ECONOMICA

DEGENERATE FOLIATIONS IN SEMI-RIEMANNIAN
MANIFOLDS

Professor Gitilin Angelo IOAN, PhD
»Danubius” University from Galgi

Abstract: The main notions and results concerning the lirgzaces, semi-Riemannian
manifolds and submanifolds have a direct link with subject. Because the Gram-Schmidt
orthogonalization is fundamental we have to procaelis resumption in the intention to do
it applicable for our demarches.

Keywords: foliations, Semi-Riemannian geometry, Semi-Rienaainmianifolds
Jel Classification C - Mathematical and Quantitative Methods, CO - &alh

CO00 - General

Introduction

The theory of Riemannian foliations has been teedtging the time under
various aspects.

We can cite references liHd5], [24], [27], [28] or [34]. Also has been
treated particular foliations like totally geodesif5], [9], [20], minimals [14]) or
of other types. All these results have been obthimeler the generous foundation of
the Riemannian geometry. Once with the developroktiie researches in the field
of the Semi-Riemannian geometiyt]( [2], [3], [6], [17], [30], [31]) it is natural to
search how we can extend all these results. loie B new problem that concerns
the study of degenerate foliations.

The main notions and results concerning the lispaces, semi-riemannian
manifolds and submanifolds have a direct link with subject. Because the Gram-
Schmidt orthogonalization is fundamental, we hance@eded at a resumption of his
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in the intention to do it applicable for our denftegs. Many works of Semi-
Riemannian geometry remind us that this proceduedapplicable also in the case
of Semi-Riemannian metric§ld], [26]). In [1]] it is presented the concrete manner
of orthonormal vectors construction, but the autigoiores the fact that if a Gram
determinant is nul all this construction stops eifeme try to change the basis. In
the sequel we present some aspects concerning lBemannian manifolds and
fibre bundles. Also, we introduce the notions oacglike, timelike and lightlike
vectors following in this direction the pafg@f].

The notion of degenerate foliation builds the twe@msal distribution of a
foliation, notion which will substitute that of dsical orthogonal distribution. We
proceed also at a decomposition of these foliatfolhswing [2] in four categories:
r-degenerate foliations, coisotropic, isotropic &ot@lly degenerates. On account of
specific aspects we shall work permanently with eatistributions like the screen
distribution, transversal screen distribution amdjeherate transversal distribution.
After the description of various geometric objeees shall study its behaviour at the
change of the screen distribution and the chandbeotoordinates’ neighbourhood
of an arbitrary point.

We generalize the tensors presentefRifj and we clarify some problems
like the integrability and the totally geodesilyiliif the null and screen distributions.
Moreover, we shall build the Gauss-Weingarten fdamutogether with all
geometrical objects concerned. After this demansikeshall obtain a number of
characterisation theorems for the distributionsvarious introduced geometrical
objects.

In this paper it will be defined the total geodedegenerate foliations and
totally umbilical degenerate foliations and we blwddtain some characterisation
theorems. The discussion is made on the r-degenésbations, the results were
modulated for the other types.

The final chapter gives some examples of degenéslidtions on a class of
4-manifolds endowed with a relativistic metric, aii generalises the exterior
Schwarzschild, Reissner-Weil, de Sitter and MinKdwsetrics. There are presented
four concrete examples and the last proves thahisntype of manifolds does not
exist totally degenerate foliations.

1. Preliminaries

Let V a linear space and gV — R a symmetric bilinear form. The form g
is called non-degenerate if g(x,y)£y[1V=x=0 and degenerate [ix#0 such that
OyOV=9(x,y)=0. g is called positive definite (negativesfidite) if g(x,x20
12
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(g(x,x)<0) OxOV and g(x,x)=6>x=0 and semi-definite if(x,yl0V such that
9(x,x)>0 and g(y,y)<0.

We note (V,g) a linear space V provided with arlgiéir, symmetric, non-
degenerate form g. We note also W<V the fact that\& subspace of V. The set
W ={yOV Og(y,x)=0 OxOW} is called the orthogonal subspace of W. In geriafal
is not a complementary subspace of W.

Theorem 1.1[26] Let W<(V,g). Then:

(1.1) dim W+dim W=dim V
(1.2) (WH)"=w

If g is non-degenerate on V it is not obligatorgttshe is non-degenerate on
any subspace of V.

A subspace W<(V,g) is called non-degenerate (C=gee)
subspace if the restrictio@V is non-degenerate (degenerate).

Theorem 1.2[26] A subspace W of (V,g) is non-degenerate if ang anl
v=woOw",

W is non-degenerate if and only if WV"={0}. By (1.2) and the theorem
1.2 follows that W is non-degenerate if and onlWif is non-degenerate.

A basis Bfe,...,q} of a linear space (V,g) is called orthonormal &asi
g(e,g)=%9;, i,j=1,...,n where; is the Kronecker symbol.

The Gram-Schmidt orthogonalization process

Let (V,0) a linear space provided with a bilineannmetric, non-degenerate
form g. Let also Bév,,...,\i} an arbitrary basis of V, composed by non-null @ect
(9(v;,v))#0, i=1,...,n). We shall determine by depart of Boatmonormal basis of V.

Let therefore W:L. We have g(ww;)= 9(vi, V1) _
Jla(v,,vy)| lg(vy,vy)|
suppose that we have determined the vectors..w,; such that g(ww;)=0,
ij=1,....p-1, # and g(w,w)=&,00{-1,1}, i=1,...,p-1. Let:

€,=t1. Let
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(1.3) W, =€..£,, ’ pip [vp —fsjg(wj,vp)ij
\jg(vplvp)_;aigz(wi’vp) =

-1
if g(Vp,Vp)Z szigz (w;,v,) andeg,0{-1,1} such that the square root be definite.
i=1

We have g(ww,y)=¢, and g(w,w;)=0, i=1,...,p-1. Let noww_, =Span(w,..., Wp,l)D
where Span(...) is the subspace generate by theatdse vectors. The subspacg.W
1=Span(w,...,.W,.1) is non-degenerate. Indeed, let suppose that thedeW, ;, xz0

-1
such that g(x,y)=0 OyOW,.. Let X=pZ:O(iWi #0. We have g(x,W=
i=1

-1
g(pZO(iwi Wi)=0& thereforeayg=0 that is =0, k=1,...,p-1. Accordingly x=0

i=1

therefore contradiction. By the theorem 1.2 we htna¢ V=W,,0 W_,. Let now

-1
vpszciwi +z, where gdw_, (the decomposition being unique by the direct sum)

i=1

We have:
p-1
g(vpvvp)' Zsi 92 (prwi) =g(Zp,Zp)
i=1

If 9(z,,2,)70 then (1.3) is applicable. If g{z,)=0 we do a parmutation of the
vectors{Vv,...,\\n}. If CkO{p,...,} such that g(zz)#0 after a possible renumbering
we can apply (1.3). IfIkO{p,...,d=09(z,z)=0 where &Pl Vi k=p,...,n (the

projection of y on W) thenCk,r=p,...,n with Kr such that g(zz)#0. Indeed, if
Ok,r=p,...,n>9(z.z)=0 then how{z,...,7} constitutes a basis of”, follows that

p-1
W, is degenerate therefore contradiction. Let theegfoafter a possible
renumbering, zand z., such that g(zz,.,)#0. Let now:
v, =av+bvp.; with a, 30
— -1 —
We have gy, ,v, )-szigz(vp,wp)=2abg(;,zp+1)¢0 therefore we can apply
i=1

(1.3) for - v, .
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Finally, for p=n follows trivial g(zz,)#20 because in the opposite case
W, =Span(g) is degenerate therefore contradiction.

If we consider now the orthonormal basis{Bs...,} of (V,g) and we note
&=9(e,e), i=1,...,n follows:

(1.4) X £ig(x,6)e OxOV
i=1

Let (V,g) a linear spece. We call the index of \gzind g=maxdim
WIOW<V, gi\W is negative definife We shall write sometimes=ind V.

Lemma 1.1[26] Let (V,g) a linear space and W a non-degenerdispsice
of V. Then

(1.5) ind V=ind W+ind W
Remark In general the inequality holds: ind&Wid W+ind W’ OW<V.

Lemma 1.2[26] Let (V,g) a linear space. Then there is a subspéc¥ of
maximal dimension=mifiind g, dim V-ind ¢ such that g\W=0.

In what follows we suppose that all the differebkgamanifolds have the
metrics with constant index on them and all thengetoical objects are of infinite
class.

Let a Semi-Riemannian manifold (M,g). A tangentteecXT,M, pIM is
called spacelike vector if g(X,X)>0 or X=0, light# vector if g(X,X)=0 and X0
and timelike vector if g(X,X)<0. The collection bfhtlike vectors of TM is called
the null cone in piM.

2. Degenerate foliations of the Semi-Riemannian ménlds

Let (M,g) a Semi-Riemannian manifold, (m+n)-dimemsil, m,re1, g being
the semi-riemannian metric on M.

Let q the index of the metric g which we shall sogg constant on M. If
g=0 or g=m+n then the metric is riemannian. Howhis case the induced metric on
any leaf of the foliation is also riemannian folewhat if we want to talk about
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degeneration we shall suppose thagidn+n-1. Therefore M is not a Riemannian
manifold.

Definition 2.1 A degenerate foliation of codimension m of M is a
decomposition of M into a disjoint union of conattelegenerate submanifolds of
codimension m of M, called leafs of the foliatiamch that for any @M there is a
neighbourhood U of p in M and a submersigiuf- R™ with the propertyf]l xOR™,
fu™(x) is a leaf of the restriction of foliation at B1,.

We shall consider in what follows like coordinatesighbourhoods of any
point @M the collections U by the upper definition.

Considering now a degenerate foliation of codimamsn of M, let:

TF)= UL

p
Ltheeaf of F
which containgp

We shall show now that T(F ) is a fibre bundlearik n on M.

Let pOM and U a neighbourhood of p in M such there isubngersion
fu:U ~ R™ with the property thall xOR™, f,™(x) is a leaf of the restriction of the
foliation on U, FO,.

Considering now the leaf L passing througtipwe define:
Tt T(F )- R"™, T(T,L)=fy(p) OpOM

The maprtis correct defined because by any leaf L of Fexponds an
unique XJIR™ such that Ls§*(x). Indeed, if we suppose thakzyOR™ such that
L=fy, ' (x)=fu™(y) then x=f(fy*(x))=fu(L)=fu(f’(y))=y from where follows
contradiction. On the other hand()Cfu(L)=fu(fu(x))={x} otherwise: §(p)=x.
We have also that the mapdoes not depend on the coordinates neighbourhood U
Indeed, if we shall consider U and V neighbourhoadsplM satifying the
definition conditions and the submersiongU—-R™, f,:V -R™ then OxOR™
follows that £,%(x) is a leaf of the restriction of the foliation & and §(x) is a leaf
of the restriction of the foliation on V. How thrgln @M pass a unique leaf follows
that §,"(x)nfy*(x) is a restriction of the foliation on V. But pOUnVOU,V
follows fy(p)=fv(p)=x.
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We have now that for anyDR™ n‘l(x)szL, pLIM such that §(p)=x is a
real linear space of dimension n.

Let pOM and L the leaf passing through p. Let considesoah
neighbourhood U of p and the submersigif- R™ with the property that Lgf'(x)
for a fixed point XIR™. Let also a basige(p),...,&(p)} of T,L.

We define the diffeomorphism:

@1t (fu(U)) - fu(U)xR", oV)=(fu(a),ve,..., ) HqUu
Ov=viey(q)+...+Ve (q)OTL

If we note with pr the projection on the first component we have
pri(@(v))=Ffu(q)=m(v) OvOT.L OgOU and the mamy,: ToL - fu(q)xR", @(v)=(V1,...,\r)
OgOU Ov=v'e(q)+...+ Ve, ()0 T4L is simply anR-isomorphism.

We have therefore proved that (T(RR") is a fibre bundle of rank n.

Definition 2.2 Considering the vector bundle which we have bwiédshall
say that T(F ) is the fibre bundle tangent to tii@fion F on M.

From the definition of F, follows that T(F ) is artegrable distribution.
Let now L a leaf of F passing throughild. Considering
To(L) Dz{ XpUTpMOg(Xp,Yp)=0, Y OToL }

we have that ;,(L)D is also degenerate. Let T(n"_’fz)UTp(L)D . Like in the preceding

LOF
construction we can show that T(Fi$ a fibre bundle oR™ called the normal fibre
bundle of the foliation F .

Considering now the fibre bundle T(F ) of a degatesfoliation F and join
to any point pIM the tangent space,(L) at the leaf L passing through p we shall
obtain an n-dimensional integrable distributionNdmoted in what follows with
and called the distribution asociated to the degaeefoliation. Because the
distribution D ¢ is integrable follows that she is involutive thiat OX,YOD ¢
=[X,Y]OD ¢ . Considering now @ let D £ the orthogonal distribution of Pin
TM. Is obvious that R " is obtained also by the association at any pdi pf the
orthogonal spacep(fL)D of Ty(L) relative of the leaf L passing through p.
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Let now pIM and U a coordinates neighbourhood of p in M. @Giering a
coordinates system inOM: (x',...,X"™) follows by the definition that there is a
submersionf:U - R™ with the property that for any x=(a.,d)OR™, the leaf of the
restriction of the foliation at U is given by theuations:

X"i=gl L X

If we consider another coordinates system.(yy""™) in U follows:

i ayi Ko
'=2_x*,i1=1,...,n+m
y ax~

How y™'=constant, i=1,...,m followgg—kzo, i=1,....m, k=1,...,n.
X

The structural group consists by the matrices efféhm:

A B
0 C
where AIM (R) and TIM (R) are non-singular and®BM ,+(R).

Let now T(M), the restriction on U of the tangent bundle of timenifold
M and {X4,....%.,Yn+1, ..., Yoo @ basis for the local sections of TW) If V is
another neighbourhood of p in M such that W0 and{ X" 1,....X’n,Y nstseees Y namt
is a basis for the local sections of T(M)then according to the structural group we
have:

(2.1) xziAyk+§éWB
k=1

B=n+1

(2.2) Y, = Y.ChY,

B=n+1
0 i=1,..,n Da=n+1,..,n+m, A, BPf G being arbitrary maps, indefinite

differentiable on WV satisfying in addition the condition that the nizgs A=(A%)
and C=(G") being non-singular.
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From now on, if we shall introduce new geometrimajlects we shall verify
the invariability of them at the transforming (2&k)d (2.2).

From the degeneration of the foliation F followsitthe intersection of the
distributions D and D¢ " is non-null therefore oL and ELD are orthogonal non-
complementary degenerate subspaces M TIpM, L being the leaf passing
through pIM.

We define now: N =Dz nD ¢ " named accordingly witfj2] the null
distribution of M appropriate the foliation F .

Let r=dim N . By the lemma 1.2 follows thatmin{q,m+n-¢ and how N
0D . N OD (" follows that emin{qg,n,m,m+n-§. We can consider always (taking

possible -g like metric on M) that we haves[q”%} (where[a] is the bigest

integer less then a). Becaussngn-q follows that &r<min{q,n,n}<min{n,m}
from where:

1<r<mir{ n,m}

Definition 2.3 The foliation F of M is called r-degenerate fdbat (or
degenerate foliation if the rank r is undercurifeoitn context) if the null distribution
is of dimension r.

If we consider the brackéX,Y] OX,YON follows that the null distribution
iS not necessary integrable.

From this reason we shall distinguish in what fetatwo important cases:
N is an integrable distribution or N is not intelgje

Let suppose now that N is an integrable distributibwe consider in M an
open neighbourhood U and an adapted basis for thé distribution:
{&1,... & X1, X0} Whereé; are vector fields defined on U hwo generates N>g§nd
vector fileds defined on U which complete the bésisD ¢ follows that N, OpOuU
is the tangent space for a submanifold of thellgadissing throughpu.

The problem is now what is happend at the inteiseaf two coordinates
neighbourhoods of an arbitrary poini. If U and V are two such neighbourhoods
such that WV=z£O let consider{&s,...& X1,....Xm} @ basis for D OO, and
{&1,---& X re1,.... X' m} @ basis for QR0
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That{&',,...&;} be a basis for NI, it must that§, =Zr:ai"£j. In that case
=1

[E;,E'j] = i{uﬁaf[&k,zpharzk(af)zp —u?Ep(uﬁ)Ek} and with the integrability of N,
k,p=1

follows that N[, is also integrable. Therefore the integrabilityNoin a point pIM
does not depend of its coordinates neighbourhood.

We see upper that for a leaf L passing througMpghe subspaces,I and
Tp(L)D are not complementary. In order that we can intcedsimilar notions to the
geometry of the nondegenerate foliations it is ssagy the construction of a
distribution complementary to those of the foliatiocalled the transversal
distribution, hwo is different from that orthogonal

In order that we can build now the transversaiefibundle of a degenerate
foliation it is necessary to distinguish betweerurfccases:|. 1<r<min{m,n};
Il. I<r=m<n; lll. 1<r=n<m; V. 1<r=m=n.

Case |. kr<min{m,n} In that case the foliation is called r-degenerate
foliation the danger of confusion being discardedduse we shall specify always if
it is the general case or those patrticular.

Let consider now S (F ) the complementary distidgrubrthogonal to N in
D . We call it, in agreement witl2] S (F )-the screen distribution of the foliation F
. We have therefore the direct orthogonal sum:

(2.3) De=N [0S (F)
The screen distribution S (F ) is nondegenerataive to g. Indeed, if
[(ZOS (F ) such that g(Z,Y)=QlYOS (F ) then like ZID  we have also g(Z)=0
OEOIN . It follows therefore that g(Z,X)=QXOD ¢ hwo imply the fact that (2N .
But this fact comes into contradiction withd\& (F ) 0}.
We shall suppose in what follows that ind(g) isstant on S (F ).
Remark The screen distribution S (F ) is not unique deieed by N in D-

therefore from this reason every time we shall iobsaresult we shall examine the
relationship of this from S (F).
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Let now the complementary distribution of N in threhogonal distribution
D ¢ ” marked with S (F) and called the transversal screen distributiorthef
foliation F .

Like in the case of the screen distribution thisasidegenerate relative to g.
We have therefore the orthogonal decomposition:

(2.4) D:"=NOS (F")
Because S (F ) is nondegenerate in TM we contigedlecomposition:
(2.5) TM=S (FIS (F )’

where S (Fis the complementary distribution, orthogonal t¢Fg in TM. We
have therefore, finally the following decomposition

(2.6) S (F)=Ss (F)Os (F)"°
where S (F)" is the complementary distribution, orthogonal #+S) in S (FJ.
Considering now [N follows from (2.3)¢ O S (F ) therefore from (2.5) we
have:E0S (F . From (2.4) followst O S (F"). Finally, from the decomposition
(2.6) follows tha€S (F")". We have therefore NS (F")".
We shall note from now on, a r-degenerate folratidgth:
(F,9,S(F), S (®)
Remark From the fact that dim N =r we have:
dim S (F )=n-r, dim S (F¥m+r, dim S (F)=m-r, dim S (F)"=2r
Lemma 2.1 Let (F, g, S (F), S (F)) a r-degenerate foliation of a Semi-

Riemannian manifold (M,g). If U is an open set ofaMd{&,,... £} is a basis of N
[, then there are vector fielddl,,...,N} from S (F)”0,) such that:

(2.7) g(N)=5;
(2.8) g(W;)=0
Oi,j=1,....,r.
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Proof. Let consider the distribution H complementary tam\S (F“)” and a

basis{Vy,...,V;} of H [l,. Relative to the decomposition S (F=N OH the vector
fileds N have the expressions:

(2.9) N, =3 (@ke, +BEV, ), i=1,...1

k=1
whereonk andBi" are smooth mapings on U. We shall define the oesdrof r-

order: A=@/), B=@/), C=(g(V.)), D=(g(V,,V)). In order that N satisfy the
relations (2.7), (2.8) it must that:

8, = 0N, &) =002 a8 + XBIVL &) = X ooy &) + DBV ) =
> oV )

0=g(N, N)) =g(> akE, + Y BV, Y o, + Y BV, = 3 Y ag(E . £ +
k=1 k=1 s1 s1

k=1 s=1

S ABE Vo) + Y S B AtV E) + 3 S BRIV, V) =

1 k=1 s=1 k=1 s=1

M- 1P~

> A B Vo) + Y Y AV E) + Y Y B BTV, V)

1 =1 k=1 s=1 k=1 s=1

=
1,

With the matrices upper introduced, these relatimecome:
(2.10) BC=l
(2.11) AB'+BCA+BDB'=0

where | is the identity of M(R) and' describes the transpose of a matrix.
Because S (B)" is nondegenerate follows that C is invertible éfiere from (2.10):

(2.12) B=t
From (2.11), (2.12) follows:
(2.13) A+k -C'D(CY)

therefore:
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(2.14) A= —%C'lD(C'l)t +S

for any skew-symmetrical matrix S of r-order. Fr@0) we have:
(2.15) N = (—%c-lD(c-l)‘ ¥ s]a +ClV

where we note N=(N...,N)', £=(&1....&)", V=(V4,..., V)"
From (2.7) and (2.8) follows easy tH&t,...£,,Ny,...,N} is a basis of S (B"[,.

Remark From (2.15) follows that the vector fields, N&1,...,r are not unique
determined, they depending by the arbitrary chofade matrix S.

Theorem 2.1Let (F, g, S (F ), S (F)) a r-degenerate foliation of a Semi-
Riemannian manifold (M,g). There is a complementisyribution of N in S (F)"
marked with deg(F ) and called the degenerate \teaisal distribution of the
foliation F relative to S (F ) and S (fsuch that the vector fielddN,...,N} defined
in lemma 2.1 is a basis for deg(F )).

Proof. From lemma 2.1 lefN,,...,N} be definite through (2.15). Considering
another open set U’ of M such thahU’'z0 let{¢‘y,...&"/} and{V’,,...,V';} basis
of N O, respectively HO,. If we note like in lemma 2.1: N'=(N...,N/)",
&=(&,...5")" V=(V{,...V,)' we have&'=E& and V'=FV where E and V are
nonsingular matrices. With the notations C'=(g@&/)), D'=(9(Vi.,V|)) we have on
UnuU’:

(2.16) C=FCE

(2.17) D’=FDF

From (2.15) we have on U’
(2.18) N'= [—%C"l D'(C™)' + sjz +Cly!

with S’ skew-symmetrical matrix. Using (2.16) ar&dl1(7) in (2.18) we have:
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(2.19) N'= E'{(—%C*D(C'l)l " E‘SE)E " C'lv}

If we choose S'=(B)'SE™ which is also skew-symmetric, we have
(2.20) N’=EN

From (2.20) follows that there is the distributideg(F ) generated \N;,...,N}
from lemma 2.1.

Let now show that deg(F ) is complementary to I$i(F")". If we suppose the
reverse, let 8XON ndeg(F ). Considering a basis like upper we have:

X = zr:a‘Ni =Zr:bjzj . Using (2.7) and (2.8) we have that:
=1

0=g(YbE,.&) =g(X.E) =g(X &N, £) =a
=1 L

therefore X=0-contradiction with our suppose. Hownddeg(F )=r and
ind{Njy,...,N} follows that the set of vector field#,...,N} is a basis of (deg(F )).
Remark From the theorem 2.1 we conclude that dim (dep{F )
If we return now to the beginning problem, thathe replacement of the
classical orthogonal distribution with a complenaewptdistribution to D- in TM, let
therefore the ortogonal direct sum:

(2.21) tr(F )=deg(FOS (F")

where deg(F ) is an arbitrary degenerate transivdisaibution of F . From
(2.21) follows that tr(F ) is a distribution on Mumed the transversal distribution of
the foliation F .

The dimension of this distribution is therefore:

dim tr(F )=dim deg(F )+dim S (B=r+n-r=n
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Finally, we have the decomposition:

(2.22) TM=D 0 tr(F )=S (F IS (FY)O(N O deg(F ))

From the upper considerations we have on TM al Iquasi-orthonormal
basis along to F in an open neighbourhood WX4,...,%,,
Wiit,oo; Win&1,... 50NN} where %0OS (F Y, a=r+1,..,n, WIS (F OO,
a=r+1,..mg&0ON Oy, i=1,...,r, NOdeg(F 1, i=1,....r.

From now on we shall make the understanding altbet indexes:
a,B,...=r+1,...,n; a,b,..=r+1,..m; i,j,..= 1,...r

On (NO deg(F )], we have an orthonormal basis:

& -N, _E.+N} 3 L
u, = Ly, =2 i and how g(yu)=-1, g(v,v)=1, i=1,...,n follows
et = 1 AR e

that the index of (N deg(F ))4,=r. Because NI deg(F ) is nondegenerate, by the
lemma 1.1 and (2.22) we have:

(2.23) g=ind(S (F ))+ind(S (BH+r
Theorem 2.2Let (F, g, S (F ), S (F)) a r-degenerate foliation of a Semi-

Riemannian manifold (M,g). If the index of the nfald M and those of the null
distribution N are equals nule, then S (F ) an& 9 @re Riemannian distributions.

Proof. We consider in (2.23) g=r from where ind(S (F f¥S (F “)=0
therefore ind(S (F ))=ind(S (§)=0.

Corollary 2.1 Let (F, g, S (F ), S (E)) a r-degenerate foliation of a Lorentz
manifold (M,g). Then S (F ) and S {lFare Riemannian distributions.

Proof. On a Lorentz manifold we have g=1 and howv<ty follows r=1. The
assertion reduce to the check of the theorem 2.2.

Case Il. Isr=m<n In this case the foliation is called coisotropatidtion. How
N OD " and dim N =r=m=dim " follows that N =D¢ " therefore S (F)={0}.
Considering now the screen distribution S (F ) aeeh D-=S (F ID ("

We note from now on a coisotropic foliation with @5 S (F )).
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Remark From the fact that dim N =r=m we have:

dim S (F )=n-m, dim S (F¥dim S (F)"=2m

Similar to the proofs of lemma 2.1 and of theoreinf@llows:

Lemma 2.2 Let (F, g, S (F )) a coisotropic foliation of anfieRiemannian

manifold (M,g). If U is an open set from M afid,,...&} a basis of D: "0, then
there is a system of vector fielfld,,...,N,} of S (F Y[, such that

(2.24) 9(N&;)=9;
(2.25) g(NNy)=0
0i,j=1,...,m.

Theorem 2.3Let (F, g, S (F )) a coisotropic foliation of anieRiemannian
manifold (M,g). Then there is a complementary distion of D" in S (F")" noted
with deg(F ) and called the degenerate transvelisaiibution of the foliation F
relative to S (F ) such that the system of vecteld$ {N,,...,N;} introduced in
lemma 2.2 is a basis of deg(F ).

The transversal distribution of F becomes:

(2.26) tr(F )=deg(F)

and the decomposition of TM is:

(2.27) TM=S (FOID " O deg(F ))

The local quasi-orthonormal basis along F in annopeighbourhood U is:
{Xmityer Xnftyor. &mNy,.sNe} where X0S (F Y, a=m+1,...n, §0D ¢ 0O,
i=1,...,m and NOdeg(F 1, i=1,...,m.

Relative to the index follows with the same rembkle those preceding the
theorem 2.2:

(2.28) g=m+ind(S (F))
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From (2.28) follows:

Theorem 2.4 Any screen distribution of a coisotropic foliation a Semi-
Riemannian manifold has constant index g-m.

Corollary 2.2 In a coisotropic foliation of a Semi-Riemanniannifald with the
index equal of those of the orthogonal distributitire screen distribution becomes
Riemannian.

Case lll. 1<sr=n<m In this case the foliation is called isotropicidion. How N

0D ¢ " and dim N =r=n=dim D follows that N =D therefore S (F )eOt.
Considering the transversal screen distributioR '§ (ve have:

D "=D 0OS (FY).

We shall note from now on an isotropic foliatiorthfF, g, S (F)).
Remark From the fact that dim N =r=n we have:

dim S (F y=m+n, dim S (F)=m-n, dim S (F)"=2n

Remark In the case of an isotropic foliation N zZherefore N is an integrable
distribution.

Similar to the proofs of lemma 2.1 and of theoreinf@llows:

Lemma 2.3 Let (F, g, S (F")) an isotropic foliation of a Semi-Riemannian
manifold (M,g). If U is an open set of M afi#,,...£.} is a basis of R, then there
is a system of vector fieldsNy,...,N} of S (F-)", such that

(2.29) g(INE;)=d;
(2.30) g(NN;)=0
0i,j=1,...,n.

Theorem 2.5Let (F, g, S (F")) an isotropic foliation of a Semi-Riemannian
manifold (M,g). Then there is a complementary disition to Drin S (F”)” noted
with deg(F ) and called the degenerate transvelisaiibution of the foliation F
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relative to S (F) such that the system of vector fiefds,,...,N;} defined in lemma
2.3 is a basis of deg(F)).

The transversal distribution of F is now:
(2.31) tr(F )=deg(FJS (F")
and the decomposition of TM becomes:
(2.32) TM=De0 deg(F IS (F")
The local quasi-orthonormal basis along F in aenopeighbourhood U is:
{&1,... 8N .. ,NuWisr,.... Wy} where WOS (F ), a=n+1,..m,&0D ¢ O,
i=1,...,n and NOdeg(F )4, i=1,...,n.
With the same remark like those preceding theréra@®.2 we have:
(2.33) g=n+ind(S (F))
From (2.33) follows:

Theorem 2.6 Any transversal screen distribution of an isotcofgliation in a
Semi-Riemannian manifold has constant index g-n.

Corollary 2.3 In an isotropic foliation of a Semi-Riemannian mfa@ld with

index equal with those of the foliation’s distrilmut, the transversal screen
distribution becomes Riemannian.

Case IV. kr=m=n In this case, the foliation is called totally degete
foliation. How N OD  and N OD  ” and dim N =r=m=n=dim Df =
dim D (" follows that N =D:=D ¢ " therefore S (F )=S (H={0}.

We note from now on a totally degenerate foliatioth (F, g).

Remark From the fact that dim N =r=n=m we have:

dim S (F y=2m, dim S (F)"=2m

Remark In the case of a totally degenerate foliation N =herefore N is an
integrable distribution.
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We have now analogously with lemma 2.1 and the@dm

Lemma 2.4 Let (F, g) a totally degenerate foliation of a $&iemannian
manifold (M,g). If U is an open set of M afd;,...&} is a basis of [d [0, then
there is a system of vector fielfl,,...,N} of TM, such that

(2.34) g(NE)=9;
(2.35) g(NN;)=0
0i,j=1,...,m.

Theorem 2.7 Let (F, g) a totally degenerate foliation of a $&emannian
manifold (M,g). Then there is a complementary disttion of Drin TM noted with
deg(F ) and called the degenerate transversaibdigtn of the foliation F such that
the system of vector fieldsNy,...,N} defined in lemma 2.4 is a basis of deg(F ).

The transversal distribution of F is now:

(2.36) tr(F )=deg(F)

and the decomposition of TM becomes:

(2.37) TM=0Odeg(F )

The local quasi-orthonormal basis along F in aenopeighbourhood U of
M is: {&1,...&mN1,....Nn} whereg, D [), i=1,...,m and Nddeg(F )4)), i=1,...,m.

With the same remark like those preceding thertrad®.2 we have:
(2.38) g=m
From (2.38) we have:
Theorem 2.8 A degenerate foliation of a Semi-Riemannian maddifcan be

totally degenerate only if the codimension of thkation is equal with the index of
the manifold.
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Finally in this section we shall investigate twolplems:

* Which are the conversion formulae of a local quadionormal basis
along F in a coordinate neighbourhood U when wenglathe screen
distribution?

* Which are the conversion formulae of a local quaigionormal basis
along F at the change of the coordinate neighbaaho

Before the beginning we make the following:

Remark Let X=(Xy,...,X)' and Y=(Y,,...,Y)!, n,ne1 two systems of vector
fields where X Y;,0TM, i=1,...,n, j=1,....m. Let consider also X'=(X..,.X,")" and
Y'=(Y {,...,Y)" another two systems of vector fields withi, X OTM, i=1,...,n,
j=1,...m. Let A=()OM (R) and B=(p) M (R) the passing matrices from X at X’
respectively from Y at Y’'. We have therefore X'=Aafid Y'=BY. Let consider now
the matrices G(X,Y)=(g(XY}))OM n(R) and G(X',Y")=(g(X/,Y;)) M (R). We
have:

n

(XY =9 a X, > b, Y,) =2 > a,9(X,. Y,)b, , i=1,..,n,j=1,...,m
k=1 p=1

P
from where we obtain the relation:

(2.39) G(X,Y)=AG(X,Y)B "
where G(X,Y) is the Gram determinat of X and Y.

For the first question, let consider for the badig the case of r-degenerate
foliations with Xr<min{m,n}. Let U a coordinates neighbourhood of M and
{&1,--- &r Xrs1ree s Xy Wha 1., Wi, Ng,....,N} @ local quasi-orthonormal basis along F in
U and{&;,... £ X r+1-- - X' W rig, ..., W, N'g,...,N’} a local quasi-orthonormal basis
along F in U relative to the decompositions TM=S)(IS (F")O(N O deg(F ))
respectively
TM=S * (F )OS ‘(F)O(N O deg'(F)).

3C



ECONOMICA

Let therefore:

g Il 0 0 0Y&

X'| [A, A, 0 0]|X
(2.40) =|"r T2

w'| |B, B, B, B,|W

N lc, ¢, ¢, C N

where we note witlg,X,W,N,X’W’',N’ the matrices who have like comporten
the vector fields with the same name anB¢GC;, i=1,2, j=1,2,3,4 are matrices of
corresponding dimensions, And B being nonsingular.

The conditions for the first basis are:

(2.41) &,8)=0, GE,X)=0, GE,W)=0, GE,N)=I

G(X,X)=Gx, G(X,W)=0, G(X,N)=0

G(W,W)=Gy, G(W,N)=0

G(N,N)=0

and for the second:

(2.42) &X,8)=0, GE,X)=0, G(E,W')=0, GE,N)=I

G(X',X)=G’ x, G(X",W")=0, G(X',N")=0

G(W',W)=G’ w, G(W',N")=0

G(N',N)=0

where we have note: G(X,X)5GM ,(R), G(W,W)=GyOM .(R), G(X",X)=
G'x

M (R), G(W W)=G'wOM (R). Is obvious that GGy,G'x and Gj, are
nonsingular matrices.
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From (2.40)-(2.42) we have after the notatiog=A, B;=B, C,=E, G=C, G=D:

3 | 0 0 0Y¢&
X -AG,C' A 0 O X
(2.43) = .
w'| |-BG,D' 0 B O|W
N' E C D IAN
where
(2.44) GA=AG'y
GwBt:B_lG’W

E+E+CGC'+DG,D'=0

If we coinsider now the case of coisotropic fatias, let U a coordinates
neighbourhood of M and&y,... &m Xm1,---. % Ng-..,Np} a local quasi-orthonormal
basis along F in U anf€y,... £m. X me1,--. X mN'1,...,N'y} @ local quasi-orthonormal
basis along F in U relative to the decompositiod=3% (F YID "0 deg(F ) and
TM=S ‘(F )OD ("0 deg'(F ) respectively. Let therefore:

g I 0 0Y¢
(2.45) X'|=|A, A, 0]X
N') (B, B, B,JN

with the same notations like upper.

The conditions for the first basis are:
(2.46) G(&)=0, GE,X)=0, GE,N)=I
G(X,X)=Gx, G(X,N)=0

G(N,N)=0
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and for the second:

(2.47) G(£)=0, GE,X)=0, G(E,N")=I
G(X',X)=G' x G(X',N')=0

G(N',N")=0

where we have note: G(X,X)5GM .n(R), G(X',X)=G" xOM ,(R). It is
obvious that @ and G are nonsingular matrices.

From (2.45)-(2.47) we have with the notations=A, B,=E, B,=C:

g I 0 0Y¢&
(2.48) X'|=|-AG,C" A 0| X
N' E C I\N
where:
(2.49) RA=A"G'y
E+E+CGC'=0

Let now the case of the isotropic foliations and &J coordinates
neighbourhood of M{¢&y,... &0, Wh1,...,Win,Ny,...,Ni} a local quasi-orthonormal basis
along F in U and&y,... £, W heg,--. Wi, N'1,...,N’} @ local quasi-orthonormal basis
along F in U relative to the decompositions TM=( deg(F )IIS (F") and
TM=(D O deg'(F )JS ‘(F") respectively. Let therefore:

g I 0 O0Y¢&
(2.50) W =|A, A, AW
N (B, B, BN

with the same notations like upper.
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The conditions for the first basis are:
(2.51) G(£)=0, GE,W)=0, GE,N)=I
G(W,W)=Gy, G(W,N)=0
G(N,N)=0
and for the second:
(2.52) G(£)=0, GE,W')=0, GE,N")=I
G(W',W)=G’ w, G(W',N")=0
G(N',N)=0
where we have note: G(W,W)5GIM ,.+(R), G(W' W)= G'wOM ,.«(R).
Is obvious that G and Gy are nonsingular matrices.

From (2.50)-(2.52) we have with the notations=B, B,=E, B,=D:

g | 0 0Y¢

(2.53) W'|=|-BG,D' B 0|W
N’ E D I|N

where:

(2.54) GB'=B'G'y

E+E+DG,D'=0

Finally, let consider now the case of totally degaite foliations and let U a
coordinates neighbourhood of MEg;,... mN1....Nn} a local quasi-orthonormal
basis along F in U an,...&m, N'1,...,N'} a local quasi-orthonormal basis along F
in U relative to the decompositions TM=bPd deg(F ) and TM=D- O deg’'(F )
respectively.
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Let therefore:

(2.55) (EJ {AI AOJ@

with the same notations like upper.

The conditions for the first basis are:

(2.56) &,£)=0, GE,N)=I
G(N,N)=0

and for the second:

(2.57) G(£)=0, GE,N)=I
G(N',N)=0

From (2.55)-(2.57) we have with the notation=E:

(2.58) @ {IE (')j@

where E is a matrix of n-order satisfying the relat
(2.59) E+E0
being therefore skew-symmetric.

Let consider now the second question. We treat ihighe case of the
integrability of the null distribution N.

For the beginning we shall analyse the case @gederate foliations with
1<r<min{m,n}.

If we have U and V two coordinates neighbourhoodshsthat LhVZ0 let
consider{&y,... & Xe+1yee01 %0 Wit 1,-.., Wi, N1,...,N} @ local quasi-orthonormal basis
along F in U and{&'1,...&" 1. X r+1s--n X'ns W g, .., W, N'1,...,N’} a local quasi-
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orthonormal basis along F in V. From (2.1), (2.8 a@he integrability of N on
UnV we have:

(2.60)

o o w >
oo 0O o
I m O o

¢

X
w
N

o O m o

&
N
W
N

where A,B,C,D,E,F,G,H,J are matrices of approprititeensions. Let note also

F G . . . . .
that A,C anc{H Jj are nonsingular matrices. If we proceed simile In the first

problem we have finally:

Theorem 2.9Let F a r-degenerate foliation with integrablel migtribution of a
Semi-Riemannian manifold (M,g). If we have U and tWo coordinates
neighbourhoods in an arbitrary poinflld such that WV#£O and if we shall
consider{&s,...&n X1, -y X Wit1,..., Wi, N1,...,N} @ local quasi-orthonormal basis
along F in U and{&'1,...&" 1, X r+1s-- - X'ns W g, ..., W, N'1,...,N’} a local quasi-
orthonormal basis along F in V, follows:

3 A 00O 0 Y&
(2.61) X|_|0BO 0 |X
Wl [0 O0OC 0 |W

N' 0 00 (ADH')N

where A is a nonsingular matrix of r-order and B & orthogonal matrices of
n-r respectively m-r orders satisfying in addittbe conditions:

(2.62) BB=G'x

CGyC=G'w

In the cases of coisotropic, isotropic and totalggenerate foliations we have
analogously:

Theorem 2.10Let F a coisotropic foliation with integrable ndiktribution of a
Semi-Riemannian manifold (M,g). If we have U and tWwo coordinates
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neighbourhoods in an arbitrary pointlj such that bV#0 and if we shall
conside{ &y,... &m Xm+1,---, X N1,...,Ny} @ local quasi-orthonormal basis along F in U
and{¢1,...& mX m+1 ---XmN'1,...,N'} a local quasi-orthonormal basis along F in
V, follows:

&Y (A 0 0 YE&
(2.63) x|=lo B 0 |x
N') (0 0 (ADAN

where A is a nonsingular matrix of m-order and Boathogonal matrix of n-m-
order satisfying in addition the condition:

(2.64) BGB'=G'x

Theorem 2.11Let F an isotropic foliation of a Semi-Riemanniaranifold
(M,g). If we have U and V two coordinates neighltmods in an arbitrary point
pCM such that V0 and if we shall considgfE;,... £, Wh1,-..; Wi, Ni,...,N} a
local quasi-orthonormal basis along F in U &84,...£ 1, Wty , Wi N, ,N'1}

a local quasi-orthonormal basis along F in V, fefto

3 A0 O H
(2.65) Wi|=[0 B 0 [|W
N' 0 0 (AN

where A is a nonsingular matrix of n-order and Boathogonal matrix of m-n-
order satisfying in addition the condition:

(2.66) BGB=G'w

Theorem 2.12 Let F a totally degenerate foliation of a SemifRamnian
manifold (M,g). If we have U and V two coordinatesighbourhoods in an arbitrary
point @M such that WV#£0 and if we shall considdiy,...&m, Ni,...,Ny} a local
guasi-orthonormal basis along F in U afgl,,...& m N'1,...,N'} a local quasi-
orthonormal basis along F in V, follows:

(2.67) [i) :(g (Ac‘)l)t)('ij

where A is a nonsingular matrix of m-order.
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The end of this section consists in five exampbésvarious kind of
degenerate foliations with integrable null disttibn. We shall see in the next
chapters that particular types of foliations comte this hypotehesis.

In what follows in examples omR"(--..—++...+) with the coordinates
ptimes n-ptimes

0

(x%,....X) we shall note, =
X

i=1,...,n. We shall note also the Semi-Riemannian

metric onR", with g.

2.1. Let the smooth mapR:— R, f%(x)>1 OxOR. Such an example is f(x)%2,
xOR, nON. Let alsoaDR-{g+nr1n DZ}. Let consider now the map:R*-R,

o (xx%)=f(x'cosa-x*sin a) O(x*,x*)0ORZ.
On the Semi-Riemannian manifold R%(-,-,+,+) let the vector fields:
E=sina cosa (§%(x*,x)-1)d,+coa(hp?(x},x%)-1)0,+cosa(p?(x:,x%)-1)d;

X= 1 o, sina 2, + o (xh, x?) )
cosa\/d)z(xl,xz)—l cosa\/q)z(xl,xz)—l \/q)z(xl,xz)—l

We have now d(,¢)=9(,X)=0 and g(X,X)=1. On the other hand:

(£ x]= - 2O (%) ¢

Jored s -1

thereforeg and X defined a 1-degenerate foliation F on M.

A local quasi-orthonormal basis along the 1-degateefoliation is given by:
{X,W,&,N} where:

Wz(b()&,xz)cosa 0, - o (X, x%)sina 2+ 1 2,
\/¢2(X1,X2)—1 \/¢2(X1,X2)—1 \/¢2(X1,X2) -1

N= !
2(:053c1(¢2(x1,x2) —1)

> [-sina (1+9°(x',x*)coa)o,+
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cosa (1-0%(x},x%)coga)d+(9%(x:,x*)cosa-1)ds-2sina cosa ¢(x*,x%)d]

2.2.Let M=R42-R><R><{ -1,0,3 xR and the vector fields:

£=sin ¥ d;+cos X 9,+05, X=cos X d;-sin X 62+X—13 9,

We have now d(&)=g(&,X)=0 and g(X,X)ﬁ—l#O because%z+1. On

the other hano[:E,X]z-x—l3 X thereforeg and X defined a 1-degenerate foliation F on
M.

A local quasi-orthonormal basis along the 1-degsteefoliation is given by:
{X,W,&,N} where:

w=— %t (cos X 0;-sin X 0,+x%0,),

:% (-sin X' 9;-cos X 0,+05)

2.3. Let the Semi-Riemannian manifold NKx,y,z)OR®0y#0,z£ 2k,
z¢7—2T+2kn,kDZ} endowed with the metric g defined through:

ds’=dx’+y?dZ+2(sin z+cos z-1)dxdy+2y(cos z-sin z)dxdz

L7 . Tz
We have det g=3sin z+cos z-FF-8y? SIHZESIHZEZ-EJ <0.

If we apply the Jacobi theorem we have that g$&mi-Riemannian metric
of index 1.

We note in what follows, :ai,a 0 o} :i. Let now the vector fields:
X

y :a_y’ ooz
&= -2(sin z+cos z-D\+0y, and X= -2y(cos z-sin 2)+0,
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We have ¢f,£)=0, g€,X)=0 and g(X,X)=y>0. On the other hand:
[€.£]=[X,X]=0 and[&,X]=[0,-2(sin z+cos z-1),-2y(cos z-sin D)+d,]=0.

We have therefore a foliation F generated by #wor fieldst and X. We
have D==Spang,X), N =Spanf), S (F )=Span(X). In order that the foliation be
coisotropic it is necessary that N B, We have:

D "={4A(1+cos z sin z-cos z-sin&yA(1-cos z-sin ,00NOF (M)} =
Spang)=N therefore the foliation F is coisotropic.

A local quasi-orthonormal basis along the coisdtrdpliation is given by:
{X,&,N} where:

_ 1
" 9y(sin z<osz)’(sinz+ cosz-1)
y(3sinzcosz-2)d, + Jsin z-cosz)(sinz+ cosz-l)az]

[y(sin z+cosz-1)0, +

2.4. Let M:R42(-,-,+,+) and the vector field=sin ud;+cos ud,+0; where u is
an arbitrary smooth map on M. We have now,QEO and how{¢,£]=0 follows
that¢ defined an isotropic foliation.

A local quasi-orthonormal basis along the isotrofediation is given by:
{&N,W3,W,} where:

Nzé (-sin u0,-cos ud,+0s),

W1=64, W2:COS Ual-Sin Uag

2.5. Let M=R42(-,-,+,+) and the vector field€,=f0,+f0;, £&,=hd,+hd, where f
and h are smooth mapings on M, everywhere non-sk. have: of;,&;)=0,

0(E2E)=0, gELE)=0 and[zl,zzl=—fﬂ[ of +ijal +fﬁ[%+§]z 0 Spank, ),

X2 ox*
[€1,€1]=[&2,62]=0 therefore they generate a totally degeneraiatifarh.

A local quasi-orthonormal basis along the isotrofitiation is given by:
{&1,€2,N1,N;} where:
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1 1
N, =E(_61+63)v N, =%(62 +0,)

3. Fundamental tensors of a degenerate foliation

Let F a degenerate foliation of a Semi-Riemanniamifold (M,g). We shall
note with the Levi-Civita connection on M corresponding toFgr the sake of
simplicity we shall consider the decomposition M Given by (2.22):

(3.1) TM=S (FIS (F7)O(N O deg(F))

where in the case of a coisotropic foliation we endhat S (F')={0} and
N =D ¢ “, in the case of an isotropic foliation having S J&O0} and
N =D ¢ and in the case of totally degenerate foliatiormitg: S (F )=
S (FY)={0} and N =D=D ¢".

We shall define four projectors relative to theataposition (3.1):

(32) RTM-N,PTM-S(F), RTM-S (F), P TM . deg(F)

We have:

(3.3) PPA+Ps+P,=1, PP=8;P,

1i,j=1,...,4, | being the identity.

From (3.1), (3.2) follows:

(3.4) g(RX,PY)=0 0(i,j) 0({1,2,3,4 x{1,2,3,4)-{(1,4),(2,2),(3,3) O X,YOTM

In what follows we shall note also:

S:=N, S,=S (F), S=S (F"), S,=deg(F )

We shall define a tensors family of type (1,2):

4 4
(3.5) ATM X TM - TM, ALY =0,,Y =3 PO, PY = 3 PO, PY
i=L i,j=l
i#j
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0 k=1,2,3,40 X,YUTM.

4

From (3.5) follows that if YIS ALY :ZPiDPkXPqY OXOTM 0k,g=1,2,3,4
i=1
izq

and how in the upper sumg follows:
(3.6) 9(AY,2)=00Y,Zz0S , OXOTM 0k,q=1,2,3,4
From the definition we have also:

(3.7) As Y =ALY OX,YOTM [Ok=1,2,3,4

Theorem 3.1The tensors A k=1,2,3,4 are skew-symmetric with g that is:
(3.8) ag(&Y,2)+g(Y,A*2)=00 X,Y,ZOTM

Proof. Let X,Y,ZOTM and kk<4 fixed. We have:

4 4
9(AXY,2) +9(Y,A%Z) =9(0pxY =D PO RY, 2) +9(Y,Upx 2= > P, P2) =
i=1

=L

Uex 9R Y, RZ) +Upx 9B Y RZ) + Upyx 9B Y,F2) + Up 9RY,PZ) -

g(Dka R Y’Plz) - g(Dka B Y,PZZ) - g(Dka R Y!Psz) - g(Dka PlY’PAZ) -
9(R,Y.UpxRZ) - aP,Y,UpxP.2) = 9B Y, UpxPZ) — 9(PY, Upx P, Z) =
(Uex 9RY.PZ) +(Upx )R Y.P2) +(Upx R Y.P2) + (Upx 9)RY.PZ) =0

Theorem 3.2The distribution S, k=1,2 is integrable if and only ifAY=A%/X,
Oox,Yos..

Proof. Let k=1,2-fixed. We have for any X[YS:

4 4 4
A;Y ‘A5X = Z PiDPkXPkY _ZPiDPkYka = Z Pi(DPkXPkY - DPkYka) =

i=1 i=1 i=1

izk ik ik

4
3 flRx )= [RXAYI-RIRX Y]

i#k
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If A*Y=A¥ X follows [PX,PY]=P[PX,PY]CS , therefore S is integrable.
Reciprocal, if Sy is integrable then[PX,PY]OS  therefore [PX,PY]=
P{PX,PcY]. But this means thataY=A*/X 0 X,YOS,.

Remarks
Let a degenerate foliation F of a Semi-Riemannianifold (M,Qg).

1. The null distribution N is integrable if and only the tensor A is
symmetric (k=1 in the theorem 3.2);

2. The screen distribution S (F ) is integrable if amdy if the tensor Ais
symmetric (k=2 in the theorem 3.2);

3. If the foliation F is isotropic or totally degentahen the tensors*Aand
A? are symmetrics. Indeed, in these cases we haw® Nand S (F )£0}. We
have therefore that the null distribution N is grEble from where follows that
the tensor Ais symmetric. Also on the screen distribution S)(fhe bracket
identically vanishes and therefore the tensbisASymmetric.

In the case of the integrability of,Sk=1,2 we have the following:

Theorem 3.3 The integral manifold of the distribution \$ k=1,2 is totally
geodesic if and only if &Y=0 0 X,Y OS,.

4
Proof. For any X,YJS  we have thatAfY =3 P0.,PY . Let S the integral
i=1
i#k
manifold of S, for a fixed k. S is totally geodesic if and onfyfi, P, Y 0S . But
this is equivalent with AY=0.

In what follows we shall determine the Gauss-Waiten formulae for the
degenerate foliations.

Considering X,YID ¢ we have: BX=P,X=0, P,Y=P,Y=0. By the fact that
X=PX+P,X, Y=P;Y+P,Y follows from (3.5):

(39) A:é,lx P]_Y = DpleJ_Y - I:>1[| F}XPlY
(310) ApP,Y =0pP,Y = PO, P,Y

(31D AL PY =0p,PY —P,,PY
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(312 A,§2XP2Y = DPZXPZY - PZDF,2 <P Y
The Levi-Civita connection becomes:

(313 O,Y =0puPY + 0, P,Y + 0, PY +0,,P,Y = AL PY +P PY +
ALxPY + PO PY +ALPY + P PY + AL PY +P,0,,P,Y

From (3.13) decomposing afterd2N 0°S (F), S (F) and deg(F ) we have:

(314) OFY =PALPY +PAL P,Y +PAZ,PY +PAZ P,Y +PAL PY +
PALP,Y +PA2 PY +PAZP,Y + PO, PY +P,,PY +
PO axPoY + P05, P,Y

(315 h3(X,Y) =PALPRY +PALPY +PAL PY +PAZ P,Y
(316) h*(X,Y) =P AL PY +PAL P,Y +PAZ PY +P,AZ P,Y

Considering now XID ¢ and Vtr(F ) we have: EX=P,X=0, PV=P,V=0. By
the fact that X=pPX+P,X, V=P3V+P,V follows from (3.5):

(317) ALP:V =0, PV PPV
(318 ALPV =0,,P,V -P,0,,PV
(319 AL PV =0,,PV —P, PV
(320) AL,P,V =0,,PV -P0,,PV
The Levi-Civita connection becomes:

(321 O,V = OgyPV + 0P,V + 0, PV + 0 PV = AL PV + P, PV +
ALPN +POy PN +ALPY + P, PV +AL PV +P,,PV
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From (3.21) decomposing afterd2N OS (F ), S (F) and deg(F ) we have:

(322 - A X =PALPV +PAL PV +PAL PV +PAL P,V +
PzAi’lx PV + PzAi’lx PV + PzAézx PV + PzAézx PV

(323 DRV =PAL PV +PAL P,V +PAL PV +PAL PV + P, PV +
PpxPsV

(324 DLV =PALPV +PAL PV +PALPV +PALPV +P,, PV +
POpxPV

From the tensorial character of respectively Aand from the fact thdt is
R-bilinear in both terms and is F (M)-linear in thest term follows that all the
geometrical objects introduced through (3.14), §8.13.16), (3.22), (3.23) and
(3.24) areR-bilinear and F (M)-linear in the first term. Thact thatOd" is linear
connection on Ris easy to proven therefore we shall namiehe linear connection
induced on F . From (3.15), (3.16) and the tenkoharacter of Arespectively A
follows that It and K are tensors of type (1,2) defined by:he xD ¢ —deg(F ),
h>D ¢ xD ¢ - S (F"). We shall name'tthe second degenerate fundamental form of
F and R the second screen fundamental form of F . Fro@2j3follows from the
same tensorial character of,A\? that A is a tensor of type (1,2) defined by: A:D
xtr(F )- D . We shall name @Athe Weingarten operator of F relative to V.

From (3.23), (3.24) follows:
(325) DSV = DSV + X (f)P,V
(326) DLfV = DLV + X (f)P,V

OfOF (M).

Remarks

1. From (3.25) follows:D}fP,V =fO05P,V + X(f)P,V , D3RV =f05P,V
2. From (3.26) follows:D;fP,v =fD3P,V, D;fP,V =fDLP,V + X(f)P,V
3. From (3.25) and (3.26) follows:
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DSV +D LIV = DSV + X(F)P,V + DLV + X(F)P,V =f (DSV + DL V) +X(f)V

Because B and O are not linear connections, we shall considerrshei

restrictions at S (F) respectively at deg(F ). Let therefore:

(3.27) 05D ex S (FY) =S (FY), O%(P3V)=D3%PsV

(3.28) 0D ¢ x deg(F )~ deg(F ),0"«(PsV)=D"xP,V
(3.29) DD x deg(F )= S (F"), D¥(X,PsV)=D5%P,V
(3.30) D:Dex S (F7) = deg(F ), D(X,P:V)=D"xPsV

0 XOD OV Otr(F).

From the first remark and the preceding considemati follows thatZ® is a

linear connection on Px S (F") and D is a tensor of type (1,2) on £x deg(F ).
Also from the second remark follows that is a linear connection on Px deg(F )
and D is a tensor of type (1,2) on Px S (F"). We have therefore from (3.27)-

(3.30):
(3.31) D3V =D;P,V +D;P,V =[P,V + D°(X,P,V)
(3.32) DYV =D{P,V +DLP,V = D" (X,P,V) + O{P,V

We define now:

(3.33) h:DexD ¢ - tr(F ), h(X,Y)=F(X,Y)+h"(X,Y) OX,YOD ¢
and we shall call the second fundamental form adl&tive to tr(F ).

Let also:

(3.34) 0D extr(F )—tr(F ), 0%V=DSV + DLV OXOD OV Otr(F )

By the third remark follows thatd' is a linear connection on

D g xtr(F ) named the transversal linear connection of F
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We can write now:

(3.35) OxY=0 xY+h(X,Y)
(3.36) OxV= -AyX+0O%V
O X,YOD OVOtr(F ).

Because the distribution Pis integrable follows thafl™ is a linear connection
whitout torsion on ..

From (3.33), (3.34) follows that the formulae (3,33.36) become:
(3.37) OxY=0 x Y+h-(X,Y)+h5(X,Y)
(3.38) OxV= -AyX+D'yV+ DSV
O X,YOD OV Otr(F ).

Analogously, using (3.31), (3.32) follows:
(3.39) OxV= -AyX+0"P,V+D (X, PaV) + 0% PV+DS(X,P,V)
O XOD ¢ OVOtr(F ).
From (3.39) follows the particular cases:
(3.40) OxW= -ApX+D (X, W)+0%W
(3.41) OxN= -AyX+0"«N+D°(X,N)
0 XOD £ OWOS (FY) ONOdeg(F ).

Remark In the cases of coisotropic or totally degenefaliations we have: S

(F )={0} therefore R=0 from where FF0, 0°=0, D’=0 and D=0. The formulae
(3.37) and (3.41) become:

(3.42) OxY=0F xY+h (X,Y)

(3.43) OxN= -AyX+0«N
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0 X,YOD ONOdeg(F ).

We shall call the formulae (3.35), (3.37), (3.4B¢ Gauss formulae and
(3.36), (3.38), (3.39), (3.40), (3.41), (3.43) theéeingarten formulae for the
degenerate foliation F.

Theorem 3.4 Let a degenerate foliation F of a Semi-Riemanmaamifold
(M,g). We have:

(3.44) a®(x,Y),W)+g(Y,D-(X,W))=g(AwX,Y)
(3.45) g(tX,Y),&)+g(M(X,8),Y)+g(Y,0'x§)=0
(3.46) g(BEX,N),W)=g(AwX,N)
(3.47) g(AX,N)+g(A N X,N)=0
(3.48) 9(AX,P,Y)=g(N,0xP,Y)

0 X,YOD ¢ 0E0ON OWOS (FY)) ON,N' Odeg(F )).
Proof. Let X,YOD g, 0N, WOS (F9), N,N'Odeg(F )). Then:

 g(AwX,Y)=g(-OxW+D"(X,W),Y)=-
g(OxW,Y)+g(D"(X,W),Y)=g(W,0xY)+
g(D"(X,W),Y)=g(W,h*(X,Y))+g(D"(X,W),Y)

* 0=0xg(Y.&)=g(OxY,&)+9(Y,0x&)=g(n(X,Y),&)+g(Y,0%E+h"(X,&))=g(h
H(X,Y), &)+
g(h(X,8),Y)+g(Y,0%)

* 9(AWX,N)=g(-0xW,N)=g(W,0xN)=g(W,D*(X,N))

e g(ANX,N)+g(AnX,N)=g(-UxN,N")+g(-UxN’,N)= -Uxg(N,N’)=0

¢ g(ANX,P2Y)=g(-0xN,P,Y)=g(N,xP,Y)

If we have now{ N;,...,N} a basis for deg(F ) aqdW..4,..., W} a basis for S (F
) (the last in the case of r-degenerate foliation®f those isotropic) for a given
screen distribution S (F ) we define:

(3.49) h(X,Y)= S hH (X, YN,
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(3.50) AX,Y)= zm:hi(x, Y)W,

a=r+l

in the case of coisotropic or totally degeneratéations defining R.=0
U a=r+1,..,m.

We call r; the degenerate local second fundamental formshanthe screen
local second fundamental forms of F .

Theorem 3.5In a degenerate foliation (F, g, S (F ),S 0 of a Semi-
Riemannian manifold (M,g) the degenerate local sdctundamental forms are
independent by the screen distribution and byrdnestzersal distribution.

Proof. From (3.37) follows:

(3.51) h(X,Y)=g(h"(X,Y),&)=g(OxY.&)

O X,YOD g0i=1,...,r.

From (2.61), (2.63), (2.65), (2.67), (3.51) folloWt at a change of coordinates
neighbourhood of a point - where F is a foliation with integrable null dibtrtion
we have:

(3.52) '1(X,Y)=Ah"(X,Y)

0 X,YOD ¢ h, h* being column vectors with the componerntts fespectively
h' relative to the two bases. After this remark weehiammediately:

Theorem 3.6In a degenerate foliation (F, g, S (F ),S’{Fwith integrable null
distribution of a Semi-Riemannian manifold (M,getlianishing of the degenerate
local second fundamental forms does not dependhdygaordinates neighbourhood
of an arbitrary point p of F .

From (3.51) we have now S6X,&)=g(0x&;,&)=-0(0x&;,&)=-n"(X,&)
therefore:

(3.53) hi(X,&)+h5(X,&)=0
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0 XOD g0O01i,j=1,...,r and for i=j:

(3.54) h(X,&)=0

0 XOD gOi=1,...,r.

If we make a circular permutation in (3.53) we have

(3.55) hi(Ei'Ek)zo

0i,j,k=1,...,r.

From (3.54) and (3.55) we have:

Theorem 3.7 In a degenerate foliation (F, g, S (F ),S fF of a Semi-

Riemannian manifold (M,g) the degenerate local sdctundamental forms are

degenerate and they identically vanish on thedisttibution N of F .

In the cases of isotropic or totally degeneratéafidns we have that N =P
therefore:

Corrolary 3.1 In an isotropic or totally degenerate foliation ¢ S (F")) of a
Semi-Riemannian manifold (M,g) the degenerate I@eslond fundamental forms
identically vanish on 1.

The problem is now how the induced connecfidnwill transform on F at a
change of the screen distribution?

For the beginning we shall analyse the case ofgederate foliation with
O<r<min{m,n}.

Let U a coordinates neighbourhood of M anf;,...&,Xw1,...,. %0,
Wiig,...,Wm,Ng,...,N} a local quasi-orthonormal basis along F in U and
{&1,- . & X ity e X' s W i1, Wi, N'4,...,N'/} @ local quasi-orthonormal basis along
F in U relative to the decompositions TM=S (BS) (F )ON O deg(F ))
respectively TM=S ‘(F IS ‘(F ©)O(N O deg’(F )). From (2.43), (2.44), (3.37),
(3.49)-(3.51) we have:
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(3.56)0FY =0FY +Zr:(E‘hL(X, Y)-DG,'BWS(X, V))& + 3 (Cht (X, Y)J'X,

a=r+l
O X,YOD g, () and ( § being the coordinates in corresponding bases.

Analogously, we have:

(857) DLy =0fv +3 [Eh (X, M)g + Ylch x. )X,

a=m+l

for o coisotropic foliation,
(3.58) ofy =0fY —Zn:(DGWtBth‘S(X, Y)) 3
i=1

for an isotropic foliation and

(3.59) oYY =05y

for a totally degenerate foliation.

Theorem 3.81In a r-degenerate foliation (F, g, S (F ), ST of a Semi-
Riemannian manifold (M,g) the induced connectidnon F is independent by the
screen distribution if and only if

(3.60) B (X,Y)=DG\/'B'h'3(X,Y)

(3.61) '8-(X,Y)=0

O X,YOD ¢ andO B a non-singular matrix of m-r-order, C,D,E begutpitrary
matrices of typesx(n-r), <(m-r) respectively ¥r which satisfy in addition the
relations (2.44).

Theorem 3.91In a coisotropic foliation (F, g,S (F )) of a SeRiemannian
manifold (M,g) the induced connectiod” on F is independent by the screen
distribution if and only if

(3.62) B-(X,Y)=0

(3.63) 6-(X,Y)=0
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O X,YOD g and O C,E mx(n-m) and nxm-orders matrices, which satisfy in
addition, the relations (2.49).

Theorem 3.10In an isotropic foliation (F,g,S (F)) of a Semi-Riemannian
manifold (M,g) the induced connectidi” on F is independent by the screen
distribution if and only if

(3.64) DG/B'h’3(X,Y)=0

O X,YOD ¢ andO B a non-singular matrix of m-n-order, D an arbigrenatrix
of nx(m-n)-order, satisfying in addition the relatio2s54).

Theorem 3.111In a totally degenerate foliation (F, g) of a Sdigmannian

manifold (M,g) the induced connectiod” on F is independent by the screen
distribution.

We shall study in what follows the manner in whibk induced connectiofi”
depend on the coordinates neigbourhood. From (2BB3), (2.65), (2.67) follows:

Theorem 3.12In a degenerate foliation F, with integrable rdiditribution, of a
Semi-Riemannian manifold (M,g) the induced conmecfi” on F is independent by
the coordinates neighbourhood of an arbitrary paifl.

We define now a system of 1-local differentialnfis:

(3.65) Ni(X)=g(X,Nj), i=1,....,r

O XOD g. We have from (3.65):

(3.66) X =PX +Zr:r]i(x)£i

i=1

O XOD g. We remark from (3.66) that the screen distribui@defined locally
by ni=0, i=1,....r.

We have define in (3.14) and (3.34) two linearremtions]"” andd' where

the first is symmetrical. The problem is now ishiése are metric connextions. From
(3.37), (3.49), (3.66) and the condition thhais metric we have:
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(3.67) Ox9)(Y,2)=g((X,Y),2)+g(h"(X,2),Y)=

Y hx ¥)n @ +hi(x,2)n,(0)] 0X,Y,Z0D ¢

=l
From (3.36) we have also:
(3.68)  (%g)(V,V")=-[g(AvX,V")+g(A - X,V)] O XOD 0OV, V' Oitr(F ).
Theorem 3.13In a degenerate foliation F of a Semi-Riemanniamifold (M,g)
the induced connectiofi” on F is metric if and only if the local degenera¢eond

fundamental forms identically vanishes or D

Proof. From (3.65) and (3.67) we have for any X,M[Z:
(369)  UxA)(PY,P2)= X[t (X PYN, P2+ 1t (X,P2n, (PY)|=0
From (3.53) follows:

(3-70)(DFxg)(Ei,E;)=er_][ht(X,Ei)nk(E,-) +ht(X,Ej)nk(Ei)] =h;(X,§)+hi (X,&) =0
1i,j=1,...,r and finally:

(3.71) O5@)(PY, &)= 3 [ (X, PY)n, (&) +h (X.E)n, (PY)] = H(X,PY)
k=1

The vanishing oflfg is therefore equivalent witH;tX,P,Y)=0 OX,Y 0D .
From the theorem 3.7 follows that it is equivaleith h-=0.

From the corrolary 3.1 and the theorem 3.13 we have

Corrolary 3.2 In an isotropic or totally degenerate foliationoF a Semi-
Riemannian manifold (M,g) the induced connecfidron F is metric.

Theorem 3.141n a coisotropic or totally degenerate foliationoF a Semi-
Riemannian manifold (M,g) the transversal connexfibis metric.
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Proof. Because A has values in @ and in the case of coisotropic or totally
degenerate foliations we have that tr(F )=deg@l¢Ws from (3.43) and (3.68):

(O%Q)(V.V)=-[g(AyX,V")+g(A v X,V)]=g(OxV,V")+g(V, OxV')= Oxg(V,V")=0
OXOD ¢ OV,V' Oitr(F )).

Theorem 3.15In a r-degenerate or isotropic foliation F of arb®iemannian
manifold (M,g) the next statements are equivalents:

a) [1'is a linear metric connection;
b) The degenerate transversal distribution deg(Fpprallel with respect to
a5
c) Ay takes values in S (F ) WOS (F);
d) DS(X,N)=0 0 XOD ¢ ONOdeg(F ).
Proof. From (3.47), (3.68) we have:
(3.72) 0% 9)(N,N)=-g(AxX,N")-g(A n X,N)=0
(3.73) O'%9)(W,W")=-g(AwX,W)-g(A wX,W)=0
(3.74) 0'%9)(W,N)=-g(AvX,N)-g(AnX,W)=-g(AwX,N)

O XOD ¢ OW,W'OS (FY) ON,N’'Odeg(F ). In (3.74) we have use the fact that
AnXUD ¢ therefore g(AX,W)=0.

a)=>c) From (3.74) follows that ifl' is metric connection then g¢,N)=0
therefore AXOS (F))OXOD k.

c)=a) From (3.74) follows that{xg)(W,N)=-g(AvX,N)=0 and together with
(3.72) and (3.73) imply a).

ay>d) From (3.46) and (3.74) we have 05@)(W,N)=-g(AvX,N)=
-g(D3X,N),W) OWOS (F") and how S (F) is nondegenerate follows (X,N)=0.

d)=a) From (3.46) and (3.74) we haved\g)(W,N)=-g(AvX,N)=
-g(D°(X,N),W)=0 and with (3.62) and (3.73) imply a).

54



ECONOMICA

ay=>b) From (3.36) we obtain now:
(3.75) gU'%N,W)=-(0%g)(W,N)

From a) and (3.75) follows therefore [(N,W)=0 and how S (F") is
nondegenerate we hai®N=0 OXOD  ONOdeg(F ). But this nothing means else
that deg(F ) is parallel with respectb

b)=a) From (3.75) we havelkg)(W,N)=0 and together with (3.72) and (3.73)
imply a).

We have seen that the screen distribution is fonesgal in the study of
degenerate foliations. On the other hand all theduced geometrical objects does
not put in obviousness properties of this. Thidhesreason for we shall proceed at a
refinement of the Gauss formula with respect todéeomposition i =S (F 1IN .

Let therefore X,YID ¢ . From (3.14) we have:

(376 [EP,Y =PALP,Y +PALP,Y +PALPY +PALPY +PL,,PY +P,,PY
(377 LERY =PALPY +PAZPY +P,,PY +P,,PY +PALRY +PAZ RY We define:

(378) O,PY =P,ALPY +P,AL PY + PO, PY +P,,P,Y
(379 TPR,Y =PALRY +PALPY +PALPY +PALPY +PL PY +P, PY
(380) AL X =-PALPY -PAZ PY
(381 O;RY =PALPY +PAZPY + P PY + P, PY

Like in the preceeding discussion, follows immeéeliathat h and A are
tensors of type (1,2) defined thus:

h D ¢xS (F)=N,ADexN =S (F)

We shall call hthe second fundamental form of S (F ) and the Weingarten
operator of S (F ) with respect&d1§IN .

Also, 0" and 0" are linear connections on S (F ) respectively ket the
induced connection on S (F ) respectively the ieduconnection on N . From
(3.76), (3.78) and (3.79) follows:

(3.82) O P,Y=0"yxP,Y+h"(X,P,Y) OX,YOD ¢
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From (3.77), (3.80) and (3.81) follows:
(3.83) O7%&= -A"eX+0"'x& OXOD  OE0N

Remark In the case of isotropic or totally degeneratdafmns we have
D =N thereford] and A vanish.

Theorem 3.16Let a degenerate foliation F of a Semi-Riemannizanifold
(M,qg). The following relations hold:

(3.84) 9(AX,P2Y)=g(E,h"(X,P,Y))

(3.85) U9 E.&)=9(&,h(X,£))+g(&,h"(X,))
(3.86) [ xQ)(P>Y,P:2)=0

(3.87) g(ttX,P2Y),N)=g(AnX,P,Y)

0 X,YOD ¢ 0&,E 0N ONOdeg(F ).

Proof. Let X,YOD ¢ && 0N, NOdeg(F ). Using (3.37), (3.45), (3.69), (3.82),
(3.83) we have:

« From (3.37), (3.83) follow: g(AX,P,Y)=-g(0%&,P,Y)=-g(0x&,P,Y)=
9 OxP>Y)=g(&,h"(X,P,Y);

« From (3.37), (3.83) follow: ['xg)(&.&)=X(9(&.&))-9(0"xE.E)-
9@€.0"'%&)=
X(9(8,€))-9(0%E,&)-9(8,0'xE)=X(9(&.£9)-9(0xE,&) +g(h"(X,8).&)-

g(dx&', &)+
%(;L(X,E‘),E)=(ng)(E,E‘)+g(E,hL(X,E‘))+g(E‘,hL(X,E))=g(E,hL(X,E‘))+9(E‘,hL(X,

« From (3.37), (3.82) follow: 'xg)(P.Y,P,2)=X(g(P.Y,P,2))-
Q(D*xsz.Pzz)‘

g(P.Y, 0 xP,Z)=X(g(P2Y,P22))-g(0 xP.Y,P22)-g(P.Y, 07 P2Z)=X(g(P.Y,P2:2))-
g(0xP.Y,P.2)-g(P.Y,xP,2)=0;

« From (3.37), (3.41), (3.82) follow: g(,P.,Y),N)=g(0P.Y,N)=
9(UxP2Y,N)=-g(RY,UxN)=g(R:Y ,AnX).

Theorem 3.17 Let a degenerate foliation F of a Semi-Riemannizanifold
(M,g). Then the operator Ais self-adjoint on S (FIEON .
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Proof. From (3.84) using the fact thdt is symmetric follows:

(3.88)  g(AcPX,P.Y)=g(&,h"(PX,P.Y))=g(&,h"(P,Y,P>X))=g(P-X,A"¢P,Y)

Theorem 3.18Let a degenerate foliation F with the null distitibn of rank 1 of
a Semi-Riemannian manifold (M,g). Ther is metric connection on N .

Proof. If the null distribution is of rank 1 then from.g3l) and (3.85) we have:
(0'x9)(E.8)=29€,h"(X,£)=29(,h"1(X,§)N)=2h"1(X,£)=0.

Theorem 3.19Let a degenerate foliation F of a Semi-Riemannizmifold
(M,g). Thend" is metric connection on S (F ).

Proof. Follows from (3.86).
From (3.45) when Y&, X - P,X and (3.84) we have that:
0=g(H(PX,£), &)+g(H(PX.8).&)+g(E", U5, & )=g(A & +A ¢ £, P.X)
How S (F ) is nondegenerate, follows:
(3.89) AE+A£E=00 .8 0N
We shall suppose now that the null distributioridNntegrable.

Theorem 3.20 The Weingarten operator of the screen distribut®n(F )
corresponding to the degenerate foliation F, wittegrable null distribution, in a
Semi-Riemannian manifold (M,g) vanishes on the digiribution.

Proof. Because N is integrable we havég, &' OON : [, 10N . Let XOS (F ),
arbitrary. Then:

0=g((&,&'1.X)=0g(0&", X)-g( D &, X)=g(A"&" X)-g(A ¢ £, X)=g(A"&-A "¢ €,X)
How S (F ) is nondegenerate follows:

(3.90) AE'=A"¢E O EE DN
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From (3.89) and (3.90) follow:

(3.91) AE'=0 0&,E 0N

Theorem 3.21 The second degenerate fundamental form of a degene
foliation F, with integrable null distribution, ia Semi-Riemannian manifold (M,Q)

vanishes on ND .

Proof. From (3.84), (3.91) follow: §(,h"(8,P>X))=g(A"¢-&,P,X)=0 0 ON from
where:

(3.92) 'e,P>X)=0 0 0N OXOD ¢

From (3.92) and the theorem 3.7 we have:

(3.93) h(E,X)=0 0 §E0ON OXOD ¢
Before the next theorem let do the remark thanf(8.69)-(3.71) and (3.92)
follow:
(3.94) 0F%g=00 0N

Theorem 3.22Let a degenerate foliation F, with integrable miigitribution, in a
Semi-Riemannian manifold (M,g). The next assertamsequivalent:

a) The induced connectidi’ is metric;

b) A’ vanishes on S (FO) §0N;

c) N is aKilling distribution;

d) N is a parallel distribution with respect(b.

Proof. From the corrolary 3.2 follows that for isotropic totally degenerate
foliations the connectiorl™ is metric. We shall consider therefore that F-is r
degenerate or coisotropic. From the theorem 3.18we that 0" is metric if and
only if the degenerate second fundamental formsgshaidentically on F . On the
other hand from the theorem 3.7 and (3.92) follbat £ is metric if and only if
h“(P,X,P,Y)=0 0 X,YOD k.

ay>b) From (3.84) and the nondegenerate character ¢F § we have:
g(A"eP.X,P,Y)=g(&,h-(P2X,P,Y))=0 therefore AP,X=0 OX,YOD ¢ OEON .
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b)=a) From (3.84) follows: @(h-(PX,P,Y))=g(A":P.X,P,Y)=0 therefore
h“(P,X,P,Y)=0 OX,Y D ¢ that is0" is metric connection.

N is a Killing distribution if and only if dix&,Y)+g(0dyvE,X)=0 O&ON
OX,YOD g. Using (3.37), (3.83) and (3.93) we have:

9(OxE,Y)+g(OVE X)=-g(A"X,Y)-g(A"¢Y, X)

From (3.91) follows that for X,¥IN the upper expresion vanishes. Also IfeY=
then -g(AeX,&)-g(A":&' X)=0. It follows therefore that N is Killing disibution if
and only if g(A:PX,P,Y)+g(A’¢P,Y,P,X)=0 OX,YOD ¢ . But from (3.88) we have
that N is Killing if and only if g(A¢P>X,P,Y)=0 OX,YD .

a)=c) From (3.84) follows g(AP,X,P,Y)=g(&,h"(P>X,P,Y))=0.

c)=a) From (3.84) follows 0=g(AP.X,P,Y)=g(&,h"(P.X,P,Y)) OEON
therefore h(P,X,P,Y)=0 O X,YOD .

b)=d) If A"¢P,X=0 OXOD ¢ OEON then from (3.91) follow§]xEON OXOD
¢OE0N therefore N is parallel with respect(6.

d)=b) If N is parallel with respect ta” then A;X=0 OXOD OE0N .

If we consider now foliations with arbitrary nulisttibution we can proove
other general results.

From (3.89) we have like a particular case:
(3.95) A&=00 EON
It is easy to show that in this case the theor&?® Becomes:

Theorem 3.23Let a degenerate foliation F in a Semi-Riemannizamifold
(M,g). The next assertions are equivalent:

a) The induced connectidn’ is metric;

b) A’ vanishes on R O &0N;

¢) N is aKilling distribution;

d) N is a parallel distribution with respect .
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Theorem 3.24Let a degenerate foliation F in a Semi-Riemannizamifold
(M,0). The next assertions are equivalent:

(i) The screen distribution S (F ) is integrable;

(i) The second fundamental form of S (F jsisymmetric on S (F );

(il The Weingarten operator Ais self-adjoint on S (F )) with respect to g
ONOdeg(F ).

Proof. (i) = [PX,P,Y]OS (F ) OX,YOD ¢ = (0,4 PY-0,, PX)+(N (PX,P,Y)-
h'(P.Y,PX)) S (F )= h'(PX,P,Y)=h"(P,Y,P,X) OX,Y D ¢ « (ii). From (3.86) we
have that (ii}> g(h (P.X,P,Y),N)=g(h (P.X,P,Y),N) = g(AxP-X,P,Y)=

g(PX,ANPyY) < (ii).

Theorem 3.25Let F a degenerate foliation in a Semi-Riemannizamifold
(M,g). The next assertions are equivalent:

(i) The screen distribution S (F ) is parallel wigspect tdl";

(i) The second fundamental form of S (F )identically vanishes;
(i) The Weingarten operatorytakes values in N .

Proof. From (3.82) we have that &)(ii) and from (3.48) that (i¥- (iii).

In the final of this section it is interesting teeswhen the null distribution is
integrable (from the point of view of the new gedneal objects).

Theorem 3.26Let F a degenerate foliation in a Semi-Riemannizamifold
(M,0). The next assertions are equivalent:

(i) N is integrable;
(i) h"(¢,P,X)=0 OEON OXOD .
(iii) A¢ identically vanishes on N .

Proof. From (3.84) we have g(£&',P,X)=g(&,h"(§,P,X)) 0&,&0ON OXOD .
If (i) holds then g(A¢&',P,X)=0 0&,&' ON OXOD ¢ therefore (iii) and reciprocally
if (iii) is true then g€,h~(&',P.X)) 0&,&'ON OXOD ¢ from where (ii). From (3.91)
follows that if (i) is true that is N is integrallieen A:&'=0 0&,&'ON therefore (iii).
If (iii) is true then¢, &' N XD ¢ follows:
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g([E,E‘],PZX)=g(D§E‘,PZX)-Q(DE‘E,PZX)Z-Q(A*E‘E,PZX)+g(A*§E‘,P2X)=0
thereforg[ ¢, ]ON O ¢,&'ON which is the same thing with (i).
4. Totally geodesic degenerate foliations

Definition We call a degenerate foliation (F, g, S (F ), S)jFof codimension
m of a (m+n)-dimensional Semi-Riemannian manifoM,q) totally geodesic
degenerate foliation if any geodesic of an arbjttaaf of F is a geodesic of M.

Theorem 4.1Llet (F, g, S (F ), S (F)) a degenerate foliation of a Semi-
Riemannian manifold (M,g). F is totally geodesiaifd only if one of the following
statements is true:

(i) h*=h*=0;

(i) ii 1) A" X=0 0 EON OXOD ¢,
i) AwXON OWOS (FY) OXOD .
i) D"(X,PsV)=0 OXOD OV Otr(F )

Proof. The condition that F is totally geodesic is eqlema with OxXOD ¢
0 XOD ¢. From (3.37) we see that this is equivalent witfXiX)=h5(X,X)=0 and
from the symmetry of‘hand If we have (i). Let prove now that=g)ii). If h"=h°=0
from (3.84) follows that g(AX,P,Y)=0 OEON OX,Y OD gtherefore: A;X=0 that is

ii,). From (3.83) and 4) follows thatOd«&0N and from (3.37)0xE0N . We have
now with (3.40):

0=0xg(€,PsV)=g(0x€,PaV)+d(E, OxPaV)=g(€,0xPV)=g(&,D"(X,P3V))

OEON OXOD ¢ OVOtr(F ) therefore §). Finally, from (3.44) and 4) we have:
g(AwX,Y)=g(Y,D"(X,W))=0 OX,YOD  OWOS (F") therefore ).

If we shall suppose now that (ii) is true then frgt84) and i) follows:
g(€,h"(X,P.Y))=g(A":X,P,Y)=0 therefore h(X,P,Y)=0 OX,YOD ¢ . From the
theorem 3.7 follows that“tg,&)=0 0&,&'0ON . We have finally that 0. From
(3.44), i) and iy we have now: g(fX,Y)w)=0 0OX,YOD ¢
OWOS (FY). Because S (F) is nondegenerate follows that=0 therefore finally
OF
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Corrolary 4.1 Let (F, g, S (F )) a coisotropic foliation of arieRiemannian
manifold (M,g). The foliation F is totally geodesi@and only if one of the following
statements is true:

(i) h-=0;
(i) A"eX=0 O EON OXOD ¢

Proof. In this case ¥0, S (F7)={0}, P,=0 and the statement reduces to the
theorem 4.1.

Corrolary 4.2 Let (F, g, S (F)) an isotropic foliation of a Semi-Riemannian
manifold (M,g). The foliation F is totally geodesi@and only if one of the following
statements is true:

(i) h%=0;
(i) D(X,PsV)=0 OXOD ¢ OVOtr(F ).

Proof. In the case of isotropic foliations, from the atary 3.1 follows h=0
and how S (F &0} and ib) is trivial follows the conclusions of the corroja

Corrolary 4.3 If (F, g) is a totally degenerate foliation of ani-Riemannian
manifold (M,g) then the foliation F is totally gesslc.

Proof. From the corrolary 3.1 we have thata and how B=0 we have ¥=0
therefore from the theorem 4.1 follows that F tsiltg geodesic.

Corrolary 4.4 If (F, g, S (F), S (F)) is a totally geodesic degenerate foliation
of a Semi-Riemannian manifold (M,g) then the nigtrdbution N is integrable.

Proof. From the theorem 3.26 we see that N is integréblend only if
h“(§,P,X)=0 0 &ON OXOD ¢ . From the theorem 4.1.i) the condition is sati$by
the totally geodesic degenerate foliation.

From the theorems 3.8, 3.9, 3.10 and 3.11 we have:

Theorem 4.2 In a totally geodesic degenerate foliation (F, &, (F ),

S (F") of a Semi-Riemannian manifold (M,g) the induaamhnectiond" on F is
independent of the screen distribution
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Remark From (3.37) follows thafl"” coincides with the restriction af on D.

From the theorem 3.13 we have the following:

Theorem 4.3 In a totally geodesic degenerate foliation (F, ), (F ),
S (F") of a Semi-Riemannian manifold (M,g) the induaamhnectiond" on F is
metric.

5. Totally umbilical degenerate foliations

Definition We call a degenerate foliation (F, g, S (F ), S)jFof codimension

m of a (m+n)-dimensional Semi-Riemannian manifolM,q) totally umbilical
degenerate foliation ifH, Odeg(F ), ROS (F-) with the property that:

(5.1) h(X,Y)=g(X,Y)H,
(5.2) A(X,Y)=g(X,Y)Hs
OX,YOD¢.

Remark From the theorem 4.1 follows that a totally undali degenerate
foliation is totally geodesic if and only if H0 and H=0.

Remark In the cases of coisotropic or totally degenefat@tions, because
Ps=0, only the axiom (5.1) is necessary for totaltytulicality.

If we consider now the totally umbilical degenerfoéation F, the formula
(3.37) becomes:

(5.3) OxY=0%Y+g(X,Y)H +g(X,Y)Hs OX,YOD ¢
Also, the formula (3.44) becomes:

(5.4) g(H,W)g(X,Y)+g(Y,D"(X,W))=g(AwX,Y) O X,YOD r OWOS
(F9

From (3.45) we have:

(5.5) g(YE'x€)=-g(X,Y)g(HL.&) OX,YOD ¢ DEON
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If we shall note (§)(X)=0x& we have from (5.5):
(5.6) g(Y, (@) (X))=g(X,(Dg)(Y)) O X, YD ¢
From (5.6) follows therefore:

Theorem 5.1 On a totally umbilical degenerate foliation forya&N the
operator [ is self-adjoint on @ with respect to g.

From the definition, we have also

(5.7) h(X,£)=0
(5.8) R(X,&)=0
0 XOD 00N .

Theorem 5.21f (F, g, S (F), S (F)) is a totally umbilical degenerate foliation
of a Semi-Riemannian manifold (M,g) then the nigtidbution N is integrable.

Proof. From the theorem 3.26 we have that N is integrdbland only if
h(&,P,X)=0 OEON OXOD ¢. From (5.7) follows this type of foliations satéesf that
this.

Theorem 5.3 A totally umbilical isotropic foliation is totallygeodesic
degenerate.

Proof. If F is isotropic then N =R. From (5.7) and (5.8) follows that+h®=0
and from the theorem 4.1.i) follows that the fobatis totally geodesic.

Because the totally degenerate foliations are lyotg¢odesic and after the
theorem 5.3 the isotropic are also totally geoddmien this moment we shall
consider only the cases of r-degenerate with ré€mijn} or coisotropic foliations.

From (5.7) and the theorem 3.26 we have therefore:

Theorem 5.4 On a totally umbilical r-degenerate with r<fuinn} or

coisotropic foliation we have thdl€0N the operator A of S (F ) vanishes
identically on N .
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From (3.67) we have now:
(5.9) 07%9)(Y,2)=9(H.,.2)9(X,Y)+g(H.,Y)g(X,2)
0 X,Y,ZOD k.

From (5.9) follows:
(5.10) 0F:g=0

Theorem 5.5 On a totally umbilical degenerate foliatiod”™ is a linear
connection metricon S (F).

Proof. From (5.9) for Y- P,Y and Z- P,Z we have:

(5.11) [0"x9)(PY,P,Z)=0

OX,Y,Z0OD ¢ OEON .

Theorem 5.6 On a totally umbilical r-degenerate with r<fum,n} or
coisotropic foliation the induced connectia@h is metric if and only if =0 (or
h“=0).

Proof. From (5.9) we have:

(5.12)  O%Q(PY,&)=g(H.E)IX,P2Y)+g(H,P>Y)g(X,&)=g(H. £)g(X,P>Y)

OX,YOD ¢ OEON . If F is r-degenerate with r<n{im,n} or coisotropic then S
(F ) does not coincides with the null distributidimerefore we can choose a non-null
vector field XOS (F )). If OF is a metric connection then from (5.12) follows:
0=(0%9)(P:X,&)=g(H..&)g(P.X,P-X) therefore g(H,£)=0 OEON that is H=0.

Reciprocally, from (5.12) follows that if 40 then [07xg)(PY£)=0 OX,YOD
OE0ON . Also, from (5.9) follows: T7xg)(€.&)= g(H..£)g(X,&)+g(H..&)g(X,&)=0

[&,&' UN . From (5.11) we have:
(O0%g)(P.Y,P,2)=0 OX,Y,Z0D (therefored)" is a metric connection.

Corrolary 5.2 On a totally umbilical coisotropic foliation thenduced
connectiori)” is metric if and only if it is totally geodesic.
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Proof. On coisotropic foliations we have#® and therefore from the theorem
5.6 follows thatO" is a metric connection if and only it#0. But this does not
means else that the foliation is degenerate totgldesic.

Theorem 5.70n a totally umbilical foliation r-degenerate withmin{ m,n} or
coisotropic any vector field of the screen disttibu is proper for the Weingarten
operator of S (F): A OEON .

Proof. From (3.84) we have:
(5.13) Q(ApszzY):g(sz.PzY)g(HL,E)
OX,YOD ¢ OE0N .

Because AP,XOS (F )) OEON OXOD ¢ and S (F ) is nondegenerate, from
(5.13) follows:

(5.14) AeP.X=g(H_,&)P,X DEON OXOD ¢

Theorem 5.80n a totally umbilical foliation (F, g, S (F ),(8 ")) r-degenerate
with r<min{ m,n} the following statements are equivalents:

a) O'is a linear metric connection relative to S (F );
b) AwP2X=g(Hs,W)P,X OXOD ¢ OWOS (FP)

Proof. ay=>b) From (3.72)-(3.74) follows:

(5.15) g(AP-X,N)=0

OXOD ¢ OWOS (FY) ONOdeg(F ).
From (5.15) we have that/®,X0S (F ))OXOD ¢ OWOS (FP).
From (5.4) we have also:

)(5-16) 9(AWP2X,P2Y)=g(Hs,W)g(P.X,P,Y)+g(P2Y, D" (P2X,W))=g(Hs W)g(P:X,
P,Y
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therefore:

(5.17) 9(AvP-X-g(Hs,W)P,X,P,Y)=0

0 X,YOD ¢ OWOS (FY). How S (F ) is nondegenerate follows from this:
(5.18) APX=g(Hs, W)P,X OX 0D ¢OWOS (FY)

b)=>a) If (5.18) holds then §P,XOS (F ))OXOD  OWOS (F). From (3.72)-
(3.74) follows (;,,9)(V,V)=0 0OV,V' Otr(F )).

Theorem 5.9Let (F, g, S (F), S (B) a foliation r-degenerate with r<nfim,n}
or coisotropic of (M,g). Then F is degenerate tgtaimbilical if and only if the
following statements hold:

(i) h"(X,&)=h°(X,&)=0 OXOD  DEON;

(i) HOAYS (F ) such that g(&PX,P.Y)=a(W)g(PX,P,Y) OX,YOD ¢
Owas (F9);

(iii) CBOAY(N ) such that AP,X=B(&)P,X OXOD  JE0N .

Proof. If F is totally umbilical then (i) follows from (8) and (5.8). From (5.16)
defining a(W)=g(Hs,W) OWOS (F ) follows (ii). Finally, from (5.14) defining
B(&)=g(H.,&) 0 EON follows (iii).

Reciprocally, let suppose that (i), (i), (ii)eatrue. We define now IS (F
") such that:

(5.19) g(H,W)=a(W) OWOS (F")

and HOdeg(F ) such that

(5.20) g(H,&)=p(&) U &ON

From (3.44) we have g{tP.X,P,Y),W)=g(AwP:X,P,Y)=g(Hs,W)g(P.X,P,Y)
and because S (f is nondegenerate follows thai(B,X,P,Y)=g(P,X,P,Y)Hs. From
() we have now (5.2). From (3.84) follows that 'ffhX,P.Y),&)=
Q(A*szX,PzY):g(HL,E)g(PZX,PZY) therefore h(P,X,P,Y)=g(P.X,P,Y)H, and with
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(i) we have (5.1). From (5.1) and (5.2) followsttRais totally umbilical degenerate
foliation.

Let see now some examples that illustrate the phenon of totally
geodesibility or umbilicality.

5.1.1f we go back to the example 2.1 we have:

o' (x", x%) W— & (¢, (X, x%)sina g

Joeiod -1 cogalpie o)1

B = OO ()

Jord s -1

Exx ==

EEEZO

therefore:

O X :_cl)(Xl'Xz)fb'(xl,xz)sinqE
cos G(¢2(X1,X2)—1)3
_ 0 00X

VO (X, x?) —13

0,¢&

0:£=0
Finally we have:

hH(X,X)=0, H(X,8)=0, HEE=0, FXX)=-—2CXD W K¥x,8)=0,
Vo2 (xhx?) -1
h3(&,£)=0. If we consider now ﬁ—MW follows H(X,X)=g(X,X)Hs
VoI, x*) -1
therefore the foliation is totally umbilical 1-dewzate.
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5.2.We shall present now an example fr{zth Let the 1-degenerate foliation in
R%(-,-,+, +) with a quasi-orthonormal basis given by:

£=0,+0, +~/20,

X =21+ (- x2)2]o, + [+ (¢ - x2)2fo, — V2 - x2)a,
W= 2(x2 - xl)a2 +4/2(x% - x1a, + [1+ (x* —x2)2]64

N = —%61+%62 +Lo,

V2
where N =Sparg),S (F )=Span(X),S (F)=Span(W) and deg(F )=Span(N ).
The fact that it is a foliation follows from:
[€.X] = 2/2(x = x2)3,, + 2(x* ~x?)8, ~/29,, — 2/2(x* ~x2)3, — 2(x* ~X*), ++/29, =0

We have now easy that#0, F(X,&)=h%&,£)=0 and

hS(X, X) :MW

1+(X1 _X2)4

Because g(X,X)=-(1+6x®* we have that ¥X,X)=g(X,X)Hs where
_2A(xt-x»)*-1
He= .

1+ (Xl _ X2)4
foliation in R*,.

W . We have therefore that F is a totally umbilicadelgenerate

5.3. Let consider now the example 2.3. BecauSg€,X)=h(¢,£)=0 we have
h1(X,X)=g(0xX,&)=-2y(sin z+cos z)(sin z+cos z-1). Let therefore:

_ —-2sinz+ cosz)
9y?(sin z-cosz)*(sinz+ cosz-1)
y(3sinzcosz-2)d, + Jsin z-cosz)(sinz+ cosz—l)az]

[y(sin z+ cosz-1)d, +

L

We have HOdeg(F ) and HX,X)=g(X,X)H,. Because 0=X,&)=g(X,&)H,
and 0=h(&,&)=g(&,%)H. follows that the foliation is coisotropic, totallymbilical.

5.4. From the corrolary 4.3 follows that the examplg 8. a totally degenerate
and totally geodesic foliation.
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6. Examples of degenerate foliations
on manifolds provided with relativistic metrics

Let therefore the manifold M with the metric:

2 PR S SE! FVC R 2
6.1) & Vi(ndt v r2[de? + sin? 6d¢?|

where V£0.

Remark We have the following particular cases:

YV2(r) = 1—@ correspondo theexteriorSchwarzschd metric;
r

2
2)VA(r) = 1—@ +e—2 correspondo theReissner Weil metric;
ror

2
3)VA(r) =1- r_2 correspondo thedeSitter metric;
R

4)V?(r) =1correspondo theMinkowski metric;
5)V(r)=Cr, (R’

0 0 0 0

We shall note for the simplicityd, =—,0. =—,0, =—,0, =— .
P yi'tat’ar"ae“’acp

Theorem 6.1Let the Semi-Riemannian manifold M endowed with thetric:

d= V2 (r)de? —VZL()olr2 - 2[de? + sin? 692, V£0
r

If O is the Levi-Civita connection on M then the follow relations hold:

0,0, =VeV',0, Da‘a,:marat:%at Darar:—%ar Daraezmaear:%ae

coso

1
Daraq) = D%ar :?a¢ Daeae = —I’Vzar Daea¢ = D%ae :maq)

0,0, =-rVZsin*6d, —sin6cosBo,
]
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restul componentelor fiind nule.

Proof. Through direct calculus.

6.1. Let the foliation F generated by the vector ﬁEIﬂZ%61+%69 and

X=eVd,. We have[E,X]z[%al +%ae,etva¢]=etva¢=x, [£,E]=[X,X]=0 therefore F is

1 1 1 1
a foliation. Because 5({):g(v01+?69,v01+?69)=0, g€, X)=0, g(X,X)=-

r’e”Vsinf8z0 follows that the foliation is degenerate. We htherefore N =Spafj
and S (F )=Span(X). Considering D ¢ ={a&+pXCa,pO
F (M)} we have: D-"={ad+bd,+aVdeCa,biF (M )}=Span(d+Vde,d;)= Spank,d,).

We obtain therefore S (§=Span(W) where W&. If consider now N=\17 0+Vo, we

have deg(F )=Span(N) and therefore the foliatiob+-tkegenerate with a local quasi-
orthonormal basis given HyX,W,&,N}.

If we compute the principal geometrical objectshage:

h-(8,8)=h"(X,£)=0, H(X,X)=re*"'sinBco®N
h3(&,&)=(VV’ VTZ YW, h3(€,X)=0, F*(X,X)= -rVe®"sinBcoBW

cosb
rsin®

cosf
rsin®

X

0F& =0,0%X =(1+ jX,DFxX =—re®™ sinBcosBE, 0 xE =

coso
rsin@
D*laa = D*th =0
h"(§,X) =0,h"(X, X) = -re’" sinBcoshE
cosf

rsin®

AvE=-te A, x=-IxAg=-YeAx=-Yx
r r r r

O'eX :(1+ jx,D*xx =0

AE=0,AX =————X

D" (€, W) =(%—%)N,DL(X,W) =0,D%(&,N) =VTZW,DS(X, N)=0
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From these and the theorem 4.1 follows that Foistatally geodesic. In
2
order that F be totally umbilical it must thati($H€)=0< VV’ r—VTzo herefore
V(r)=Cr, COR". Reciprocally, if V(r)=Cr, CIR" then K(&,£)=0. If we define:

_ cosf NandH, = CcosB

H, =
" rsin® sin@

wW

we have h(X,Y)=g(X,Y)H. and K(X,Y)=g(X,Y)Hs OX,YOD ¢ therefore the
foliation is totally umbilical.

6.2. Let the foliation F generated by the vector fields

L
Jvmdae, adR. We havdg,X]=aX,[&,E]=[X,X]=0 therefore F

1
is really a foliation. Because §£)=0, g€,X)=0, g(X,X)=- rzezufvmdr #0 follows
that the foliation is degenerate. We have therefidre Spanf) and S (F )=Span(X).
Considering now D ¢ ={a&+ pXOo,BOF (M)} we have: D ¢
"={ ad+aV0,+bd,Ca,lIF (M )}=Spang,d,). We obtain therefore S (=Span(W)

where W3,. Considering N=21vat —%ar we have deg(F )=Span(N) and therefore

1 X a
E:vdt +Vo, Ji X=e

the foliation is 1-degenerate with a local quashonormal basis given by
{X,W,&,N}.

If we compute the principal geometrical objectshage:

h (6,8 = 0,0 (EX) = 0,h (X, X) =1Ve "N
h(€,€) = 0,h%(E, X) = 0,h%(X, X) =0

20 idr
O%& = V'(r)&,0%X =(a +¥]X,DFXX = —%e K &, 0E =¥x

0" X =(0( +¥]x,m*xx =0

O0%E=V'(r)g,0'x€=0

2a idr
h*(E,X):O,h*(x,X):_%e o g
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AE=0,AX =V X
r

ALE=0A,X=0,AE=0,AX=-"X
r

D" (¢§,W)=0,D"(X,W) =0,D°@E,N)=0,D5(X,N) =0

From these and the theorem 4.1 follows that thiatfon F is not totally

geodesic because-(X,X)#0. If we define now I[|=—¥N and H=0 we have

h“(X,Y)=H_g(X,Y) and R(X,Y)=Hsg(X,Y) OX,YOD ¢ therefore the foliation is
totally umbilical.

6.3. Let the foliation F generated by the vector file§(r)o+V(r)a,, Xlz% Oe,
1

Xo=
2 rsin®

0, where fR - R is a smooth map non-null everywhere.

cosf

2
Vi 5 X, therefore

Psi

F is really a foliation. Because  &&)=0(&,X1)=9(&,X2)=0,
0(X1,X1)=-1, g(X,X2)=-1 follows that F is a degenerate foliation.

We have[E,Xl]z—@XL [&,Xo)= g; Xz, [X,Xg=-

We have therefore: N = Spah(@nd S (F )=Span(xX,). Like upper we have:

N= 21 9, - 1 d, therefore deg(F )=Span(N ). The foliation is tliere
V() ' 2f(r)

coisotropic 1-codimensional with a local quasi-ortormal basis given by
{Xl,Xz,E,N}-

If we compute now the degenerate second fundamtemtalof F , we have:

V(D) |

h*(€,€) = 0,h"(§,X,) = 0,h" €, X,) =0,h"(X,, X;) =h"(X,, X,) = ,

2.
Defining now: H:@N follows that F(X,Y)=H.g(X,Y) OX,YOD ¢

therefore the foliation F is coisotropic totallgnbilical.

6.4. Let the foliation F generated by the vector fiékf(r)o-+V*(r)d, where
f.R-R is a smooth map non-null everywhere. Becauseg)g{0 and [&,E]=0
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follows that the foliation F is degenerate. If wieal proceed like in the first
example, we have:

1 1 V2 1
ar+_697W2: R at+ . ar+ R ¢
r rsin® rsin® rsin®

V2
T

1
W, ==, +
r

where g(W,W1)=g(W2,W,)=-1.

Also:
_(V2+1)sin’8+V? +(V2—r2)sin26+V2 1, 1 3
2 (rrPsinov? ! 2ArPsik® " f(Mr2 ° f(r)Psinfe °

where g(N,N)=1.

The foliation is therefore isotropic 1-codimensibnaith a local quasi-
orthonormal basis given B¢, W1, W,,N}.

If we compute the degenerate second fundamental @drF and the screen
second fundamental form we havé=6, '=0 therefore the foliation F is isotropic
degenerate totally geodesic.

6.5.Because dim N =mifi1,3}=1 we have therefore that on manifolds endowed
with relativistic metrics does not exists totallyggnerate foliations.
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