a concave function and partial derivatives of first 

order are positive (as we shall see later), it follows that the isoutility hypersurfaces 

are convex. 
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Figure 2. The definition of the utility function 

Let consider now n classes of basket of goods whose consumption spaces are SC1
1k


R ,...,SCn nk


R  and U1,...,Un – corresponding utility functions. We will call the n 

classes independent in the sense of utility if the function U:SC1...SCnR+, 

U(X1,...,Xn)=U1(X1)+...+ Un(Xn) Xi=  
iik1i

x,...,x SCi, i= n,1  is a utility for all 

goods. 

In particular, n goods will call independent in the sense of utility if 

U(x1,...,xn)=U1(x1)+...+Un(xn) (x1,...,xn)SC. 

One can easily see that if the functions U1,...,Un are concave and of class C
2
 then: 

d
2
U=



n

1i

2

ii

"

i
dx)x(U 0 therefore U is concave. 

Example 

Considering for any n2 goods the relationship of indifference xy defined by: 
n21n21 k

n
k
2

k
1

k
n

k
2

k
1 y...yyx...xx   x=(x1,x2,...,xn), y=(y1,y2,...,yn)SC, k1,...,kn0, we will 

define after foregoing the utility function: 

U(x)= )x(m =



















n

1i
ik

nk

n

1i
ik

2k

n

1i
ik

1k
n

1i

i

n

n

1i

i

1

n21

k2

k

n

k2

k

1

n

1i
i x...xxk...kk  x=(x1,x2,...,xn)SC 
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5. The Marginal Utility 

Let U:SCR+ an utility function. We saw above that the utility is an increasing 

function with respect to the preference relation of goods basket and strictly 

increasing with respect to the relationship of strictly inequality on R
n
. 

Considering 1in – fixed and akR+, k= n,1 , ki, we will note synthetic 

x=(a1,...,ai-1,xi,ai+1,...,an) SC. 

We define the discretized marginal utility in relation to the i-th good, while the 

consumption of other goods is constant as: 

Um,i(x)=
ix

U




=

i

n1iii1i1n1ii1i1

x

)a,...,a,xx,a,...,a(U)a,...,a,x,a,...,a(U



    

therefore the variation of the utility U at the variation of the consumption of good i. 

In relation to the above definition, we deduce easily: 

U=Um,i(x)xi 

It is necessary here to make an interesting observation! The classic definition of 

marginal utility essentially uses the variation of the utility function from one 

direction. Considering thus xi=h, we get from above: 

Um,i(x)=
h

)a,...,a,hx,a,...,a(U)a,...,a,x,a,...,a(U n1ii1i1n1ii1i1  
 

therefore the variation at left in the point x. 

If h0 then the marginal utility at the point x is the change in utility of the “past” in 

“now” and can not be used to estimate the utility in the “future”. Analogously, if 

h=-s0 then the marginal utility at the point x becomes: 

Um,i(x)=
s

)a,...,a,x,a,...,a(U)a,...,a,sx,a,...,a(U n1ii1i1n1ii1i1  
 

and represents the variation of the utility from “present” in the “future” and can not 

be used to calculate the utility in the “past”. 

A more accurate way of calculating the marginal utility is the arithmetic mean of 

the marginal utility to the left and right: 

Um,i(x)=
h2

)a,...,a,hx,a,...,a(U)a,...,a,hx,a,...,a(U n1ii1i1n1ii1i1  
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for all points inside the space consumption, and to the left and right of it, 

calculating the marginal utility to right, respectively left. 

In what follows, we will note the discretized marginal utility at left with Uml,i, the 

discretized marginal utility at right with Umr,i and the discretized marginal utility 

two-sided with Umb,i. 

We obtain that: 

 lU=Uml,i(x)xi for lU= )a,...,xx,...,a(U)a,...,x,...,a(U
nii1ni1

 ; 

 rU=Umr,i(x)xi for rU= )a,...,x,...,a(U)a,...,xx,...,a(U
ni1nii1

 ; 

 bU=Umb,i(x)xi for bU=

2

)a,...,xx,...,a(U)a,...,xx,...,a(U
nii1nii1


 

where xi0. 

Before concluding this discussion let note that Uml,i in (a1,...,xi,...,an) coincides with 

Umr,i in 

(a1,...,xi-xi,...,an) and also Umr,i in (a1,...,xi,...,an) coincides with Uml,i in 

(a1,...,xi+xi,...,an). Also, from the above definition: Umb.i=
2

UU i,mri,ml 
 therefore: 

min{Uml,i,Umr,i}Umb,imax{Uml,i,Umr,i}. 

If the case of a differentiable utility of class C
1
, we define the marginal utility in 

relation to the i-th good, while the consumption of other goods is constant, as: 

Um,i(x)=
ix

U




(a1,...,ai-1,xi,ai+1,...,an)=

i

n1iii1i1n1ii1i1

0x x

)a,...,a,xx,a,...,a(U)a,...,a,x,a,...,a(U
lim

i 

 


 

therefore the differentiable marginal utility is the limit when of the discretized 

marginal utility when the variation of the good‟s consumption tends to 0. 

The general approach of the utility function, requires it to be concave (the UC.1 

axiom). But we have d
2
U=

 

n

1j,i
ji

ji

2

dxdx
xx

U
= 2

i2

i

2

dx
x

U




= 2

i

ii

dx
x

U

x 

















= 2

i

i

i,m
dx

x

U




 

(caeteris paribus). The negatively defined character of d
2
U implies 

i

i,m

x

U




0 

therefore Um,i is decreasing caeteris paribus (Gossen's First Law). 

Let now reconsider the situation of the discretized marginal utility. We saw that: 

U=Um,i(x)xi caeteris paribus for each type of the marginal utility (but with 
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different meanings of U). Considering a number of k units of good i consumed, 

we get (with abbreviated notation Ui(j)=Ui(a1,...,ai-1,j,ai+1,...,an) and analogously for 

Um,i), successively, for the left marginal utility: 

Ui(j+1)-Ui(j)=Uml,i(j+1)1 j= 1k,0   

and after summing and reductions: 

Ui(k)-Ui(0)=


k

1j
i,ml )j(U  

We got that the total utility is the sum of discretized marginal utilities to the left. If 

it is one single good, we have Ui(0)=0 (the axiom U.3) thus: 

Ui(k)=


k

1j
i,ml )j(U  

We have obtained that the total utility corresponding to the consumption of k units 

of a good equals the sum of discretized marginal utilities to the left (for goods 

1,...,k). 

For the right marginal utility, we have: 

Ui(j+1)-Ui(j)=Umr,i(j)1 j= 1k,0   

and after summing and reductions: 

Ui(k)-Ui(0)=




1k

0j
i,mr )j(U  

We got that the total utility is the sum of discretized marginal utilities to the right. 

If it is one single good, we have Ui(0)=0 (the axiom U.3) thus: 

Ui(k)=




1k

0j
i,mr )j(U  

We have obtained that the total utility corresponding to the consumption of k units 

of a good equals the sum of discretized marginal utilities to the right (for goods 

0,...,k-1 where the good 0 is formal in order to use the right utility). 

For bilateral marginal utility, we have for a total number N of copies of good i: 
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















1)N(U)1N(U)N(U

N2,j ,1)1j(U
2

)2j(U)j(U

1)0(U)0(U)1(U

i,mbii

i,mb
ii

i,mbii

 

After recurrence, it follows: 

 )1k(U...)1s2k(U2)s2k(U)k(U i,mbi,mbii   s0 such that k-2s0 

In particular, as Ui(0)=0 and Ui(1)=Umb,i(0) we have: 

 )1k(U...)1(U2)k(U i,mbi,mbi   for k=even 

  )0(U)1k(U...)2(U)0(U2)k(U i,mbi,mbi,mbi,mbi   for k=odd 

Like a conclusion we have that the total utility corresponding to the consumption 

of k units of a good is equal to twice the sum of discretized bilateral marginal 

utilities of odd order less than k, and for k = odd with twice the sum of discretized 

bilateral marginal utilities of even order, less than k, minus the bilateral utility of 

the null good. 

If the utility is differentiable, then: 

Ui(k)= 
k

0

ii,m dx)x(U   

and the corresponding marginal utility of the unit k of good i is: 

Um,i(k)=Ui(k)-Ui(k-1)= 


k

1k

ii,m dx)x(U  

In the general case of the variation in consumption of all existing goods, for k1 

units of good 1,...,kn units of good n, we will consider first the simple way 

:[0,1]R
n
, (t)=(tk1,...,tkn). This is nothing more than the large diagonal of the n-

dimensional parallelepiped: [0,k1]...[0,kn]. Let also the differential form: 

dU=
1x

U




dx1+...+

nx

U




dxn 

that is continuous everywhere after the C
2
 character of U. Along the path , the 

integral of dU is defined by: 




dU =  


















1

0

nn1

n

1n1

1

dt)t('))t(),...,t((
x

U
...)t('))t(),...,t((

x

U
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where 1,...,n are the components of . The Leibniz-Newton's theorem for exact 

differential forms (forms with property U such that =dU) states that: 


dU

=U((1))-U((0)). 

In the present case: 

U(k1,...,kn)-U(0,...,0)=  

















1

0

nn1

n

1n1

1

dtk)tk,...,tk(
x

U
...k)tk,...,tk(

x

U
= 

 
1

0

n1n,mn

1

0

n11,m1 dt)tk,...,tk(Uk...dt)tk,...,tk(Uk  

Because U(0)=0, resulting the final formula: 

U(k1,...,kn)=  
1

0

n1n,mn

1

0

n11,m1 dt)tk,...,tk(Uk...dt)tk,...,tk(Uk  

 

6. The Marginal Rate of Substitution 

Let consider, first the case of two variable goods, the other remains fixed. Let the 

goods i and j with i  j. We define the space restriction of consumption: Gij=(x1,..., 

xn)xk=ak=const, k= n,1 , ki,j, xi,xjR+ relative to the two goods where the others 

remain fixed. Also be: Dij=(xi,xj)(x1,...,xn)Gij - the consumption domain 

corresponding only to goods i and j. 

We define: uij:DijR+ - the restriction of the utility function at goods i and j, i.e.: 

uij(xi,xj)=U(a1,...,ai-1,xi,ai+1,...,aj-1,xj,aj+1,...,an) 

The functions uij define a surface in R
3
 for any pair of goods (i,j). 

We will call partial marginal rate of substitution between goods i and j, relative 

to Gij (caeteris paribus), the variation of the amount of good j in order to substitute 

an amount of the good i in the hypothesis of utility conservation. 

We will note in what follows: 

RMS(i,j,Gij)=
i

j

dx

dx
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Since uij(xi,xj)= u =const, we obtain by differentiation: duij(xi,xj)=0 i.e.: 

j

j

ij

i

i

ij
dx

x

u
dx

x

u









=0 therefore: 

j

ij

i

ij

i

j

x

u

x

u

dx

dx









 =

ij

ij

G

j

G

i

x

U

x

U









 =

ij

ij

Gj,m

Gi,m

U

U
 . 

We can write: RMS(i,j,Gij)=

ij

ij

Gj,m

Gi,m

U

U
  which is a function of xi and xj. In a fixed 

point x =  n1 x,...,x  we have: 

RMS(i,j, x )=
)x(U

)x(U

j,m

i,m
  

Let now consider the case when the consumption of all goods vary. Let therefore 

an arbitrary point x SC such that U( x )=U0=const and Um,k( x )0, k= n,1 . 

Differentiating in x  we obtain: 0=dU=
 

n

1j
j

j

dx
x

U
 therefore: 


 






 n

ij
1j i

j

ji
dx

dx

x

U

x

U
=0 

or, in terms of marginal utility: 




n

ij
1j i

j

j,mi,m
dx

dx
UU =0. If we note 

i

j

dx

dx
=yj, j= n,1 , 

ji, we get: 




n

ij
1j

jj,mi,m yUU =0. With the aid of the partial substitution marginal 

rate introduced above, by dividing at Um,i, we get: 

1
)x,j,i(RMS

yn

ij
1j

j





 

The above relationship is nothing but the equation of a hyperplane in R
n-1

 of 

coordinates (y1,..., i
ŷ ,...,yn) (the sign ^ means that that term is missing) that 

intersects the coordinate axes in RMS(i,j, x ). This hyperplane is the locus of 

consumption goods changes relative to a change in the consumption good “i” such 

that the utility remain constant. 

For this reason, we will call the locus: the marginal substitution hyperplane 

between the good “i” and the other goods (note below Hmi,j). 
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In particular, for two goods, the marginal substitution hyperplane between the good 

i and the good j, of R, is reduced to: 1
)x,j,i(RMS

y j
  where yj=

i

j

dx

dx
. We have 

therefore 
i

j

dx

dx
=yj= )x,j,i(RMS  which is consistent with the definition of marginal 

rate of substitution. 

We will define now the overall marginal rate of substitution between good i and 

the other as the opposite distance from the origin to the marginal substitution 

hyperplane, namely: 

RMS(i, x )=






n

ij
1j

2 )x,j,i(RMS

1

1
=






n

ij
1j

2

j,m

i,m

)x(U

)x(U
 

We note that for the particular case of two goods, we get as above: 

RMS(i, x )=
)x(U

)x(U

j,m

i,m
  

Considering now v=(y1,..., i
ŷ ,...,yn)Hmi,j we have: v = 




n

ij
1j

2

j
y  and from the 

Cauchy-Schwarz inequality: 

)x,i(RMS

v
= 




n

ij
1j

2

j
y  




n

ij
1j

2 )x,j,i(RMS

1





n

ij
1j

j

)x,j,i(RMS

y
=1 

that is: v  )x,i(RMS . By these results, the overall marginal rate of substitution 

is the minimum (in the meaning of norm) changes in consumption so that total 

utility remains unchanged. 

Considering now the marginal substitution hyperplane: 1
)x,j,i(RMS

yn

ij
1j

j





 the 

equation of the normal line from the origin to it is: 

)x,n,i(RMS

1

y
...

)x,1i,i(RMS

1

y

)x,1i,i(RMS

1

y
...

)x,1,i(RMS

1

y n1i1i1 







   

therefore: 
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






































)x,n,i(RMS
y

...

)x,1i,i(RMS
y

)x,1i,i(RMS
y

...

)x,1,i(RMS
y

n

1i

1i

1

, R 

The intersection of the normal line with the hyperplane, represents the coordinates 

of the point of minimum norm. We therefore have: 1
)x,j,i(RMS

n

ij
1j

2







 and =





n

ij
1j

2 )x,j,i(RMS

1

1
. The point of minimum norm has the coordinates: 















)x,n,i(RMS

1
,...,

)x,i,i(RMS

1̂
,...,

)x,1,i(RMS

1
)x(i,RMS2

=

 )x(U),...,x(Û),...,x(U

)x(U

)x(U
n,mi,m1,mn

ij
1j

2
j,m

i,m





  

which norm is nothing else than RMS(i, x ). 

The above coordinates of the point is no more than minimal vector (in the meaning 

of norm) of the consumption changes such that the utility remain unchanged. We 

will say briefly that this is the minimal vector of the i-th good substitution. 

For the discrete case, we will define the marginal rate of substitution between 

goods “i” and “j”, caeteris paribus, the quantity of good “j” required for 

replacement a unit of “i” in the situation of the utility conservation. 

Let us recall that, in the case of left discretized: 

)x(U i,ml =
i

n1iii1i1n1ii1i1

x

)x,...,x,xx,x,...,x(U)x,...,x,x,x,...,x(U



   i= n,1  

from where: 
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)x(U i,ml xi+ )x(U j,ml xj=

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U)x,...,x(U2 n1jjj1j1n1iii1i1n1  

 

For very small variations of xi and xj, respectively, therefore xi0, xj0 we get: 

)x(U i,ml xi+ )x(U j,ml xj0 

or: 

)x(U i,ml xi- )x(U j,ml xj 

We have therefore the left partial marginal rate of substitution between goods 

“i” and “j”: 

RMSl(i,j, x )=
i

j

x

x






)x(U

)x(U

j,ml

i,ml


 
 Also in the case of right discretized: 

)x(U i,mr =
i

n1ii1i1n1iii1i1

x

)x,...,x,x,x,...,x(U)x,...,x,xx,x,...,x(U



   i= n,1  

from where: 

)x(U i,mr xi+ )x(U j,mr xj=

)x,...,x(U2)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U n1n1jjj1j1n1iii1i1  

 

At very small variations of xi and xj:
 

)x(U i,mr xi+ )x(U j,mr xj0 

therefore: 

)x(U i,mr xi- )x(U j,mr xj 

We can coclude that the right partial marginal rate of substitution between 

goods “i” and “j” is: 

RMSr(i,j, x )=
i

j

x

x






)x(U

)x(U

j,mr

i,mr


 
In the bilateral discretized case: 

)x(U
i,mb

=
i

n1iii1i1n1iii1i1

x2

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U



   

i= n,1  

therefore: 

)x(U i,mb xi+ )x(U j,mb xj= 
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2

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U

2

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U

n1jjj1j1n1jjj1j1

n1iii1i1n1iii1i1










 

or: 

 

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U

)x,...,x,xx,x,...,x(U)x,...,x,xx,x,...,x(U

x)x(Ux)x(U2

n1jjj1j1n1iii1i1

n1jjj1j1n1iii1i1

jj,mbii,mb











 

At very small variations of xi and xj:
 

)x(U
i,mb

xi+ )x(U
j,mb

xj0 

or, equivalent: 

)x(U
i,mb

xi- )x(U
j,mb

xj 

We will define therefore the bilateral partial marginal rate of substitution 

between goods “i” and “j” is: 

RMSb(i,j, x )=
i

j

x

x






)x(U

)x(U

j,mb

i,mb


 

 

Let us note now for simplicity: 

k

n1kkk1k1
k

k

n1kk1k1
k

k

n1kkk1k1
k

x

)x,...,x,xx,x,...,x(U

x

)x,...,x,x,x,...,x(U

x

)x,...,x,xx,x,...,x(U




















 k= n,1  

With these notations, we get then: 

)x(U k,mb =
2

kk 
=
   

2

kkkk 
=

2

)x(U)x(U k,mrk,ml 
 k= n,1

 
For the three cases above, we therefore: 

RMSb(i,j, x )=
)x(U

)x(U

j,mb

i,mb
 =

)x(U)x(U

)x(U)x(U

j,mrj,ml

i,mri,ml






 
After this formula, we get: 
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  

 
 

0
)x(U)x(U)x(U)x(U

)x(U)x(U)x(U)x(U

)x,j,i(RMS)x,j,i(RMS)x,j,i(RMS)x,j,i(RMS

2

j,mrj,mlj,mrj,ml

2

i,mrj,mlj,mri,ml

rblb









 

by virtue of the fact that marginal utilities are positive. 

Following this result, we get a not surprising result: )x,j,i(RMSb  is situated 

between )x,j,i(RMSl  and )x,j,i(RMSr  so it is the best approximation for the 

partial marginal rate of substitution. 

A better approximation for the partial marginal rates of substitution can be taken 

given the fact that at a decrease in consumption of a product, the left marginal 

utility of consumption meaning this direction, while the right marginal utility is 

much more useful if the consumption growth. Therefore, to estimate the changes in 

consumer in the direction of the decreasing for the good “i” and, obviosly for the 

increasing in the case of “j”, we will compute the adjusted decreasing partial 

marginal rate of substitution: 

RMSaj,dec(i,j, x )=
)x(U

)x(U

j,mr

i,ml
  

and analogously, to estimate changes in consumer in the direction of the increasing 

for the good “i” and for the decreasing in the case of “j”, we will compute the 

adjusted increasing partial marginal rate of substitution: 

RMSaj,inc(i,j, x )=
)x(U

)x(U

j,ml

i,mr
  

For arbitrary evolutions in consumption, we will use or (for simplicity) the 

bilateral partial marginal rate of substitution: 

RMSb(i,j, x )=
)x(U

)x(U

j,mb

i,mb


 

which is between the two adjusted rates because: 

(RMSb(i,j, x )- RMSaj,dec(i,j, x ))( RMSb(i,j, x )- RMSaj,inc(i,j, x ))=

 
  )x(U)x(U)x(U)x(U

)x(U)x(U)x(U)x(U

j,mlj,mr

2

j,mrj,ml

2

j,mli,mli,mrj,mr




 0 

Similarly, for the discretized case, the overall marginal rate of substitution will be: 
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RMSl(i, x )= 

 

 


n

ij
1j

2

j

i
x

1
x

1







n

ij
1j

2
j,ml

i,ml

)x(U

)x(U
 

RMSr(i, x )= 

 

 


n

ij
1j

2

j

i
x

1
x

1







n

ij
1j

2
j,mr

i,mr

)x(U

)x(U
 

RMSb(i, x )= 

 

 


n

ij
1j

2

j

i
x

1
x

1







n

ij
1j

2
j,mb

i,mb

)x(U

)x(U
 

 

7. Exemples of Preferences 

7.1. Perfectly Substitutable Goods 

We say that n goods are perfectly substitutable if the utility function is linear, i.e.: 

U(x1,...,xn)=a1x1+...+anxn, ai0, i= n,1  

In this case, we have: Um,i=
i

x

U




=ai, i= n,1  and the partial substitution marginal rate 

is: 

RMS(i,j, x )=
j

i

a

a
  

whereas the overall marginal rate of substitution is: 

RMS(i, x )=






n

ij
1j

2

j

i

a

a
 

Also the marginal substitution hyperplane between good “i” and the other goods 

has the equation: 

0aya i

n

ij
1j

jj 


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We can see in this case that both the marginal rate of substitution and the overall 

are constant. This implies that whatever is the level of consumption, the 

substitutability between any two goods, caeteris paribus, has the same factor. The 

minimal vector of the i-th good substitution is: 

 ni1n

ij
1j

2
j

i a,...,â,...,a

a

a





  

 

7.2. Independent Goods from the Utility Point of View 

We will say that n goods are independent from utility the point of view if the utility 

function is: 

U(x1,...,xn)=f1(x1)+...+fn(xn), with fiC
2
(0,), i

f  0, i= n,1  and f1(0)+...+fn(0)=0 

In this case we have: 

Um,i=
i

x

U




= i

f  , i= n,1 , 
2

i

2

x

U




= i

f  , i= n,1 , 0
xx

U

ji

2





 ij 

 

Because d
2
U=




n

1j,i

2

ii
dxf  follows that U is concave. 

Before proceeding further, let note that in the case of the linearity of functions fi 

(fi(xi)=aixi, ai0) the goods become perfectly substitutable. 

The partial substitution marginal rate is: RMS(i,j, x )=
)x(f

)x(f

jj

ii




  and the overall 

marginal rate of substitution: RMS(i, x )=










n

ij
1j

j

2

j

ii

)x(f

)x(f
. 

Also the marginal substitution hyperplane between good “i” and the other goods 

has the equation: 

0)x(fy)x(f ii

n

ij
1j

jjj 



 

The minimal vector of the i-th good substitution is therefore: 
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 )x(f),...,x(f̂),...,x(f

)x(f

)x(f
nnii11n

ij
1j

j

2

j

ii 










 

7.3. Separable Goods from the Utility Point of View 

We will say that n goods are separable from the utility point of view if the utility 

function is: 

U(x1,...,xn)=f1(x1)...fn(xn), cu fiC
2
(0,), fi(x)0 x0, i

f  0, i= n,1 , 

f1(0)...fn(0)=0 

and the quadratic form: 

H= 






 n

1j,i
ji

ji

ji
n

1i

2

i

i

i

ff

ff

f

f
 

is negatively defined. 

In this case, we have: 

Um,i=
i

x

U




= ni1

f...f...f  =U
i

i

f

f 
, i= n,1 , 

2

i

2

x

U




= ni1

f...f...f  =U
i

i

f

f 
, i= n,1 , 

nji1

ji

2

f...f...f...f
xx

U





=U

ji

ji

ff

ff 
 ij 

From the fact that H is a negative defined quadratic form, it follows that U is 

concave. 

The partial substitution marginal rate is: RMS(i,j, x )=
)x(f)x(f

)x(f)x(f

iijj

jjii




  and the 

overall marginal rate of substitution is: RMS(i, x )=










n

ij
1j j

2

j

j

2

j

ii

ii

)x(f

)x(f
)x(f

)x(f
. 

Also the marginal substitution hyperplane between the i-th good and the others has 

the equation: 

0
)x(f

)x(f
y

)x(f

)x(f

ii

ii
n

ij
1j

j

jj

jj










 

and the minimal vector of goods substitution: 
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











 










)x(f

)x(f
,...,

)x(f

)x(f̂
,...,

)x(f

)x(f

)x(f

)x(f
)x(f

)x(f

nn

nn

ii

ii

11

11

n

ij
1j j

2
j

j

2

j

ii

ii  

Let consider, as a particular example, the Cobb-Douglas function: 

U(x1,x2,...,xn)=
n1

n1
x...x


 cu i0, 



n

1i
i 1 

Computing the marginal partial rate of substitution, we get: RMS(i,j, x )=
ij

ji

x

x




  

and the overall marginal rate of substitution: RMS(i, x )=










n

ij
1j

2

j

2

j

i

i

x
x

. Also the 

marginal substitution hyperplane between the i-th good and the others has the 

equation: 

0
x

y
x i

i
n

ij
1j

j

j

j










 

 

8. Conclusions 

The onset of the notions of preference in selecting baskets of goods and the utility 

on the other hand impose a number of precautions both conceptual and technical. 

Even if such an axiomatic constraint will lead to “loss” of some important cases, 

the axiomatisation gives, on the one hand, rigor to the theory and, on the other 

hand, generates new situations by using norms more or less exotic (1-norm, -

norm, p-norms). 

On the other hand, the analysis of the concurrent consumption of n goods variance, 

decontrols the theory from “caeteris paribus” constraints, getting interesting 

conclusions and making a first step towards the overall analysis of the 

microeconomic phenomenon. The n-dimensional approach to the basic phenomena, 

even if it is based on a number of notions of n-dimensional Euclidean geometry or, 

in the overall treatment of the utility function, a series of differential geometry 

results, adds generality and more accurate simulation of microeconomic reality. 

Also the treatment of the marginal utility to the left, right or bilateral as well as 

marginal rates of substitution of different types, introduced above, allows 

enrichment practical conclusions, eliminating the classical mono-directional 
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variations like the discretized derivative derived as the average of discretized left 

and right derivatives gives more precise information on the behavior of a function. 
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