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Introduction  

The theory of Riemannian foliations has been treated during the time under 
various aspects. 

We can cite references like [15], [24], [27], [28] or [34]. Also has been 
treated particular foliations like totally geodesics ([5], [9], [20], minimals ([14]) or 
of other types. All these results have been obtained under the generous foundation of 
the Riemannian geometry. Once with the development of the researches in the field 
of the Semi-Riemannian geometry ([1], [2], [3], [6], [17], [30], [31]) it is natural to 
search how we can extend all these results. It is born a new problem that concerns 
the study of degenerate foliations. 

The main notions and results concerning the linear spaces, semi-riemannian 
manifolds and submanifolds have a direct link with the subject. Because the Gram-
Schmidt orthogonalization is fundamental, we have proceeded at a resumption of his 
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in the intention to do it applicable for our demarches. Many works of Semi-
Riemannian geometry remind us that this procedure it is applicable also in the case 
of Semi-Riemannian metrics ([11], [26]). In [11] it is presented the concrete manner 
of orthonormal vectors construction, but the author ignores the fact that if a Gram 
determinant is nul all this construction stops even if we try to change the basis. In 
the sequel we present some aspects concerning Semi-Riemannian manifolds and 
fibre bundles. Also, we introduce the notions of spacelike, timelike and lightlike 
vectors following in this direction the paper [26]. 

The notion of degenerate foliation builds the transversal distribution of a 
foliation, notion which will substitute that of classical orthogonal distribution. We 
proceed also at a decomposition of these foliations following [2] in four categories: 
r-degenerate foliations, coisotropic, isotropic and totally degenerates. On account of 
specific aspects we shall work permanently with some distributions like the screen 
distribution, transversal screen distribution and degenerate transversal distribution. 
After the description of various geometric objects we shall study its behaviour at the 
change of the screen distribution and the change of the coordinates’ neighbourhood 
of an arbitrary point. 

We generalize the tensors presented in [27] and we clarify some problems 
like the integrability and the totally geodesibility of the null and screen distributions. 
Moreover, we shall build the Gauss-Weingarten formulae together with all 
geometrical objects concerned. After this demarche we shall obtain a number of 
characterisation theorems for the distributions or various introduced geometrical 
objects. 

In this paper it will be defined the total geodesic degenerate foliations and 
totally umbilical degenerate foliations and we shall obtain some characterisation 
theorems. The discussion is made on the r-degenerate foliations, the results were 
modulated for the other types.  

The final chapter gives some examples of degenerate foliations on a class of 
4-manifolds endowed with a relativistic metric, which generalises the exterior 
Schwarzschild, Reissner-Weil, de Sitter and Minkowski metrics. There are presented 
four concrete examples and the last proves that on this type of manifolds does not 
exist totally degenerate foliations. 

1. Preliminaries 

Let V a linear space and g:V×V→R a symmetric bilinear form. The form g 
is called non-degenerate if g(x,y)=0 ∀y∈V⇒x=0 and degenerate if ∃x≠0 such that 
∀y∈V⇒g(x,y)=0. g is called positive definite (negative definite) if g(x,x)≥0 
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(g(x,x)≤0) ∀x∈V and g(x,x)=0⇒x=0 and semi-definite if ∃x,y∈V such that 
g(x,x)>0 and g(y,y)<0. 

We note (V,g) a linear space V provided with a bilinear, symmetric, non-
degenerate form g. We note also W<V the fact that W is a subspace of V. The set 
W⊥={y∈Vg(y,x)=0 ∀x∈W} is called the orthogonal subspace of W. In general W⊥ 
is not a complementary subspace of W.  

Theorem 1.1 [[[[26]]]] Let W<(V,g). Then: 

(1.1) dim W+dim W⊥=dim V 
(1.2)       (W⊥)⊥=W 

If g is non-degenerate on V it is not obligatory that she is non-degenerate on 
any subspace of V. 

 A subspace W<(V,g) is called non-degenerate (degenerate) 
subspace if the restriction gW is non-degenerate (degenerate). 

Theorem 1.2 [[[[26]]]] A subspace W of (V,g) is non-degenerate if and only if 
V=W⊕W⊥. 

W is non-degenerate if and only if W∩W⊥={0}. By (1.2) and the theorem 
1.2 follows that W is non-degenerate if and only if W⊥ is non-degenerate. 

A basis B={e1,...,en} of a linear space (V,g) is called orthonormal basis if 
g(ei,ej)=±δij, i,j=1,...,n where δij is the Kronecker symbol. 

 

The Gram-Schmidt orthogonalization process. 

 Let (V,g) a linear space provided with a bilinear, symmetric, non-degenerate 
form g. Let also B={v1,...,vn} an arbitrary basis of V, composed by non-null vectors 
(g(vi,vi)≠0, i=1,...,n). We shall determine by depart of B an orthonormal basis of V. 

 Let therefore w1=
)v,v(g

v

11

1 . We have g(w1,w1)=
)v,v(g

)v,v(g

11

11 =ε1=±1. Let 

suppose that we have determined the vectors w1,...,wp-1 such that g(wi,wj)=0, 
i,j=1,...,p-1, i≠j and g(wi,wi)=εi∈{-1,1}, i=1,...,p-1. Let: 
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(1.3)   









ε−

ε−

ε
εε= ∑

∑

−

=
−

=

−

1p

1j
jpjjp1p

1i
pi

2
ipp

p
1p1p w)v,w(gv

)v,w(g)v,v(g
...w  

if g(vp,vp)≠∑
−

=
ε

1p

1i
pi

2
i )v,w(g  and εp∈{-1,1} such that the square root be definite. 

We have g(wp,wp)=εp and g(wp,wi)=0, i=1,...,p-1. Let now ⊥
−1pW =Span(w1,...,wp-1)

⊥ 

where Span(...) is the subspace generate by the respective vectors. The subspace Wp-

1=Span(w1,...,wp-1) is non-degenerate. Indeed, let suppose that there is x∈Wp-1, x≠0 

such that g(x,y)=0 ∀y∈Wp-1. Let x=∑
−

=
α

1p

1i
ii w ≠0. We have g(x,wk)= 

g(∑
−

=
α

1p

1i
ii w ,wk)=αkεk therefore αkεk=0 that is αk=0, k=1,...,p-1. Accordingly x=0 

therefore contradiction. By the theorem 1.2 we have that V=Wp-1⊕ ⊥
−1pW . Let now 

vp= p

1p

1i
ii zwc +∑

−

=
 where zp∈ ⊥

−1pW  (the decomposition being unique by the direct sum). 

We have: 

g(vp,vp)-∑
−

=
ε

1p

1i
ip

2
i )w,v(g =g(zp,zp) 

 If g(zp,zp)≠0 then (1.3) is applicable. If g(zp,zp)=0 we do a parmutation of the 
vectors {vp,...,vn}. If ∃k∈{p,...,n} such that g(zk,zk)≠0 after a possible renumbering 
we can apply (1.3). If ∀k∈{p,...,n}⇒g(zk,zk)=0 where zk= kW

vpr
1p

⊥
−

, k=p,...,n (the 

projection of vk on ⊥
−1pW ) then ∃k,r=p,...,n with k≠r such that g(zk,zr)≠0. Indeed, if 

∀k,r=p,...,n⇒g(zk,zr)=0 then how {zp,...,zn} constitutes a basis of ⊥
−1pW  follows that 

⊥
−1pW  is degenerate therefore contradiction. Let therefore, after a possible 

renumbering, zp and zp+1 such that g(zp,zp+1)≠0. Let now: 

pv =avp+bvp+1 with a,b≠0 

 We have g( pv , pv )-∑
−

=
ε

1p

1i
pp

2
i )w,v(g =2abg(zp,zp+1)≠0 therefore we can apply 

(1.3) for vp→ pv . 
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 Finally, for p=n follows trivial g(zn,zn)≠0 because in the opposite case 
⊥
−1nW =Span(zn) is degenerate therefore contradiction. 

If we consider now the orthonormal basis B={e1,...,en} of (V,g) and we note 
εi=g(ei,ei), i=1,...,n follows: 

(1.4)        x=
n

1i=
∑ εig(x,ei)ei ∀x∈V 

Let (V,g) a linear spece. We call the index of g: ν=ind g=max{dim 
WW<V, gW is negative definite}. We shall write sometimes ν=ind V. 

Lemma 1.1 [[[[26]]]] Let (V,g) a linear space and W a non-degenerate subspace 
of V. Then 

(1.5)        ind V=ind W+ind W⊥ 

Remark In general the inequality holds: ind V≥ind W+ind W⊥ ∀W<V. 

Lemma 1.2 [[[[26]]]] Let (V,g) a linear space. Then there is a subspace W<V of 
maximal dimension=min {ind g, dim V-ind g} such that gW=0. 

In what follows we suppose that all the differentiable manifolds have the 
metrics with constant index on them and all the geometrical objects are of infinite 
class. 

Let a Semi-Riemannian manifold (M,g). A tangent vector X∈TpM, p∈M is 
called spacelike vector if g(X,X)>0 or X=0, lightlike vector if g(X,X)=0 and X≠0 
and timelike vector if g(X,X)<0. The collection of lightlike vectors of TpM is called 
the null cone in p∈M. 

2. Degenerate foliations of the Semi-Riemannian manifolds 

Let (M,g) a Semi-Riemannian manifold, (m+n)-dimensional, m,n≥1, g being 
the semi-riemannian metric on M. 

Let q the index of the metric g which we shall suppose constant on M. If 
q=0 or q=m+n then the metric is riemannian. How in this case the induced metric on 
any leaf of the foliation is also riemannian follows that if we want to talk about 
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degeneration we shall suppose that 1≤q≤m+n-1. Therefore M is not a Riemannian 
manifold. 

Definition 2.1 A degenerate foliation of codimension m of M is a 
decomposition of M into a disjoint union of conected, degenerate submanifolds of 
codimension m of M, called leafs of the foliation such that for any p∈M there is a 
neighbourhood U of p in M and a submersion fU:U→Rm with the property: ∀ x∈Rm, 
fU

-1(x) is a leaf of the restriction of foliation at U, F U. 

 We shall consider in what follows like coordinates neighbourhoods of any 
point p∈M the collections U by the upper definition. 

Considering now a degenerate foliation of codimension m of M, let: 

T (F )= U

p containswhich 
 of leaf  theL   

Mp         
pLT

F
∈

 

We shall show now that T(F ) is a fibre bundle of rank n on M. 

Let p∈M and U a neighbourhood of p in M such there is a submersion 
fU:U→Rm with the property that ∀ x∈Rm, fU

-1(x) is a leaf of the restriction of the 
foliation on U, F U. 

Considering now the leaf L passing through p∈M we define: 

π:T(F )→Rm, π(TpL)=fU(p) ∀p∈M 

The map π is correct defined because by any leaf L of F corresponds an 
unique x∈Rm such that L=fU

-1(x). Indeed, if we suppose that ∃x≠y∈Rm such that 
L=fU

-1(x)=fU
-1(y) then x=fU(fU

-1(x))=fU(L)=fU(fU
-1(y))=y from where follows 

contradiction. On the other hand fU(p)∈fU(L)=fU(fU
-1(x))={x} otherwise: fU(p)=x. 

We have also that the map π does not depend on the coordinates neighbourhood U. 
Indeed, if we shall consider U and V neighbourhoods of p∈M satifying the 
definition conditions and the submersions fU:U→Rm, fV:V→Rm then ∀x∈Rm 
follows that fU

-1(x) is a leaf of the restriction of the foliation on U and fV
-1(x) is a leaf 

of the restriction of the foliation on V. How through p∈M pass a unique leaf follows 
that fU

-1(x)∩fV
-1(x) is a restriction of the foliation on U∩V. But p∈U∩V⊂U,V 

follows fU(p)=fV(p)=x. 
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 We have now that for any x∈Rm: π-1(x)=TpL, p∈M such that fU(p)=x is a 
real linear space of dimension n. 

Let p∈M and L the leaf passing through p. Let consider also a 
neighbourhood U of p and the submersion fU:U→Rm with the property that L=fU

-1(x) 
for a fixed point x∈Rm. Let also a basis {e1(p),...,en(p)} of TpL. 

 We define the diffeomorphism: 

φ:π-1(fU(U))→fU(U)×Rn, φ(v)=(fU(q),v1,...,vn) ∀q∈U 
∀v=v1e1(q)+...+vnen(q)∈TqL 

If we note with pr1 the projection on the first component we have 
pr1(φ(v))=fU(q)=π(v) ∀v∈TqL ∀q∈U and the map φq:TqL→fU(q)×Rn, φ(v)=(v1,...,vn) 
∀q∈U ∀v=v1e1(q)+...+ vnen(q)∈ TqL is simply an R-isomorphism. 

We have therefore proved that (T(F ),π,Rn) is a fibre bundle of rank n. 

Definition 2.2 Considering the vector bundle which we have build we shall 
say that T(F ) is the fibre bundle tangent to the foliation F on M. 

From the definition of F, follows that T(F ) is an integrable distribution. 

Let now L a leaf of F passing through p∈M. Considering 

Tp(L)⊥={Xp∈TpMg(Xp,Yp)=0, ∀Yp∈TpL} 

we have that Tp(L)⊥ is also degenerate. Let T(F )⊥=U
F∈

⊥

L
p )L(T . Like in the preceding 

construction we can show that T(F )⊥ is a fibre bundle on Rm called the normal fibre 
bundle of the foliation F . 

Considering now the fibre bundle T(F ) of a degenerate foliation F and join 
to any point p∈M the tangent space Tp(L) at the leaf L passing through p we shall 
obtain an n-dimensional integrable distribution on M noted in what follows with D F 
and called the distribution asociated to the degenerate foliation. Because the 
distribution D F is integrable follows that she is involutive that is ∀X,Y∈D F 
⇒[X,Y]∈D F . Considering now D F let D F 

⊥ the orthogonal distribution of D F in 
TM. Is obvious that D F 

⊥ is obtained also by the association at any point p∈M of the 
orthogonal space Tp(L)⊥ of Tp(L) relative of the leaf L passing through p. 
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Let now p∈M and U a coordinates neighbourhood of p in M. Considering a 
coordinates system in p∈M: (x1,...,xn+m) follows by the definition that there is a 
submersion fU:U→Rm with the property that for any x=(a1,...,am)∈Rm, the leaf of the 
restriction of the foliation at U is given by the equations: 

xn+1=a1,...,xn+m=am 

If we consider another coordinates system (y1,...,yn+m) in U follows: 

k
k

i
i x

x

y
y

∂
∂= , i=1,...,n+m 

 How yn+i=constant, i=1,...,m follows 0
x

y
k

in

=
∂

∂ +

, i=1,...,m, k=1,...,n. 

The structural group consists by the matrices of the form: 










C0

BA
 

where A∈M n(R) and C∈M m(R) are non-singular and B∈M nm(R). 

Let now T(M)U the restriction on U of the tangent bundle of the manifold 
M and {X1,...,Xn,Yn+1,...,Yn+m} a basis for the local sections of T(M)U. If V is 
another neighbourhood of p in M such that U∩V≠∅ and {X’ 1,...,X’n,Y’ n+1,...,Y’n+m} 
is a basis for the local sections of T(M)V then according to the structural group we 
have: 

(2.1)      ∑ ∑
=

+

+=β
β

β+=
n

1k

mn

1n
ik

k
i

'
i YBXAX  

(2.2)      ∑
+

+=β
β

β
αα =

m

1n

' YCY  

∀ i=1,...,n ∀α=n+1,...,n+m, Ai
k, Bi

β, Cα
β being arbitrary maps, indefinite 

differentiable on U∩V satisfying in addition the condition that the matrices A=(Ai
k) 

and C=(Cα
β) being non-singular. 
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From now on, if we shall introduce new geometrical objects we shall verify 
the invariability of them at the transforming (2.1) and (2.2). 

 From the degeneration of the foliation F follows that the intersection of the 
distributions D F  and D F 

⊥ is non-null therefore TpL and TpL
⊥ are orthogonal non-

complementary degenerate subspaces in TpM ∀p∈M, L being the leaf passing 
through p∈M. 

 We define now: N =D F ∩D F 
⊥ named accordingly with [2] the null 

distribution of M appropriate the foliation F . 

Let r=dim N . By the lemma 1.2 follows that r≤min{q,m+n-q} and how N 
⊂D F , N ⊂D F 

⊥ follows that r≤min{q,n,m,m+n-q}. We can consider always (taking 

possible -g like metric on M) that we have: q≤ 






 +
2

nm
 (where [a] is the bigest 

integer less then a). Because q≤m+n-q follows that 1≤r≤min{q,n,m}≤min{n,m} 
from where: 

1≤r≤min{n,m} 

Definition 2.3 The foliation F of M is called r-degenerate foliation (or 
degenerate foliation if the rank r is undercurrent from context) if the null distribution 
is of dimension r. 

If we consider the bracket [X,Y] ∀X,Y∈N follows that the null distribution 
is not necessary integrable. 

From this reason we shall distinguish in what follows two important cases: 
N is an integrable distribution or N is not integrable. 

Let suppose now that N is an integrable distribution. If we consider in M an 
open neighbourhood U and an adapted basis for the null distribution: 
{ξ1,...,ξr,Xr+1,...,Xn} where ξi are vector fields defined on U hwo generates N and Xj 
vector fileds defined on U which complete the basis for D F follows that N p ∀p∈U 
is the tangent space for a submanifold of the leaf L passing through p∈U. 

The problem is now what is happend at the intersection of two coordinates 
neighbourhoods of an arbitrary point p∈M. If U and V are two such neighbourhoods 
such that U∩V≠∅ let consider {ξ1,...,ξr,Xr+1,...,Xm} a basis for D F U and 
{ξ‘ 1,...,ξ‘ r,X’ r+1,...,X’m} a basis for D F V. 
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That {ξ‘ 1,...,ξ‘ r} be a basis for N V it must that ∑
=

ξα=ξ
r

1j
j

j
i

'
i . In that case 

[ ] [ ]{ }∑
=

ξαξα−ξαξα+ξξαα=ξξ
r

1p,k
k

k
ip

p
jp

p
jk

k
ipk

k
j

k
i

'
j

'
i )()(,,  and with the integrability of N U 

follows that N V is also integrable. Therefore the integrability of N in a point p∈M 
does not depend of its coordinates neighbourhood. 

We see upper that for a leaf L passing through p∈M the subspaces TpL and 
Tp(L)⊥ are not complementary. In order that we can introduce similar notions to the 
geometry of the nondegenerate foliations it is necessary the construction of a 
distribution complementary to those of the foliation, called the transversal 
distribution, hwo is different from that orthogonal. 

 In order that we can build now the transversal fibre bundle of a degenerate 
foliation it is necessary to distinguish between four cases: I.1≤r<min{m,n}; 
II. 1≤r=m<n; III. 1≤r=n<m; IV.1≤r=m=n. 

Case I. 1≤≤≤≤r<min {{{{m,n}}}} In that case the foliation is called r-degenerate 
foliation the danger of confusion being discarded because we shall specify always if 
it is the general case or those particular. 

Let consider now S (F ) the complementary distribution orthogonal to N  in 
D F . We call it, in agreement with [2] S (F )-the screen distribution of the foliation F 
. We have therefore the direct orthogonal sum: 

(2.3)      D F =N ⊥S (F ) 

 The screen distribution S (F ) is nondegenerate relative to g. Indeed, if 
∃Z∈S (F ) such that g(Z,Y)=0 ∀Y∈S (F ) then like Z∈D F we have also g(Z,ξ)=0 
∀ξ∈N . It follows therefore that g(Z,X)=0 ∀X∈D F hwo imply the fact that Z∈N . 
But this fact comes into contradiction with N ∩S (F )={0}. 

We shall suppose in what follows that ind(g) is constant on S (F ). 

Remark The screen distribution S (F ) is not unique determined by N  in D F 
therefore from this reason every time we shall obtain a result we shall examine the 
relationship of this from S (F ). 
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Let now the complementary distribution of N in the orthogonal distribution 
D F 

⊥ marked with S (F ⊥) and called the transversal screen distribution of the 
foliation F . 

Like in the case of the screen distribution this is nondegenerate relative to g. 
We have therefore the orthogonal decomposition: 

(2.4)      D F 
⊥=N ⊥S (F ⊥) 

 Because S (F ) is nondegenerate in TM we consider the decomposition: 

(2.5)      TM =S (F )⊥S (F )⊥ 

where S (F )⊥ is the complementary distribution, orthogonal to S (F ) in TM. We 
have therefore, finally the following decomposition: 

(2.6)               S (F )⊥ =S (F ⊥)⊥S (F ⊥)⊥ 

where S (F ⊥)⊥ is the complementary distribution, orthogonal to S (F ⊥) in S (F)⊥. 

Considering now ξ∈N follows from (2.3) ξ ⊥ S (F ) therefore from (2.5) we 
have: ξ∈S (F )⊥. From (2.4) follows ξ ⊥ S (F ⊥). Finally, from the decomposition 
(2.6) follows that ξ∈S (F ⊥)⊥. We have therefore N ⊂S (F ⊥)⊥. 

 We shall note from now on, a r-degenerate foliation with:  

(F, g, S (F ), S (F⊥)). 

Remark From the fact that dim N =r we have: 

dim S (F )=n-r, dim S (F )⊥=m+r, dim S (F ⊥)=m-r, dim S (F ⊥)⊥=2r 

Lemma 2.1 Let (F, g, S (F ), S (F ⊥)) a r-degenerate foliation of a Semi-
Riemannian manifold (M,g). If U is an open set of M and {ξ1,...,ξr} is a basis of N 
U then there are vector fields {N1,...,Nr} from S (F ⊥)⊥U) such that: 

(2.7)                         g(Ni,ξj)=δij 

(2.8)                         g(Ni,Nj)=0 

∀ i,j=1,...,r. 
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Proof. Let consider the distribution H complementary to N in S (F ⊥)⊥ and a 
basis {V1,...,Vr} of H U. Relative to the decomposition S (F ⊥)⊥=N ⊥H the vector 
fileds Ni have the expressions: 

(2.9)               ( )∑
=

β+ξα=
r

1k
k

k
ik

k
ii VN , i=1,...,r 

where αi
k and βi

k are smooth mapings on U. We shall define the matrices of r-
order: A=(αi

j), B=(βi
j), C=(g(Vi,ξj)), D=(g(Vi,Vj)). In order that Ni satisfy the 

relations (2.7), (2.8) it must that: 

∑∑∑∑∑∑
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∑

∑∑∑∑

= == == =

= == == =
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+ξξαα=β+ξαβ+ξα==

ξβ
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1s
sk
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i

r

1k
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i

r
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r
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r

1k

r

1s
sk

s
j

k
i

r
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1s
sk

s
j

k
i

r

1k

r

1s
sk

s
j

k
i

r

1s
s

s
j

r

1s
s

s
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r

1k
k

k
i

r

1k
k

k
iji

r

1k
jk

k
i

r

1k
jk

k
i

r

1k
jk

k
ij

r

1k
k

k
i

r

1k
k

k
ijiij

)V,V(g),V(g)V,(g

)V,V(g),V(g)V,(g

),(g)V,V(g)N,N(g0

),V(g

),V(g),(g),V(g),N(g

 

 With the matrices upper introduced, these relations become: 

(2.10)                      BC=I 

(2.11)                ACtBt+BCAt+BDBt=0 

where I is the identity of M r(R) and t describes the transpose of a matrix. 
Because S (F ⊥)⊥ is nondegenerate follows that C is invertible therefore from (2.10): 

(2.12)                      B=C-1 

 From (2.11), (2.12) follows: 

(2.13)                  A+At= -C-1D(C-1)t 

therefore: 
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(2.14)               S)C(DC
2

1
A t11 +−= −−  

for any skew-symmetrical matrix S of r-order. From (2.9) we have: 

(2.15)        VCS)C(DC
2

1
N 1t11 −−− +ξ







 +−=  

where we note N=(N1,...,Nr)
t, ξ=(ξ1,...,ξr)

t, V=(V1,...,Vr)
t. 

From (2.7) and (2.8) follows easy that {ξ1,...,ξr,N1,...,Nr} is a basis of S (F ⊥)⊥U. 

Remark From (2.15) follows that the vector fields Ni, i=1,...,r are not unique 
determined, they depending by the arbitrary choice of the matrix S. 

Theorem 2.1 Let (F, g, S (F ), S (F ⊥)) a r-degenerate foliation of a Semi-
Riemannian manifold (M,g). There is a complementary distribution of N  in S (F ⊥)⊥ 
marked with deg(F ) and called the degenerate transversal distribution of the 
foliation F relative to S (F ) and S (F ⊥) such that the vector fields {N1,...,Nr} defined 
in lemma 2.1 is a basis for deg(F )). 

Proof. From lemma 2.1 let {N1,...,Nr} be definite through (2.15). Considering 
another open set U’ of M such that U∩U’≠∅ let {ξ‘ 1,...,ξ‘ r} and {V’ 1,...,V’r} basis 
of N U’ respectively H U’. If we note like in lemma 2.1: N’=(N1’,...,Nr’)

t, 
ξ‘=(ξ1’,...,ξr’)

t, V’=(V 1’,...,Vr’)
t we have ξ‘=Eξ and V’=FV where E and V are 

nonsingular matrices. With the notations C’=(g(Vi’,ξj’)), D’=(g(V i’,V j’)) we have on 
U∩U’: 

(2.16)                     C’=FCEt 

(2.17)                     D’=FDFt 

From (2.15) we have on U’: 

(2.18)         'V'C''S)'C('D'C
2

1
'N 1t11 −−− +ξ







 +−=  

with S’ skew-symmetrical matrix. Using (2.16) and (2.17) in (2.18) we have: 
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(2.19)        ( ) 







+ξ







 +−= −−−− VCE'SECDC
2
1

E'N 1tt111  

If we choose S’=(E-1)tSE-1 which is also skew-symmetric, we have 

(2.20)                      N’=E-1N 

From (2.20) follows that there is the distribution deg(F ) generated by {N1,...,Nr} 
from lemma 2.1. 

Let now show that deg(F ) is complementary to N in S (F ⊥)⊥. If we suppose the 
reverse, let 0≠X∈N ∩deg(F ). Considering a basis like upper we have: 

∑∑
==

ξ==
r

1j
j

j
r

1i
i

i bNaX . Using (2.7) and (2.8) we have that: 

j
r

1j
ij

j
ii

r

1j
j

j a),Na(g),X(g),b(g0 =ξ=ξ=ξξ= ∑∑
==

 

therefore X=0-contradiction with our suppose. How dim deg(F )=r and 
ind{N1,...,Nr} follows that the set of vector fields {N1,...,Nr} is a basis of (deg(F )). 

Remark From the theorem 2.1 we conclude that dim (deg(F ))=r. 

 If we return now to the beginning problem, that is the replacement of the 
classical orthogonal distribution with a complementary distribution to D F  in TM, let 
therefore the ortogonal direct sum: 

(2.21)    tr(F )=deg(F )⊥S (F ⊥) 

where deg(F ) is an arbitrary degenerate transversal distribution of F . From 
(2.21) follows that tr(F ) is a distribution on M named the transversal distribution of 
the foliation F . 

The dimension of this distribution is therefore: 

dim tr(F )=dim deg(F )+dim S (F ⊥)=r+n-r=n 
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 Finally, we have the decomposition: 

(2.22)    TM=D F ⊕ tr(F )=S (F )⊥S (F ⊥)⊥(N ⊕ deg(F )) 

 From the upper considerations we have on TM a local quasi-orthonormal 
basis along to F in an open neighbourhood U: {Xr+1,...,Xn, 
Wr+1,...,Wm,ξ1,...,ξr,N1,...,Nr} where Xα∈S (F )U, α=r+1,...,n, Wa∈S (F ⊥)U, 
a=r+1,...,m, ξi∈N U, i=1,...,r, Ni∈deg(F )U, i=1,...,r. 

 From now on we shall make the understanding about the indexes: 
α,β,...=r+1,...,n; a,b,...=r+1,...,m; i,j,...= 1,...,r. 

 On (N ⊕ deg(F ))U we have an orthonormal basis: 

r,...,1i

ii
i

ii
i

2

N
v,

2

N
u

=





 +ξ=−ξ= and how g(ui,ui)=-1, g(vi,vi)=1, i=1,...,n follows 

that the index of (N ⊕ deg(F ))U=r. Because N ⊕ deg(F ) is nondegenerate, by the 
lemma 1.1 and (2.22) we have: 

(2.23)             q=ind(S (F ))+ind(S (F ⊥))+r 

Theorem 2.2 Let (F, g, S (F ), S (F ⊥)) a r-degenerate foliation of a Semi-
Riemannian manifold (M,g). If the index of the manifold M and those of the null 
distribution N are equals nule, then S (F ) and S (F ⊥) are Riemannian distributions. 

Proof. We consider in (2.23) q=r from where ind(S (F ))+ind(S (F ⊥))=0 
therefore ind(S (F ))=ind(S (F ⊥))=0. 

Corollary 2.1 Let (F, g, S (F ), S (F ⊥)) a r-degenerate foliation of a Lorentz 
manifold (M,g). Then S (F ) and S (F ⊥) are Riemannian distributions. 

Proof. On a Lorentz manifold we have q=1 and how 1≤r≤q follows r=1. The 
assertion reduce to the check of the theorem 2.2. 

Case II. 1≤≤≤≤r=m<n In this case the foliation is called coisotropic foliation. How 
N ⊂D F 

⊥ and dim N =r=m=dim D F 
⊥ follows that N =D F 

⊥ therefore S (F ⊥)={0}. 
Considering now the screen distribution S (F ) we have: D F =S (F )⊥D F 

⊥. 

We note from now on a coisotropic foliation with (F, g, S (F )). 
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Remark From the fact that dim N =r=m we have: 

dim S (F )=n-m, dim S (F )⊥=dim S (F ⊥)⊥=2m 

Similar to the proofs of lemma 2.1 and of theorem 2.1 follows: 

Lemma 2.2 Let (F, g, S (F )) a coisotropic foliation of a Semi-Riemannian 
manifold (M,g). If U is an open set from M and {ξ1,...,ξm} a basis of D F 

⊥U then 
there is a system of vector fields {N1,...,Nm} of S (F )⊥U such that 

(2.24)     g(Ni,ξj)=δij 

(2.25)     g(Ni,Nj)=0 

∀ i,j=1,...,m. 

Theorem 2.3 Let (F, g, S (F )) a coisotropic foliation of a Semi-Riemannian 
manifold (M,g). Then there is a complementary distribution of D F 

⊥ in S (F ⊥)⊥ noted 
with deg(F ) and called the degenerate transversal distribution of the foliation F 
relative to S (F ) such that the system of vector fields {N1,...,Nm} introduced in 
lemma 2.2 is a basis of deg(F ). 

 The transversal distribution of F  becomes: 

(2.26)        tr(F )=deg(F ) 

and the decomposition of TM is: 

(2.27)       TM=S (F )⊥D F 
⊥ ⊕ deg(F )) 

The local quasi-orthonormal basis along F in an open neighbourhood U is: 
{Xm+1,...,Xn,ξ1,...,ξm,N1,...,Nm} where Xα∈S (F )U, α=m+1,...,n, ξi∈D F 

⊥U, 
i=1,...,m and Ni∈deg(F )U, i=1,...,m. 

Relative to the index follows with the same remark like those preceding the 
theorem 2.2: 

(2.28)         q=m+ind(S (F )) 
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 From (2.28) follows: 

Theorem 2.4 Any screen distribution of a coisotropic foliation in a Semi-
Riemannian manifold has constant index q-m. 

Corollary 2.2 In a coisotropic foliation of a Semi-Riemannian manifold with the 
index equal of those of the orthogonal distribution, the screen distribution becomes 
Riemannian. 

Case III. 1≤≤≤≤r=n<m  In this case the foliation is called isotropic foliation. How N 
⊂D F 

⊥ and dim N =r=n=dim D F follows that N =D F therefore S (F )={0}. 
Considering the transversal screen distribution S (F ⊥) we have: 

D F 
⊥=D F ⊥S (F ⊥). 

We shall note from now on an isotropic foliation with (F, g, S (F ⊥)). 

Remark From the fact that dim N =r=n we have: 

dim S (F )⊥=m+n, dim S (F ⊥)=m-n, dim S (F ⊥)⊥=2n 

Remark In the case of an isotropic foliation N =D F therefore N is an integrable 
distribution. 

Similar to the proofs of lemma 2.1 and of theorem 2.1 follows: 

Lemma 2.3 Let (F, g, S (F ⊥)) an isotropic foliation of a Semi-Riemannian 
manifold (M,g). If U is an open set of M and {ξ1,...,ξn} is a basis of D F U then there 
is a system of vector fields {N1,...,Nn} of S (F ⊥)⊥U such that 

(2.29)          g(Ni,ξj)=δij 

(2.30)          g(Ni,Nj)=0 

∀ i,j=1,...,n. 

Theorem 2.5 Let (F, g, S (F ⊥)) an isotropic foliation of a Semi-Riemannian 
manifold (M,g). Then there is a complementary distribution to D F in S (F ⊥)⊥ noted 
with deg(F ) and called the degenerate transversal distribution of the foliation F 
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relative to S (F  ⊥) such that the system of vector fields {N1,...,Nn} defined in lemma 
2.3 is a basis of deg(F )). 

The transversal distribution of F is now: 

(2.31)         tr(F )=deg(F )⊥S (F ⊥) 

and the decomposition of TM becomes: 

(2.32)      TM=D F ⊕ deg(F ))⊥S (F ⊥) 

 The local quasi-orthonormal basis along F in an open neighbourhood U is: 
{ξ1,...,ξn,N1,...,Nn,Wn+1,...,Wm} where Wa∈S (F ⊥)U, a=n+1,...,m, ξi∈D F U, 
i=1,...,n and Ni∈deg(F )U, i=1,...,n. 

 With the same remark like those preceding the theorem 2.2 we have: 

(2.33)     q=n+ind(S (F ⊥)) 

 From (2.33) follows: 

Theorem 2.6 Any transversal screen distribution of an isotropic foliation in a 
Semi-Riemannian manifold has constant index q-n. 

Corollary 2.3 In an isotropic foliation of a Semi-Riemannian manifold with 
index equal with those of the foliation’s distribution, the transversal screen 
distribution becomes Riemannian. 

Case IV. 1≤≤≤≤r=m=n In this case, the foliation is called totally degenerate 
foliation. How N ⊂D F and N ⊂D F 

⊥ and dim N =r=m=n=dim D F = 
dim D F 

⊥ follows that N =D F =D F 
⊥ therefore S (F )=S (F ⊥)={0}. 

We note from now on a totally degenerate foliation with (F, g). 

Remark From the fact that dim N =r=n=m we have: 

dim S (F )⊥=2m, dim S (F ⊥)⊥=2m 

Remark In the case of a totally degenerate foliation N =D F therefore N is an 
integrable distribution. 
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We have now analogously with lemma 2.1 and theorem 2.1: 

Lemma 2.4 Let (F, g) a totally degenerate foliation of a Semi-Riemannian 
manifold (M,g). If U is an open set of M and {ξ1,...,ξm} is a basis of D F U then 
there is a system of vector fields {N1,...,Nm} of TMU such that 

(2.34)       g(Ni,ξj)=δij 

(2.35)       g(Ni,Nj)=0 

∀ i,j=1,...,m. 

Theorem 2.7 Let (F, g) a totally degenerate foliation of a Semi-Riemannian 
manifold (M,g). Then there is a complementary distribution of D F in TM noted with 
deg(F ) and called the degenerate transversal distribution of the foliation F  such that 
the system of vector fields {N1,...,Nm} defined in lemma 2.4 is a basis of deg(F ). 

 The transversal distribution of F is now: 

(2.36)      tr(F )=deg(F ) 

and the decomposition of TM becomes: 

(2.37)            TM=D F ⊕deg(F ) 

 The local quasi-orthonormal basis along F in an open neighbourhood U of 
M is: {ξ1,...,ξm,N1,...,Nm} where ξi∈D F U), i=1,...,m and Ni∈deg(F )U), i=1,...,m. 

 With the same remark like those preceding the theorem 2.2 we have: 

(2.38)      q=m 

 From (2.38) we have: 

Theorem 2.8 A degenerate foliation of a Semi-Riemannian manifold can be 
totally degenerate only if the codimension of the foliation is equal with the index of 
the manifold. 
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Finally in this section we shall investigate two problems: 

• Which are the conversion formulae of a local quasi-orthonormal basis 
along F in a coordinate neighbourhood U when we change the screen 
distribution? 

• Which are the conversion formulae of a local quasi-orthonormal basis 
along F at the change of the coordinate neighbourhood? 

Before the beginning we make the following: 

Remark Let X=(X1,...,Xn)
t and Y=(Y1,...,Ym)t, n,m≥1 two systems of vector 

fields where Xi, Yj∈TM, i=1,...,n, j=1,...,m. Let consider also X’=(X1’,...,Xn’)
t and 

Y’=(Y 1’,...,Ym’) t another two systems of vector fields with Xi’, Y j’∈TM, i=1,...,n, 
j=1,...,m. Let A=(aij)∈M n(R) and B=(bij)∈M m(R) the passing matrices from X at X’ 
respectively from Y at Y’. We have therefore X’=AX and Y’=BY. Let consider now 
the matrices G(X,Y)=(g(Xi,Yj))∈M nm(R) and G(X’,Y’)=(g(Xi’,Y j’))∈M nm(R). We 
have: 

∑∑∑∑
= ===

==
n

1k

m

1p
jppkik

m

1p
pjp

n

1k
kikji b)Y,X(ga)Yb,Xa(g)'Y,'X(g , i=1,...,n,j=1,...,m 

from where we obtain the relation: 

(2.39) G(X’,Y’)=AG(X,Y)B t 

where G(X,Y) is the Gram determinat of X and Y. 

 For the first question, let consider for the beginning the case of r-degenerate 
foliations with 1≤r<min{m,n}. Let U a coordinates neighbourhood of M and 
{ξ1,...,ξr,Xr+1,...,Xn,Wr+1,...,Wm,N1,...,Nr} a local quasi-orthonormal basis along F in 
U and {ξ1,...,ξr,X’ r+1,...,X’n,W’ r+1,...,W’m, N’1,...,N’r} a local quasi-orthonormal basis 
along F in U relative to the decompositions TM=S (F )⊥S (F ⊥)⊥(N ⊕ deg(F )) 
respectively 
TM=S ‘ (F )⊥S ‘(F ⊥)⊥(N ⊕ deg’(F )). 
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Let therefore: 

(2.40)    



















 ξ





















=



















 ξ

N

W

X

CCCC

BBBB

00AA

000I

'N

'W

'X

4321

4321

21  

where we note with ξ,X,W,N,X’,W’,N’ the matrices who have like components 
the vector fields with the same name and Ai,Bj,Cj, i=1,2, j=1,2,3,4 are matrices of 
corresponding dimensions, A2 and B3 being nonsingular. 

The conditions for the first basis are: 

(2.41)          G(ξ,ξ)=0, G(ξ,X)=0, G(ξ,W)=0, G(ξ,N)=I 

G(X,X)=GX, G(X,W)=0, G(X,N)=0 

G(W,W)=GW, G(W,N)=0 

G(N,N)=0 

and for the second: 

(2.42)         G(ξ,ξ)=0, G(ξ,X’)=0, G(ξ,W’)=0, G(ξ,N’)=I 

G(X’,X’)=G’ X, G(X’,W’)=0, G(X’,N’)=0 

G(W’,W’)=G’ W, G(W’,N’)=0 

G(N’,N’)=0 

where we have note: G(X,X)=GX∈M n-r(R), G(W,W)=GW∈M m-r(R), G(X’,X’)= 
G’X∈ 
M n-r(R), G(W’,W’)=G’ W∈M m-r(R). Is obvious that GX,GW,G’X and G’W are 
nonsingular matrices.  
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From (2.40)-(2.42) we have after the notation: A2=A, B3=B, C1=E, C2=C, C3=D:  

(2.43)       



















 ξ





















−
−

=



















 ξ

N

W

X

IDCE

0B0DBG

00ACAG

000I

'N

'W

'X
t

W

t
X  

where 

(2.44)              GXAt=A-1G’X 

GWBt=B-1G’W 

E+Et+CGXCt+DGWDt=0 

 If we coinsider now the case of coisotropic foliations, let U a coordinates 
neighbourhood of M and {ξ1,...,ξm,Xm+1,...,Xn,N1,...,Nm} a local quasi-orthonormal 
basis along F in U and {ξ1,...,ξm,X’ m+1,...,X’n,N’1,...,N’m} a local quasi-orthonormal 
basis along F in U relative to the decompositions TM=S (F )⊥D F 

⊥⊕ deg(F ) and 
TM=S ‘(F )⊥D F 

⊥⊕ deg’(F ) respectively. Let therefore: 

(2.45)      














 ξ

















=














 ξ

N

X

BBB

0AA

00I

'N

'X

321

21  

with the same notations like upper. 

The conditions for the first basis are: 

(2.46)               G(ξ,ξ)=0, G(ξ,X)=0, G(ξ,N)=I 

G(X,X)=GX, G(X,N)=0 

G(N,N)=0 
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and for the second: 

(2.47)              G(ξ,ξ)=0, G(ξ,X’)=0, G(ξ,N’)=I 

G(X’,X’)=G’ X, G(X’,N’)=0 

G(N’,N’)=0 

where we have note: G(X,X)=GX∈M n-m(R), G(X’,X’)=G’ X∈M n-m(R). It is 
obvious that GX and G’X are nonsingular matrices. 

From (2.45)-(2.47) we have with the notations: A2=A, B1=E, B2=C: 

(2.48)    














 ξ

















−=














 ξ

N

X

ICE

0ACAG

00I

'N

'X t
X  

where: 

(2.49)            GXAt=A-1G’X 

E+Et+CGXCt=0 

 Let now the case of the isotropic foliations and U a coordinates 
neighbourhood of M, {ξ1,...,ξn,Wn+1,...,Wm,N1,...,Nn} a local quasi-orthonormal basis 
along F in U and {ξ1,...,ξn,W’n+1,...,W’m,N’1,...,N’n} a local quasi-orthonormal basis 
along F in U relative to the decompositions TM=(D F ⊕ deg(F ))⊥S (F ⊥) and 
TM=(D F ⊕ deg’(F ))⊥S ‘(F ⊥) respectively. Let therefore: 

(2.50)    














 ξ

















=














 ξ

N

W

BBB

AAA

00I

'N

'W

321

321  

with the same notations like upper. 
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 The conditions for the first basis are: 

(2.51)              G(ξ,ξ)=0, G(ξ,W)=0, G(ξ,N)=I 

G(W,W)=GW, G(W,N)=0 

G(N,N)=0 

and for the second: 

(2.52)              G(ξ,ξ)=0, G(ξ,W’)=0, G(ξ,N’)=I 

G(W’,W’)=G’ W, G(W’,N’)=0 

G(N’,N’)=0 

where we have note: G(W,W)=GW∈M m-n(R), G(W’,W’)= G’W∈M m-n(R). 

Is obvious that GW and G’W are nonsingular matrices. 

From (2.50)-(2.52) we have with the notations: A2=B, B1=E, B2=D: 

(2.53)    














 ξ

















−=














 ξ

N

W

IDE

0BDBG

00I

'N

'W t
W  

where: 

(2.54)         GWBt=B-1G’W 

E+Et+DGWDt=0 

 Finally, let consider now the case of totally degenerate foliations and let U a 
coordinates neighbourhood of M, {ξ1,...,ξm,N1,...,Nm} a local quasi-orthonormal 
basis along F in U and {ξ1,...,ξm, N’1,...,N’m} a local quasi-orthonormal basis along F 
in U relative to the decompositions TM=D F ⊕ deg(F ) and TM=D F ⊕ deg’(F ) 
respectively. 
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Let therefore: 

(2.55)        






 ξ








=







 ξ
NAA

0I

'N 21

 

with the same notations like upper. 

The conditions for the first basis are: 

(2.56)            G(ξ,ξ)=0, G(ξ,N)=I 

G(N,N)=0 

and for the second: 

(2.57)              G(ξ,ξ)=0, G(ξ,N’)=I 

G(N’,N’)=0 

From (2.55)-(2.57) we have with the notation: A1=E: 

(2.58)        






 ξ








=







 ξ
NIE

0I

'N
 

where E is a matrix of n-order satisfying the relation: 

(2.59)        E+Et=0 

being therefore skew-symmetric. 

Let consider now the second question. We treat this in the case of the 
integrability of the null distribution N. 

 For the beginning we shall analyse the case of r-degenerate foliations with 
1≤r<min{m,n}. 

If we have U and V two coordinates neighbourhoods such that U∩V≠∅ let 
consider {ξ1,...,ξr,Xr+1,...,Xn,Wr+1,...,Wm,N1,...,Nr} a local quasi-orthonormal basis 
along F in U and {ξ‘ 1,...,ξ‘ r,X’ r+1,...,X’n,W’ r+1,...,W’m, N’1,...,N’r} a local quasi-
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orthonormal basis along F in V. From (2.1), (2.2) and the integrability of N  on 
U∩V we have: 

(2.60)    



















 ξ





















=



















 ξ

N

W

X

JH00

GF00

EDCB

000A

'N

'W

'X

'

 

where A,B,C,D,E,F,G,H,J are matrices of appropriate dimensions. Let note also 

that A,C and 








JH

GF
 are nonsingular matrices. If we proceed similar like in the first 

problem we have finally: 

Theorem 2.9 Let F a r-degenerate foliation with integrable null distribution of a 
Semi-Riemannian manifold (M,g). If we have U and V two coordinates 
neighbourhoods in an arbitrary point p∈M such that U∩V≠∅ and if we shall 
consider {ξ1,...,ξr,Xr+1, ...,Xn,Wr+1,...,Wm,N1,...,Nr} a local quasi-orthonormal basis 
along F in U and {ξ‘ 1,...,ξ‘ r,X’ r+1,...,X’n,W’ r+1,...,W’m, N’1,...,N’r} a local quasi-
orthonormal basis along F in V, follows: 

(2.61)       



















 ξ





















=



















 ξ

− N

W

X

)A(000

0C00

00B0

000A

'N

'W

'X

'

t1

 

where A is a nonsingular matrix of r-order and B and C orthogonal matrices of 
n-r respectively m-r orders satisfying in addition the conditions: 

(2.62)                     BGXBt=G’X 

    CGWCt=G’W 

  

In the cases of coisotropic, isotropic and totally degenerate foliations we have 
analogously: 

Theorem 2.10 Let F a coisotropic foliation with integrable null distribution of a 
Semi-Riemannian manifold (M,g). If we have U and V two coordinates 
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neighbourhoods in an arbitrary point p∈M such that U∩V≠∅ and if we shall 
consider {ξ1,...,ξm,Xm+1,...,Xn,N1,...,Nm} a local quasi-orthonormal basis along F in U 
and {ξ‘ 1,...,ξ‘ m,X’ m+1, ...,X’n,N’1,...,N’m} a local quasi-orthonormal basis along F in 
V, follows: 

(2.63)    














 ξ

















=














 ξ

− N

X

)A(00

0B0

00A

'N

'X

'

t1

 

where A is a nonsingular matrix of m-order and B an orthogonal matrix of n-m-
order satisfying in addition the condition: 

(2.64)      BGXBt=G’X 

Theorem 2.11 Let F an isotropic foliation of a Semi-Riemannian manifold 
(M,g). If we have U and V two coordinates neighbourhoods in an arbitrary point 
p∈M such that U∩V≠∅ and if we shall consider {ξ1,...,ξn,Wn+1,...,Wm, N1,...,Nn} a 
local quasi-orthonormal basis along F in U and {ξ‘ 1,...,ξ‘ n, W’n+1,...,W’m,N’1,...,N’n} 
a local quasi-orthonormal basis along F in V, follows: 

(2.65)    














 ξ

















=














 ξ

− N

W

)A(00

0B0

00A

'N

'W

'

t1

 

where A is a nonsingular matrix of n-order and B an orthogonal matrix of m-n-
order satisfying in addition the condition: 

(2.66)     BGWBt=G’W 

Theorem 2.12 Let F a totally degenerate foliation of a Semi-Riemannian 
manifold (M,g). If we have U and V two coordinates neighbourhoods in an arbitrary 
point p∈M such that U∩V≠∅ and if we shall consider {ξ1,...,ξm, N1,...,Nm} a local 
quasi-orthonormal basis along F in U and {ξ‘ 1,...,ξ‘ m, N’1,...,N’m} a local quasi-
orthonormal basis along F  in V, follows: 

(2.67)      






 ξ








=







 ξ
− N)A(0

0A

'N

'
t1  

where A is a nonsingular matrix of m-order. 
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 The end of this section consists in five examples of various kind of 
degenerate foliations with integrable null distribution. We shall see in the next 
chapters that particular types of foliations come into this hypotehesis. 

In what follows in examples on Rn
µ )......(

 timesn times
321321

µ−µ

+++−−−  with the coordinates 

(x1,...,xn) we shall note ii x∂
∂=∂ , i=1,...,n. We shall note also the Semi-Riemannian 

metric on Rn
µ with g. 

2.1. Let the smooth map f:R→R, f2(x)>1 ∀x∈R. Such an example is f(x)=xn+2, 

x∈R, n∈N. Let also α∈R-






 ∈π+π

Znn
2

. Let consider now the map ϕ:R2→R, 

ϕ(x1,x2)=f(x1cos α-x2sin α) ∀(x1,x2)∈R2. 

On the Semi-Riemannian manifold M=R4
2(-,-,+,+) let the vector fields: 

ξ=sin α cos α (ϕ2(x1,x2)-1)∂1+cos2α(ϕ2(x1,x2)-1)∂2+cos α(ϕ2(x1,x2)-1)∂3 

X= 4212

21

22121212 1)x,x(

)x,x(

1)x,x(cos

sin

1)x,x(cos

1 ∂
−ϕ

ϕ+∂
−ϕα

α+∂
−ϕα

 

We have now g(ξ,ξ)=g(ξ,X)=0 and g(X,X)=1. On the other hand: 

[ξ,X]=
3

212

2121

1)x,x(

)x,x(')x,x(2

−ϕ

ϕϕ− ξ 

therefore ξ and X defined a 1-degenerate foliation F on M. 

A local quasi-orthonormal basis along the 1-degenerate foliation is given by: 
{X,W,ξ,N} where: 

W= 42122212

21

1212

21

1)x,x(

1

1)x,x(

sin)x,x(

1)x,x(

cos)x,x( ∂
−ϕ

+∂
−ϕ

αϕ−∂
−ϕ

αϕ
, 

N= ( )22123 1)x,x(cos2

1

−ϕα
[-sin α (1+ϕ2(x1,x2)cos2α)∂1+ 
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cos α (1-ϕ2(x1,x2)cos2α)∂2+(ϕ2(x1,x2)cos2α-1)∂3-2sin α cos α ϕ(x1,x2)∂4] 

2.2. Let M=R4
2-R×R×{-1,0,1}×R and the vector fields: 

ξ=sin x4 ∂1+cos x4 ∂2+∂3, X=cos x4 ∂1-sin x4 ∂2+ 3x

1 ∂4 

 We have now g(ξ,ξ)=g(ξ,X)=0 and g(X,X)= 1
)x(

1
23 − ≠0 because x3≠±1. On 

the other hand: [ξ,X]=- 3x

1
X therefore ξ and X defined a 1-degenerate foliation F on 

M. 

A local quasi-orthonormal basis along the 1-degenerate foliation is given by: 
{X,W,ξ,N} where: 

W=
1)x(

1
23 −

(cos x4 ∂1-sin x4 ∂2+x3∂4), 

N=
2

1
(-sin x4 ∂1-cos x4 ∂2+∂3) 

2.3. Let the Semi-Riemannian manifold M={(x,y,z)∈R3y≠0,z≠2kπ, 

z≠
2

π
+2kπ,k∈Z} endowed with the metric g defined through: 

ds2=dx2+y2dz2+2(sin z+cos z-1)dxdy+2y(cos z-sin z)dxdz 

 We have det g=-y2(sin z+cos z-1)2=-8y2 






 −
π

2

z

4
sin

2

z
sin 22 <0. 

 If we apply the Jacobi theorem we have that g is a Semi-Riemannian metric 
of index 1. 

We note in what follows 
z

,
y

,
x zyx ∂

∂=∂
∂
∂=∂

∂
∂=∂ . Let now the vector fields: 

ξ= -2(sin z+cos z-1)∂x+∂y and X= -2y(cos z-sin z)∂x+∂z 
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 We have g(ξ,ξ)=0, g(ξ,X)=0 and g(X,X)=y2>0. On the other hand: 
[ξ,ξ]=[X,X]=0 and [ξ,X]=[∂y-2(sin z+cos z-1)∂x,-2y(cos z-sin z)∂x+∂z]=0. 

 We have therefore a foliation F generated by the vector fields ξ and X. We 
have D F =Span(ξ,X), N =Span(ξ), S (F )=Span(X). In order that the foliation be 
coisotropic it is necessary that N =D F 

⊥. We have:  

D F 
⊥={4λ(1+cos z sin z-cos z-sin z)∂x+λ(1-cos z-sin z)∂y∀λ∈F (M)} = 

Span(ξ)=N  therefore the foliation F is coisotropic. 

A local quasi-orthonormal basis along the coisotropic foliation is given by: 
{X,ξ,N} where: 

[
]zy

x22

1)-z cos+z (sinz) cos-z (sin32)-z cos z sin3(y

1)-z cos+z (siny
1)-z cos+z (sinz) cos-z (siny9

1
N

∂+∂

+∂=
 

2.4. Let M=R4
2(-,-,+,+) and the vector field: ξ=sin u ∂1+cos u ∂2+∂3 where u is 

an arbitrary smooth map on M. We have now: g(ξ,ξ)=0 and how [ξ,ξ]=0 follows 
that ξ defined an isotropic foliation. 

A local quasi-orthonormal basis along the isotropic foliation is given by: 
{ξ,N,W1,W2} where: 

N=
2

1
(-sin u ∂1-cos u ∂2+∂3), 

W1=∂4, W2=cos u ∂1-sin u ∂2 

2.5. Let M=R4
2(-,-,+,+) and the vector fields: ξ1=f∂1+f∂3, ξ2=h∂2+h∂4 where f 

and h are smooth mapings on M, everywhere non-null. We have: g(ξ1,ξ1)=0, 

g(ξ2,ξ2)=0, g(ξ1,ξ2)=0 and [ξ1,ξ2]= 231142 x

h

x

h

h

f

x

f

x

f

f

h ξ








∂
∂+

∂
∂+ξ









∂
∂+

∂
∂− ∈ Span(ξ1,ξ2), 

[ξ1,ξ1]=[ξ2,ξ2]=0 therefore they generate a totally degenerate foliation. 

A local quasi-orthonormal basis along the isotropic foliation is given by: 
{ξ1,ξ2,N1,N2} where: 
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)(
h2

1
N ),(

f2

1
N 422311 ∂+∂=∂+∂−=  

 

3. Fundamental tensors of a degenerate foliation 

Let F a degenerate foliation of a Semi-Riemannian manifold (M,g). We shall 
note with ∇ the Levi-Civita connection on M corresponding to g. For the sake of 
simplicity we shall consider the decomposition of TM given by (2.22): 

(3.1)      TM=S (F )⊥S (F ⊥)⊥(N ⊕ deg(F )) 

where in the case of a coisotropic foliation we have that S (F ⊥)={0} and 
N =D F 

⊥, in the case of an isotropic foliation having S (F )={0} and 
N =D F  and in the case of totally degenerate foliations having: S (F )= 
S (F ⊥)={0} and N =D F =D F 

⊥. 

 We shall define four projectors relative to the decomposition (3.1): 

(3.2)     P1:TM→N , P2:TM→S (F ), P3:TM→S (F ⊥), P4:TM→deg(F ) 

We have: 

(3.3)              P1+P2+P3+P4=I, PiPj=δijPi 

∀ i,j=1,...,4, I being the identity. 

From (3.1), (3.2) follows: 

(3.4) g(PiX,PjY)=0 ∀(i,j)∈({1,2,3,4}×{1,2,3,4})-{(1,4),(2,2),(3,3)} ∀ X,Y∈TM 

In what follows we shall note also: 

S 1=N , S 2=S (F ), S 3=S (F ⊥), S 4=deg(F ) 

 We shall define a tensors family of type (1,2): 

(3.5)   Ak:TM x TM→TM, ∑∑
≠

==
∇=∇−∇=

4

ji
1j,i

jXPi

4

1i
iXPiXP

k
X YPPYPPYYA

kkk
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∀ k=1,2,3,4 ∀ X,Y∈TM. 

From (3.5) follows that if Y∈S q: ∑
≠
=

∇=
4

qi
1i

qXPi
k
X YPPYA

k
 ∀X∈TM ∀k,q=1,2,3,4 

and how in the upper sum i≠q follows: 

(3.6)           g(AkXY,Z)=0 ∀Y,Z∈S q ∀X∈TM ∀k,q=1,2,3,4 

 From the definition we have also: 

(3.7)             YAYA k
X

k
XPk

=  ∀X,Y∈TM ∀k=1,2,3,4 

Theorem 3.1 The tensors Ak, k=1,2,3,4 are skew-symmetric with g that is: 

(3.8)              g(AkXY,Z)+g(Y,Ak
XZ)=0 ∀ X,Y,Z∈TM 

Proof. Let X,Y,Z∈TM and 1≤k≤4 fixed. We have: 

=∇−∇+∇−∇=+ ∑∑
==

)ZPPZ,Y(g)Z,YPPY(g)ZA,Y(g)Z,YA(g
4

1j
jXPjXP

4

1i
iXPiXP

k
X

k
X kkkk

−∇+∇+∇+∇ )ZP,YP(g)ZP,YP(g)ZP,YP(g)ZP,YP(g 41XP33XP22XP14XP kkkk
 

0)ZP,YP)(g()ZP,YP)(g()ZP,YP)(g()ZP,YP)(g(

)ZP,YP(g)ZP,YP(g)ZP,YP(g)ZP,YP(g

)ZP,YP(g)ZP,YP(g)ZP,YP(g)ZP,YP(g

41XP33XP22XP14XP

4XP13XP32XP21XP4

41XP33XP22XP14XP

kkkk

kkkk

kkkk

=∇+∇+∇+∇

=∇−∇−∇−∇

−∇−∇−∇−∇

 

Theorem 3.2 The distribution S k, k=1,2 is integrable if and only if AkXY=Ak
YX, 

∀X,Y∈S k. 

Proof. Let k=1,2-fixed. We have for any X,Y∈S k: 

[ ] [ ] [ ]YP,XPPYP,XPYP,XPP

)XPYP(PXPPYPPXAYA

kkkkk

4

ki
1i

kki

4

ki
1i

kYPkXPi

4

ki
1i

kYPi

4

ki
1i

kXPi
k
Y

k
X kkkk

−=

=∇−∇=∇−∇=−

∑

∑∑∑

≠
=

≠
=

≠
=

≠
=
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If A k
XY=Ak

YX follows [PkX,PkY]=Pk[PkX,PkY]∈S k therefore S k is integrable. 
Reciprocal, if S k is integrable then [PkX,PkY]∈S k therefore [PkX,PkY]= 
Pk[PkX,PkY]. But this means that AkXY=Ak

YX ∀ X,Y∈S k. 

Remarks 

Let a degenerate foliation F of a Semi-Riemannian manifold (M,g). 

1. The null distribution N is integrable if and only if the tensor A1 is 
symmetric (k=1 in the theorem 3.2); 

2. The screen distribution S (F ) is integrable if and only if the tensor A2 is 
symmetric (k=2 in the theorem 3.2); 

3. If the foliation F is isotropic or totally degenerate then the tensors A1 and 
A2 are symmetrics. Indeed, in these cases we have: N =D F and S (F )={0}. We 
have therefore that the null distribution N is integrable from where follows that 
the tensor A1 is symmetric. Also on the screen distribution S (F ) the bracket 
identically vanishes and therefore the tensor A2 is symmetric. 

In the case of the integrability of S k, k=1,2 we have the following: 

Theorem 3.3 The integral manifold of the distribution S k, k=1,2 is totally 
geodesic if and only if AkXY=0 ∀ X,Y ∈S k. 

Proof. For any X,Y∈S k we have that ∑
≠
=

∇=
4

ki
1i

kXPi
k
X YPPYA

k
. Let S the integral 

manifold of S k for a fixed k. S is totally geodesic if and only if YPkXPk
∇ ∈S k. But 

this is equivalent with AkXY=0. 

 In what follows we shall determine the Gauss-Weingarten formulae for the 
degenerate foliations. 

Considering X,Y∈D F we have: P3X=P4X=0, P3Y=P4Y=0. By the fact that 
X=P1X+P2X, Y=P1Y+P2Y follows from (3.5): 

YPPYPYPA  )9.3( 1XP11XP1
1

XP 111
∇−∇=  

YPPYPYPA  )10.3( 2XP22XP2
1

XP 111
∇−∇=  

YPPYPYPA  )11.3( 1XP11XP1
2

XP 222
∇−∇=  
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YPPYPYPA  )12.3( 2XP22XP2
2

XP 222
∇−∇=  

The Levi-Civita connection becomes: 

YPPYPAYPPYPAYPPYPA                  

YPPYPAYPYPYPYPY  )13.3(

2XP22
2

XP1XP11
2

XP2XP22
1

XP

1XP11
1

XP2XP1XP2XP1XPX

222211

112211

∇++∇++∇+

+∇+=∇+∇+∇+∇=∇
 

From (3.13) decomposing after D F =N ⊥ S (F ), S (F ⊥) and deg(F ) we have: 

YPPYPP                     

YPPYPPYPAPYPAPYPAP                     

YPAPYPAPYPAPYPAPYPAPY  )14.3(

2XP22XP2

1XP11XP12
2

XP21
2

XP22
1

XP2

1
1

XP22
2

XP11
2

XP12
1

XP11
1

XP1
F
x

21

21221

12211

∇+∇

+∇+∇+++

+++++=∇

 

YPAPYPAPYPAPYPAP)Y,X(h  )15.3( 2
2

XP31
2

XP32
1

XP31
1

XP3
S

2211
+++=  

YPAPYPAPYPAPYPAP)Y,X(h  )16.3( 2
2

XP41
2

XP42
1

XP41
1

XP4
L

2211
+++=  

Considering now X∈D F and V∈tr(F ) we have: P3X=P4X=0, P1V=P2V=0. By 
the fact that X=P1X+P2X, V=P3V+P4V follows from (3.5): 

VPPVPVPA  )17.3( 3XP33XP3
1

XP 111
∇−∇=  

VPPVPVPA  )18.3( 4XP44XP4
1

XP 111
∇−∇=  

VPPVPVPA  )19.3( 3XP33XP3
1

XP 222
∇−∇=  

VPPVPVPA  )20.3( 4XP44XP4
1

XP 222
∇−∇=  

The Levi-Civita connection becomes: 

VPPVPAVPPVPAVPPVPA                

VPPVPAVPVPVPVPV  )21.3(

4XP44
1

XP3XP33
1

XP4XP44
1

XP

3XP33
1

XP4XP3XP4XP3XPX

222211

112211

∇++∇++∇+

+∇+=∇+∇+∇+∇=∇
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From (3.21) decomposing after D F =N ⊥S (F ), S (F ⊥) and deg(F ) we have: 

VPAPVPAPVPAPVPAP                        

VPAPVPAPVPAPVPAPXA-  )22.3(

4
1

XP23
1

XP24
1

XP23
1

XP2

4
1

XP13
1

XP14
1

XP13
1

XP1V

2211

2211

+++

++++=
 

VPP                     

VPPVPAPVPAPVPAPVPAPVD  )23.3(

3XP3

3XP34
1

XP33
1

XP34
1

XP33
1

XP3
S
X

2

12211

∇

+∇++++=
 

VPP                      

VPPVPAPVPAPVPAPVPAPVD  )24.3(

4XP4

4XP44
1

XP43
1

XP44
1

XP43
1

XP4
L
X

2

12211

∇

+∇++++=
 

 From the tensorial character of A1 respectively A2 and from the fact that ∇ is 
R-bilinear in both terms and is F (M)-linear in the first term follows that all the 
geometrical objects introduced through (3.14), (3.15), (3.16), (3.22), (3.23) and 
(3.24) are R-bilinear and F (M)-linear in the first term. The fact that ∇F is linear 
connection on D F is easy to proven therefore we shall name ∇F the linear connection 
induced on F . From (3.15), (3.16) and the tensorial character of A1 respectively A2 
follows that hS and hL are tensors of type (1,2) defined by: hL:D F ×D F →deg(F ), 
hS:D F ×D F →S (F ⊥). We shall name hL the second degenerate fundamental form of 
F and hS the second screen fundamental form of F . From (3.22) follows from the 
same tensorial character of A1, A2 that A is a tensor of type (1,2) defined by: A:D F 

×tr(F )→D F . We shall name AV the Weingarten operator of F relative to V. 

From (3.23), (3.24) follows: 

VP)f(XVDffVD  )25.3( 3
S
X

S
X +=  

VP)f(XVDffVD  )26.3( 4
L
X

L
X +=  

∀f∈F (M). 

Remarks 

1. From (3.25) follows: VP)f(XVPfVfPD 33
S
X3

S
X +∇= , VPfVfPD 4

S
X4

S
X ∇=  

2. From (3.26) follows: VPDfVfPD 3
L
X3

L
X = , VP)f(XVPDfVfPD 44

L
X4

L
X +=  

3. From (3.25) and (3.26) follows: 
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V)f(X)VDVD(fVP)f(XVDfVP)f(XVDffVDfVD L
X

S
X4

L
X3

S
X

L
X

S
X ++=+++=+  

Because DS and DL are not linear connections, we shall consider theirs 
restrictions at S (F ⊥) respectively at deg(F ). Let therefore: 

(3.27)   ∇S:D F × S (F ⊥)→S (F ⊥), ∇S
X(P3V)=DS

XP3V 

(3.28)   ∇L:D F × deg(F )→deg(F ), ∇L
X(P4V)=DL

XP4V 

(3.29)   DS:D F × deg(F )→S (F ⊥), DS(X,P4V)=DS
XP4V 

(3.30)   DL:D F × S (F ⊥)→deg(F ), DL(X,P3V)=DL
XP3V 

∀ X∈D F ∀V∈tr(F ). 

From the first remark and the preceding considerations, follows that ∇S is a 
linear connection on D F × S (F ⊥) and DS is a tensor of type (1,2) on D F × deg(F ). 
Also from the second remark follows that ∇L is a linear connection on D F × deg(F ) 
and DL is a tensor of type (1,2) on D F × S (F ⊥). We have therefore from (3.27)-
(3.30): 

(3.31)   )VP,X(DVPVPDVPDVD 4
S

3
S
X4

S
X3

S
X

S
X +∇=+=  

(3.32)   VP)VP,X(DVPDVPDVD 4
L
X3

L
4

L
X3

L
X

L
X ∇+=+=  

We define now: 

(3.33)  h:D F ×D F →tr(F ), h(X,Y)=hS(X,Y)+hL(X,Y) ∀X,Y∈D F  

and we shall call the second fundamental form of F relative to tr(F ). 

Let also: 

(3.34)    ∇t:D F ×tr(F )→tr(F ), ∇t
XV= VDVD L

X
S
X +  ∀X∈D F ∀V∈tr(F ) 

By the third remark follows that ∇t is a linear connection on 
D F ×tr(F ) named the transversal linear connection of F . 
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We can write now: 

(3.35)     ∇XY=∇F 
XY+h(X,Y) 

(3.36)      ∇XV= -AVX+∇t
XV 

∀ X,Y∈D F ∀V∈tr(F ). 

Because the distribution D F is integrable follows that ∇F is a linear connection 
whitout torsion on D F . 

From (3.33), (3.34) follows that the formulae (3.35), (3.36) become: 

(3.37)    ∇XY=∇F 
XY+hL(X,Y)+hS(X,Y) 

(3.38)      ∇XV= -AVX+DL
XV+ DS

XV 

∀ X,Y∈D F ∀V∈tr(F ). 

 Analogously, using (3.31), (3.32) follows: 

(3.39)      ∇XV= -AVX+∇L
XP4V+DL(X,P3V)+∇S

XP3V+DS(X,P4V) 

∀ X∈D F ∀V∈tr(F ). 

From (3.39) follows the particular cases: 

(3.40)    ∇XW= -AWX+DL(X,W)+∇S
XW 

(3.41)    ∇XN= -ANX+∇L
XN+DS(X,N) 

∀ X∈D F ∀W∈S (F ⊥) ∀N∈deg(F ). 

Remark In the cases of coisotropic or totally degenerate foliations we have: S 
(F ⊥)={0} therefore P3=0 from where hS=0, ∇S=0, DS=0 and DL=0. The formulae 
(3.37) and (3.41) become: 

(3.42)     ∇XY=∇F 
XY+hL(X,Y) 

(3.43)      ∇XN= -ANX+∇L
XN 
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∀ X,Y∈D F ∀N∈deg(F ). 

 We shall call the formulae (3.35), (3.37), (3.42) the Gauss formulae and 
(3.36), (3.38), (3.39), (3.40), (3.41), (3.43) the Weingarten formulae for the 
degenerate foliation F. 

Theorem 3.4 Let a degenerate foliation F of a Semi-Riemannian manifold 
(M,g). We have: 

(3.44)            g(hS(X,Y),W)+g(Y,DL(X,W))=g(AWX,Y) 

(3.45)            g(hL(X,Y),ξ)+g(hL(X,ξ),Y)+g(Y,∇F
Xξ)=0 

(3.46)                g(DS(X,N),W)=g(AWX,N) 

(3.47)                 g(ANX,N’)+g(AN’X,N)=0 

(3.48)                 g(ANX,P2Y)=g(N,∇XP2Y) 

∀ X,Y∈D F ∀ξ∈N  ∀W∈S (F ⊥)) ∀N,N’∈deg(F )). 

Proof. Let X,Y∈D F , ξ∈N, W∈S (F ⊥)), N,N’∈deg(F )). Then: 

• g(AWX,Y)=g(-∇XW+DL(X,W),Y)=-
g(∇XW,Y)+g(DL(X,W),Y)=g(W,∇XY)+ 
g(DL(X,W),Y)=g(W,hS(X,Y))+g(DL(X,W),Y) 

• 0=∇Xg(Y,ξ)=g(∇XY,ξ)+g(Y,∇Xξ)=g(hL(X,Y),ξ)+g(Y,∇F
Xξ+hL(X,ξ))=g(h

L(X,Y),ξ)+ 
g(hL(X,ξ),Y)+g(Y,∇F

Xξ) 
• g(AWX,N)=g(-∇XW,N)=g(W,∇XN)=g(W,DS(X,N)) 
• g(ANX,N’)+g(AN’X,N)=g(-∇XN,N’)+g(-∇XN’,N)= -∇Xg(N,N’)=0 
• g(ANX,P2Y)=g(-∇XN,P2Y)=g(N,∇XP2Y) 

If we have now {N1,...,Nr} a basis for deg(F ) and {Wr+1,...,Wm} a basis for S (F 
⊥)) (the last in the case of r-degenerate foliations or of those isotropic) for a given 
screen distribution S (F ) we define:  

(3.49)     hL(X,Y)=∑
=

r

1i
i

L
i N)Y,X(h  
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(3.50)         hS(X,Y)= ∑
+=

m

1ra
a

S
a W)Y,X(h  

in the case of coisotropic or totally degenerate foliations defining hSa=0 
∀ a=r+1,..,m. 

We call hLi the degenerate local second fundamental forms and hS
a the screen 

local second fundamental forms of F . 

Theorem 3.5 In a degenerate foliation (F, g, S (F ),S (F ⊥)) of a Semi-
Riemannian manifold (M,g) the degenerate local second fundamental forms are 
independent by the screen distribution and by the transversal distribution. 

Proof. From (3.37) follows: 

(3.51)                hLi(X,Y)=g(hL(X,Y),ξi)=g(∇XY,ξi) 

∀ X,Y∈D F ∀i=1,...,r. 

From (2.61), (2.63), (2.65), (2.67), (3.51) follows that at a change of coordinates 
neighbourhood of a point p∈F where F is a foliation with integrable null distribution 
we have: 

(3.52)                   hL’(X,Y)=Ah L(X,Y) 

∀ X,Y∈D F, h
L’, hL being column vectors with the components hL

i’ respectively 
hL

i relative to the two bases. After this remark we have immediately: 

Theorem 3.6 In a degenerate foliation (F, g, S (F ),S (F ⊥)) with integrable null 
distribution of a Semi-Riemannian manifold (M,g) the vanishing of the degenerate 
local second fundamental forms does not depend by the coordinates neighbourhood 
of an arbitrary point p of F . 

 From (3.51) we have now hL
i(X,ξj)=g(∇Xξj,ξi)=-g(∇Xξi,ξj)=-hL

j(X,ξi) 
therefore: 

(3.53)     hLi(X,ξj)+hL
j(X,ξi)=0 



ACTA UNIVERSITATIS DANUBIUS                                                       Nr. 1/2006 
 

 50

∀ X∈D F ∀ i,j=1,...,r and for i=j: 

(3.54)        hLi(X,ξi)=0 

∀ X∈D F ∀ i=1,...,r. 

If we make a circular permutation in (3.53) we have: 

(3.55)        hLi(ξj,ξk)=0 

∀ i,j,k=1,...,r. 

 From (3.54) and (3.55) we have: 

Theorem 3.7 In a degenerate foliation (F, g, S (F ),S (F ⊥)) of a Semi-
Riemannian manifold (M,g) the degenerate local second fundamental forms are 
degenerate and they identically vanish on the null distribution N of F . 

In the cases of isotropic or totally degenerate foliations we have that N =D F  
therefore: 

Corrolary 3.1 In an isotropic or totally degenerate foliation (F, g, S (F ⊥)) of a 
Semi-Riemannian manifold (M,g) the degenerate local second fundamental forms 
identically vanish on D F . 

The problem is now how the induced connection ∇F will transform on F  at a 
change of the screen distribution? 

For the beginning we shall analyse the case of r-degenerate foliation with 
0<r<min{m,n}. 

Let U a coordinates neighbourhood of M and {ξ1,...,ξr,Xr+1,...,Xn, 
Wr+1,...,Wm,N1,...,Nr} a local quasi-orthonormal basis along F in U and 
{ξ1,...,ξr,X’ r+1,...,X’n,W’ r+1,...,W’m,N’1,...,N’r} a local quasi-orthonormal basis along 
F in U relative to the decompositions TM=S (F )⊥S (F ⊥)⊥(N ⊕ deg(F )) 
respectively TM=S ‘(F )⊥S ‘(F ⊥)⊥(N ⊕ deg’(F )). From (2.43), (2.44), (3.37), 
(3.49)-(3.51) we have: 
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(3.56) ( ) ( )∑∑
+==

+ξ−+∇=∇
n

1ra
a

aLt
r

1i
i

iStt
W

LtF'
X

F
X X)Y,X(hC)Y,X('hBDG)Y,X(hEYY  

∀ X,Y∈D F , ( )
i and ( )a being the coordinates in corresponding bases. 

Analogously, we have: 

(3.57)       ( ) ( )∑∑
+==

+ξ+∇=∇
n

1ma
a

aLt
m

1i
i

iLtF'
X

F
X X)Y,X(hC)Y,X(hEYY  

for o coisotropic foliation, 

(3.58)           ( )∑
=

ξ−∇=∇
n

1i
i

iStt
W

F'
X

F
X )Y,X('hBDGYY  

for an isotropic foliation and 

(3.59)     YY F'
X

F
X ∇=∇  

for a totally degenerate foliation. 

Theorem 3.8 In a r-degenerate foliation (F, g, S (F ), S (F ⊥)) of a Semi-
Riemannian manifold (M,g) the induced connection ∇F on F is independent by the 
screen distribution if and only if 

(3.60)               EthL(X,Y)=DGW
tBth’S(X,Y) 

(3.61)                     CthL(X,Y)=0 

∀ X,Y∈D F  and ∀ B a non-singular matrix of m-r-order, C,D,E being arbitrary 
matrices of types r×(n-r), r×(m-r) respectively r×r which satisfy in addition the 
relations (2.44). 

Theorem 3.9 In a coisotropic foliation (F, g,S (F )) of a Semi-Riemannian 
manifold (M,g) the induced connection ∇F on F is independent by the screen 
distribution if and only if 

(3.62)                     EthL(X,Y)=0 

(3.63)                  CthL(X,Y)=0 



ACTA UNIVERSITATIS DANUBIUS                                                       Nr. 1/2006 
 

 52

∀ X,Y∈D F and ∀ C,E m×(n-m) and m×m-orders matrices, which satisfy in 
addition, the relations (2.49). 

Theorem 3.10 In an isotropic foliation (F,g,S (F ⊥)) of a Semi-Riemannian 
manifold (M,g) the induced connection ∇F on F is independent by the screen 
distribution if and only if 

(3.64)     DGW
tBth’S(X,Y)=0 

∀ X,Y∈D F  and ∀ B a non-singular matrix of m-n-order, D an arbitrary matrix 
of n×(m-n)-order, satisfying in addition the relations (2.54). 

Theorem 3.11 In a totally degenerate foliation (F, g) of a Semi-Riemannian 
manifold (M,g) the induced connection ∇F on F is independent by the screen 
distribution. 

We shall study in what follows the manner in which the induced connection ∇F 
depend on the coordinates neigbourhood. From (2.61), (2.63), (2.65), (2.67) follows: 

Theorem 3.12 In a degenerate foliation F, with integrable null distribution, of a 
Semi-Riemannian manifold (M,g) the induced connection ∇F on F is independent by 
the coordinates neighbourhood of an arbitrary point p∈M. 

 We define now a system of 1-local differential forms: 

(3.65)               ηi(X)=g(X,Ni), i=1,...,r 

∀ X∈D F . We have from (3.65): 

(3.66)               ∑
=

ξη+=
r

1i
ii2 )X(XPX  

∀ X∈D F . We remark from (3.66) that the screen distribution is defined locally 
by ηi=0, i=1,...,r. 

 We have define in (3.14) and (3.34) two linear connections ∇F and ∇t where 
the first is symmetrical. The problem is now is if these are metric connextions. From 
(3.37), (3.49), (3.66) and the condition that ∇ is metric we have: 
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(3.67) (∇F
Xg)(Y,Z)=g(hL(X,Y),Z)+g(hL(X,Z),Y)= 

     [ ]∑
=

η+η
r

1i
i

L
ii

L
i )Y()Z,X(h)Z()Y,X(h  ∀ X,Y,Z∈D F . 

From (3.36) we have also: 

(3.68)   (∇t
Xg)(V,V’)=-[g(AVX,V’)+g(A V’X,V)] ∀ X∈D F ∀V,V’ ∈tr(F ). 

Theorem 3.13 In a degenerate foliation F of a Semi-Riemannian manifold (M,g) 
the induced connection ∇F on F is metric if and only if the local degenerate second 
fundamental forms identically vanishes on D F . 

Proof. From (3.65) and (3.67) we have for any X,Y,Z∈D F : 

(3.69)     (∇F
Xg)(P2Y,P2Z)= [ ]∑

=
η+η

r

1i
i

L
ii

L
i )PY()PZ,X(h)PZ()PY,X(h =0 

From (3.53) follows: 

(3.70)(∇F
xg)(ξi,ξj)= [ ]=ξηξ+ξηξ∑

=

r

1k
ikj

L
kjki

L
k )(),X(h)(),X(h 0),X(h),X(h j

L
ii

L
j =ξ+ξ  

∀ i,j=1,...,r and finally: 

(3.71) (∇F
Xg)(P2Y,ξi)= [ ]=ηξ+ξη∑

=

r

1k
ki

L
kik

L
k )PY(),X(h)()PY,X(h hL

i(X,PY) 

∀ i=1,...,r. 

 The vanishing of ∇Fg is therefore equivalent with hL
i(X,P2Y)=0 ∀X,Y∈D F . 

From the theorem 3.7 follows that it is equivalent with hL=0. 

From the corrolary 3.1 and the theorem 3.13 we have: 

Corrolary 3.2 In an isotropic or totally degenerate foliation F of a Semi-
Riemannian manifold (M,g) the induced connection ∇F on F  is metric. 

Theorem 3.14 In a coisotropic or totally degenerate foliation F of a Semi-
Riemannian manifold (M,g) the transversal connection ∇t is metric. 
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Proof. Because AV has values in D F and in the case of coisotropic or totally 
degenerate foliations we have that tr(F )=deg(F ) follows from (3.43) and (3.68): 

(∇t
Xg)(V,V’)=-[g(AVX,V’)+g(A V’X,V)]=g(∇XV,V’)+g(V, ∇XV’)= ∇Xg(V,V’)=0 

∀X∈D F  ∀V,V’ ∈tr(F )). 

Theorem 3.15 In a r-degenerate or isotropic foliation F of a Semi-Riemannian 
manifold (M,g) the next statements are equivalents: 

a) ∇t is a linear metric connection; 
b) The degenerate transversal distribution deg(F ) is parallel with respect to 

∇t; 
c) AW takes values in S (F )) ∀ W∈S (F ⊥); 
d) DS(X,N)=0 ∀ X∈D F  ∀N∈deg(F ). 

Proof. From (3.47), (3.68) we have: 

(3.72)           (∇t
Xg)(N,N’)=-g(ANX,N’)-g(A N’X,N)=0 

(3.73)     (∇t
Xg)(W,W’)=-g(AWX,W’)-g(A W’X,W)=0 

(3.74)        (∇t
Xg)(W,N)=-g(AWX,N)-g(ANX,W)=-g(AWX,N) 

∀ X∈D F ∀W,W’∈S (F ⊥)) ∀N,N’∈deg(F ). In (3.74) we have use the fact that 
ANX∈D F  therefore g(ANX,W)=0. 

a)⇒c) From (3.74) follows that if ∇t is metric connection then g(AWX,N)=0 
therefore AWX∈S (F )) ∀X∈D F . 

c)⇒a) From (3.74) follows that (∇t
Xg)(W,N)=-g(AWX,N)=0 and together with 

(3.72) and (3.73) imply a). 

a)⇒d) From (3.46) and (3.74) we have 0=(∇t
Xg)(W,N)=-g(AWX,N)= 

-g(DS(X,N),W) ∀W∈S (F ⊥) and how S (F ⊥) is nondegenerate follows DS(X,N)=0. 

d)⇒a) From (3.46) and (3.74) we have (∇t
Xg)(W,N)=-g(AWX,N)= 

-g(DS(X,N),W)=0 and with (3.62) and (3.73) imply a). 
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a)⇒b) From (3.36) we obtain now: 

(3.75)         g(∇t
XN,W)=-(∇t

Xg)(W,N) 

From a) and (3.75) follows therefore g(∇t
XN,W)=0 and how S (F ⊥) is 

nondegenerate we have ∇t
XN=0 ∀X∈D F ∀N∈deg(F ). But this nothing means else 

that deg(F ) is parallel with respect to ∇t. 

b)⇒a) From (3.75) we have (∇t
Xg)(W,N)=0 and together with (3.72) and (3.73) 

imply a). 

 We have seen that the screen distribution is fundamental in the study of 
degenerate foliations. On the other hand all the introduced geometrical objects does 
not put in obviousness properties of this. This is the reason for we shall proceed at a 
refinement of the Gauss formula with respect to the decomposition D F =S (F )⊥N . 
Let therefore X,Y∈D F . From (3.14) we have: 

YPPYPPYPAPYPAPYPAPYPAPYP  )76.3( 2XP22XP22
2

XP22
1

XP22
2

XP12
1

XP12
F
x 212121

∇+∇++++=∇

YPAPYPAPYPPYPPYPAPYPAPYP  )77.3( 1
2

XP21
1

XP21XP11XP11
2

XP11
1

XP11
F
x 212121

++∇+∇++=∇ We define: 

YPPYPPYPAPYPAPYP  )78.3( 2XP22XP22
2

XP22
1

XP22
*
x 2121

∇+∇++=∇

YPPYPPYPAPYPAPYPAPYPAPYP  )79.3( 2XP22XP22
2

XP22
1

XP22
2

XP12
1

XP12
F
x 212121

∇+∇++++=∇

YPAPYPAPXA  )80.3( 1
2

XP21
1

XP2
*

YP 211
−−=

YPPYPPYPAPYPAPYP  )81.3( 1XP11XP11
2

XP11
1

XP11
*t
x 2121

∇+∇++=∇  

 Like in the preceeding discussion, follows immediately that h* and A are 
tensors of type (1,2) defined thus: 

h*:D F ×S (F )→N , A:D F ×N →S (F ) 

We shall call h* the second fundamental form of S (F ) and A*
ξ the Weingarten 

operator of S (F ) with respect to ξ ∀ξ∈N . 

Also, ∇* and ∇*t are linear connections on S (F ) respectively N named the 
induced connection on S (F ) respectively the induced connection on N . From 
(3.76), (3.78) and (3.79) follows: 

(3.82)       ∇F
XP2Y=∇*

XP2Y+h*(X,P2Y) ∀X,Y∈D F  
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 From (3.77), (3.80) and (3.81) follows: 

(3.83)        ∇F
Xξ= -A*

ξX+∇*t
Xξ ∀X∈D F ∀ξ∈N  

Remark In the case of isotropic or totally degenerate foliations we have 
D F =N  therefore ∇* and A* vanish. 

Theorem 3.16 Let a degenerate foliation F of a Semi-Riemannian manifold 
(M,g). The following relations hold: 

(3.84)               g(A*ξX,P2Y)=g(ξ,hL(X,P2Y)) 

(3.85)           (∇*t
Xg)(ξ,ξ‘)=g(ξ,hL(X,ξ‘))+g(ξ‘,hL(X,ξ)) 

(3.86)                   (∇*
Xg)(P2Y,P2Z)=0 

(3.87)            g(h*(X,P2Y),N)=g(ANX,P2Y) 

∀ X,Y∈D F ∀ξ,ξ‘∈N  ∀N∈deg(F ). 

Proof. Let X,Y∈D F, ξ,ξ‘∈N, N∈deg(F ). Using (3.37), (3.45), (3.69), (3.82), 
(3.83) we have: 

• From (3.37), (3.83) follow: g(A*ξX,P2Y)=-g(∇F
Xξ,P2Y)=-g(∇Xξ,P2Y)= 

g(ξ,∇XP2Y)=g(ξ,hL(X,P2Y); 
• From (3.37), (3.83) follow: (∇*t

Xg)(ξ,ξ‘)=X(g(ξ,ξ‘))-g(∇*t
Xξ,ξ‘)-

g(ξ,∇*t
Xξ‘)= 

X(g(ξ,ξ‘))-g(∇F
Xξ,ξ‘)-g(ξ,∇F

Xξ‘)=X(g(ξ,ξ‘))-g(∇Xξ,ξ‘)+g(hL(X,ξ),ξ‘)-
g(∇Xξ‘,ξ)+ 
g(hL(X,ξ‘),ξ)=(∇Xg)(ξ,ξ‘)+g(ξ,hL(X,ξ‘))+g(ξ‘,hL(X,ξ))=g(ξ,hL(X,ξ‘))+g(ξ‘,hL(X,
ξ)); 

• From (3.37), (3.82) follow: (∇*
Xg)(P2Y,P2Z)=X(g(P2Y,P2Z))-

g(∇*
XP2Y,P2Z)- 

g(P2Y,∇*
XP2Z)=X(g(P2Y,P2Z))-g(∇F

XP2Y,P2Z)-g(P2Y,∇F
XP2Z)=X(g(P2Y,P2Z))-

g(∇XP2Y,P2Z)-g(P2Y,∇XP2Z)=0; 
• From (3.37), (3.41), (3.82) follow: g(h*(X,P2Y),N)=g(∇F

XP2Y,N)= 
g(∇XP2Y,N)= -g(P2Y,∇XN)=g(P2Y,ANX). 

Theorem 3.17 Let a degenerate foliation F of a Semi-Riemannian manifold 
(M,g). Then the operator A*ξ is self-adjoint on S (F ) ∀ξ∈N . 
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Proof. From (3.84) using the fact that hL is symmetric follows: 

(3.88)    g(A*
ξP2X,P2Y)=g(ξ,hL(P2X,P2Y))=g(ξ,hL(P2Y,P2X))=g(P2X,A *

ξP2Y) 

Theorem 3.18 Let a degenerate foliation F with the null distribution of rank 1 of 
a Semi-Riemannian manifold (M,g). Then ∇*t is metric connection on N . 

Proof. If the null distribution is of rank 1 then from (3.54) and (3.85) we have: 
(∇*t

Xg)(ξ,ξ)=2g(ξ,hL(X,ξ))=2g(ξ,hL
1(X,ξ)N)=2hL

1(X,ξ)=0. 

Theorem 3.19 Let a degenerate foliation F of a Semi-Riemannian manifold 
(M,g). Then ∇*t is metric connection on S (F ). 

Proof. Follows from (3.86). 

From (3.45) when Y=ξ‘, X→P2X and (3.84) we have that: 

0=g(hL(P2X,ξ‘),ξ)+g(hL(P2X,ξ),ξ‘)+g(ξ‘, ∇P X
F

2
ξ )=g(A*

ξξ‘+A *
ξ‘ξ,P2X) 

 How S (F ) is nondegenerate, follows: 

(3.89)                A*ξξ‘+A *
ξ‘ξ=0 ∀ ξ,ξ‘∈N 

 We shall suppose now that the null distribution N  is integrable. 

Theorem 3.20 The Weingarten operator of the screen distribution S (F ) 
corresponding to the degenerate foliation F, with integrable null distribution, in a 
Semi-Riemannian manifold (M,g) vanishes on the null distribution. 

Proof. Because N is integrable we have: ∀ξ,ξ‘∈N : [ξ,ξ‘ ]∈N . Let X∈S (F ), 
arbitrary. Then: 

0=g([ξ,ξ‘ ],X)=g(∇ξξ‘,X)-g(∇ξ‘ξ,X)=g(A*
ξξ‘,X)-g(A *

ξ‘ξ,X)=g(A*
ξξ‘-A *

ξ‘ξ,X) 

How S (F ) is nondegenerate follows: 

(3.90)                   A*ξξ‘=A *
ξ‘ξ ∀ ξ,ξ‘∈N 
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From (3.89) and (3.90) follow: 

(3.91)                     A*ξξ‘=0 ∀ ξ,ξ‘∈N 

Theorem 3.21 The second degenerate fundamental form of a degenerate 
foliation F, with integrable null distribution, in a Semi-Riemannian manifold (M,g) 
vanishes on N ×D F . 

Proof. From (3.84), (3.91) follow: g(ξ‘,hL(ξ,P2X))=g(A*
ξ‘ξ,P2X)=0 ∀ξ‘∈N from 

where: 

(3.92)                hL(ξ,P2X)=0 ∀ ξ∈N  ∀X∈D F 

 From (3.92) and the theorem 3.7 we have: 

(3.93)          hL(ξ,X)=0 ∀ ξ∈N  ∀X∈D F 

 Before the next theorem let do the remark that from (3.69)-(3.71) and (3.92) 
follow: 

(3.94)                    ∇F
ξg=0 ∀ ξ∈N 

Theorem 3.22 Let a degenerate foliation F, with integrable null distribution, in a 
Semi-Riemannian manifold (M,g). The next assertions are equivalent: 

a) The induced connection ∇F is metric; 
b) A*

ξ vanishes on S (F ) ∀ ξ∈N; 
c) N  is a Killing distribution; 
d) N  is a parallel distribution with respect to ∇F. 

Proof. From the corrolary 3.2 follows that for isotropic or totally degenerate 
foliations the connection ∇F is metric. We shall consider therefore that F is r-
degenerate or coisotropic. From the theorem 3.13 follows that ∇F is metric if and 
only if the degenerate second fundamental forms vanish identically on F . On the 
other hand from the theorem 3.7 and (3.92) follow that ∇F is metric if and only if 
hL(P2X,P2Y)=0 ∀ X,Y∈D F . 

a)⇒b) From (3.84) and the nondegenerate character of S (F ) we have: 
g(A*

ξP2X,P2Y)=g(ξ,hL(P2X,P2Y))=0 therefore A*ξP2X=0 ∀X,Y∈D F  ∀ξ∈N . 
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b)⇒a) From (3.84) follows: g(ξ,hL(P2X,P2Y))=g(A*
ξP2X,P2Y)=0 therefore 

hL(P2X,P2Y)=0 ∀X,Y∈D F  that is ∇F is metric connection. 

N is a Killing distribution if and only if g(∇Xξ,Y)+g(∇Yξ,X)=0 ∀ξ∈N  
∀X,Y∈D F . Using (3.37), (3.83) and (3.93) we have: 

g(∇Xξ,Y)+g(∇Yξ,X)=-g(A*
ξX,Y)-g(A *

ξY,X) 

From (3.91) follows that for X,Y∈N  the upper expresion vanishes. Also If Y=ξ‘ 
then -g(A*

ξX,ξ‘)-g(A *
ξξ‘,X)=0. It follows therefore that N is Killing distribution if 

and only if g(A*
ξP2X,P2Y)+g(A*

ξP2Y,P2X)=0 ∀X,Y∈D F . But from (3.88) we have 
that N  is Killing if and only if g(A*

ξP2X,P2Y)=0 ∀X,Y∈D F . 

a)⇒c) From (3.84) follows g(A*ξP2X,P2Y)=g(ξ,hL(P2X,P2Y))=0. 

c)⇒a) From (3.84) follows 0=g(A*ξP2X,P2Y)=g(ξ,hL(P2X,P2Y)) ∀ξ∈N  
therefore hL(P2X,P2Y)=0 ∀ X,Y∈D F . 

b)⇒d) If A*
ξP2X=0 ∀X∈D F  ∀ξ∈N  then from (3.91) follows ∇F

Xξ∈N  ∀X∈D 
F ∀ξ∈N  therefore N  is parallel with respect to ∇F. 

d)⇒b) If N is parallel with respect to ∇F then A*
ξX=0 ∀X∈D F ∀ξ∈N . 

If we consider now foliations with arbitrary null distribution we can proove 
other general results. 

From (3.89) we have like a particular case: 

(3.95)     A*
ξξ=0 ∀ ξ∈N 

It is easy to show that in this case the theorem 3.22 becomes: 

Theorem 3.23 Let a degenerate foliation F in a Semi-Riemannian manifold 
(M,g). The next assertions are equivalent: 

a) The induced connection ∇F is metric; 
b) A*

ξ vanishes on D F  ∀ ξ∈N; 
c) N  is a Killing distribution; 
d) N is a parallel distribution with respect to ∇F. 
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Theorem 3.24 Let a degenerate foliation F in a Semi-Riemannian manifold 
(M,g). The next assertions are equivalent: 

(i) The screen distribution S (F ) is integrable; 
(ii)  The second fundamental form of S (F ) h* is symmetric on S (F ); 
(iii)The Weingarten operator AN is self-adjoint on S (F )) with respect to g 

∀N∈deg(F ). 

Proof. (i)⇔[P2X,P2Y]∈S (F ) ∀X,Y∈D F ⇔( *
XP2

∇ PY- *
YP2

∇ PX)+(h*(P2X,P2Y)-

h*(P2Y,P2X))∈S (F ))⇔h*(P2X,P2Y)=h*(P2Y,P2X) ∀X,Y∈D F ⇔(ii). From (3.86) we 
have that (ii)⇔g(h*(P2X,P2Y),N)=g(h*(P2X,P2Y),N)⇔g(ANP2X,P2Y)= 

g(P2X,ANP2Y)⇔(iii). 

Theorem 3.25 Let F a degenerate foliation in a Semi-Riemannian manifold 
(M,g). The next assertions are equivalent: 

(i) The screen distribution S (F ) is parallel with respect to ∇F; 

(ii) The second fundamental form of S (F ) h* identically vanishes; 

(iii) The Weingarten operator AN takes values in N . 

Proof. From (3.82) we have that (i)⇔(ii) and from (3.48) that (i)⇔(iii). 

In the final of this section it is interesting to see when the null distribution is 
integrable (from the point of view of the new geometrical objects). 

Theorem 3.26 Let F a degenerate foliation in a Semi-Riemannian manifold 
(M,g). The next assertions are equivalent: 

(i) N  is integrable; 
(ii)  hL(ξ,P2X)=0 ∀ξ∈N  ∀X∈D F; 
(iii) A *

ξ identically vanishes on N . 

Proof. From (3.84) we have g(A*ξξ‘,P2X)=g(ξ,hL(ξ‘,P2X)) ∀ξ,ξ‘∈N  ∀X∈D F . 
If (ii) holds then g(A*

ξξ‘,P2X)=0 ∀ξ,ξ‘∈N  ∀X∈D F therefore (iii) and reciprocally 
if (iii) is true then g(ξ,hL(ξ‘,P2X)) ∀ξ,ξ‘∈N ∀X∈D F from where (ii). From (3.91) 
follows that if (i) is true that is N is integrable then A*

ξξ‘=0 ∀ξ,ξ‘∈N  therefore (iii). 
If (iii) is true then ∀ξ,ξ‘∈N  ∀X∈D F  follows: 
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g([ξ,ξ‘ ],P2X)=g(∇ξξ‘,P2X)-g(∇ξ‘ξ,P2X)=-g(A*
ξ‘ξ,P2X)+g(A*

ξξ‘,P2X)=0 

therefore [ξ,ξ‘ ]∈N  ∀ ξ,ξ‘∈N  which is the same thing with (i). 

4. Totally geodesic degenerate foliations 

Definition  We call a degenerate foliation (F, g, S (F ), S (F ⊥)) of codimension 
m of a (m+n)-dimensional Semi-Riemannian manifold (M,g) totally geodesic 
degenerate foliation if any geodesic of an arbitrary leaf of F is a geodesic of M. 

Theorem 4.1 Let (F, g, S (F ), S (F ⊥)) a degenerate foliation of a Semi-
Riemannian manifold (M,g). F is totally geodesic if and only if one of the following 
statements is true: 

(i)  hL=hS=0; 

(ii) ii 1) A
*
ξX=0 ∀ ξ∈N  ∀X∈D F; 

   ii2) AWX∈N  ∀W∈S (F ⊥)) ∀X∈D F; 

   ii3) D
L(X,P3V)=0 ∀X∈D F ∀V∈tr(F ) 

Proof. The condition that F is totally geodesic is equivalent with ∇XX∈D F  
∀ X∈D F . From (3.37) we see that this is equivalent with hL(X,X)=hS(X,X)=0 and 
from the symmetry of hL and hS we have (i). Let prove now that (i)⇒(ii). If hL=hS=0 
from (3.84) follows that g(A*ξX,P2Y)=0 ∀ξ∈N ∀X,Y∈D F therefore: A*

ξX=0 that is 
ii 1). From (3.83) and ii1) follows that ∇F

Xξ∈N and from (3.37): ∇Xξ∈N . We have 
now with (3.40): 

0=∇Xg(ξ,P3V)=g(∇Xξ,P3V)+g(ξ,∇XP3V)=g(ξ,∇XP3V)=g(ξ,DL(X,P3V)) 

∀ξ∈N ∀X∈D F ∀V∈tr(F ) therefore ii3). Finally, from (3.44) and ii3) we have: 
g(AWX,Y)=g(Y,DL(X,W))=0 ∀X,Y∈D F  ∀W∈S (F ⊥) therefore ii2). 

If we shall suppose now that (ii) is true then from (3.84) and ii1) follows: 
g(ξ,hL(X,P2Y))=g(A*

ξX,P2Y)=0 therefore hL(X,P2Y)=0 ∀X,Y∈D F . From the 
theorem 3.7 follows that hL(ξ,ξ‘)=0 ∀ξ,ξ‘∈N . We have finally that hL=0. From 
(3.44), ii2) and ii3) we have now: g(hS(X,Y),W)=0 ∀X,Y∈D F  
∀W∈S (F ⊥). Because S (F ⊥) is nondegenerate follows that hS=0 therefore finally 
(i). 



ACTA UNIVERSITATIS DANUBIUS                                                       Nr. 1/2006 
 

 62

Corrolary 4.1 Let (F, g, S (F )) a coisotropic foliation of a Semi-Riemannian 
manifold (M,g). The foliation F is totally geodesic if and only if one of the following 
statements is true: 

(i)  hL=0; 

(ii) A *
ξX=0 ∀ ξ∈N  ∀X∈D F  

Proof. In this case hS=0, S (F ⊥)={0}, P3=0 and the statement reduces to the 
theorem 4.1. 

Corrolary 4.2 Let (F, g, S (F ⊥)) an isotropic foliation of a Semi-Riemannian 
manifold (M,g). The foliation F is totally geodesic if and only if one of the following 
statements is true: 

(i)  hS=0; 

(ii) DL(X,P3V)=0 ∀X∈D F  ∀V∈tr(F ). 

Proof. In the case of isotropic foliations, from the corrolary 3.1 follows hL=0 
and how S (F )={0} and ii2) is trivial follows the conclusions of the corrolary. 

Corrolary 4.3 If (F, g) is a totally degenerate foliation of a Semi-Riemannian 
manifold (M,g) then the foliation F is totally geodesic. 

Proof. From the corrolary 3.1 we have that hL=0 and how P3=0 we have hS=0 
therefore from the theorem 4.1 follows that F is totally geodesic. 

Corrolary 4.4 If (F, g, S (F ), S (F ⊥)) is a totally geodesic degenerate foliation 
of a Semi-Riemannian manifold (M,g) then the null distribution N  is integrable. 

Proof. From the theorem 3.26 we see that N is integrable if and only if 
hL(ξ,P2X)=0 ∀ ξ∈N  ∀X∈D F . From the theorem 4.1.i) the condition is satisfied by 
the totally geodesic degenerate foliation. 

From the theorems 3.8, 3.9, 3.10 and 3.11 we have: 

Theorem 4.2 In a totally geodesic degenerate foliation (F, g, S (F ), 
S (F ⊥)) of a Semi-Riemannian manifold (M,g) the induced connection ∇F on F is 
independent of the screen distribution 
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Remark From (3.37) follows that ∇F coincides with the restriction of ∇ on D F . 

From the theorem 3.13 we have the following: 

Theorem 4.3 In a totally geodesic degenerate foliation (F, g, S (F ), 
S (F ⊥)) of a Semi-Riemannian manifold (M,g) the induced connection ∇F on F is 
metric. 

5. Totally umbilical degenerate foliations 

Definition  We call a degenerate foliation (F, g, S (F ), S (F ⊥)) of codimension 
m of a (m+n)-dimensional Semi-Riemannian manifold (M,g) totally umbilical 
degenerate foliation if ∃HL∈deg(F ), HS∈S (F ⊥) with the property that: 

(5.1)           hL(X,Y)=g(X,Y)HL 

(5.2)           hS(X,Y)=g(X,Y)HS 

∀ X,Y∈D F . 

Remark From the theorem 4.1 follows that a totally umbilical degenerate 
foliation is totally geodesic if and only if HL=0 and HS=0. 

Remark In the cases of coisotropic or totally degenerate foliations, because 
P3=0, only the axiom (5.1) is necessary for totally umbilicality. 

If we consider now the totally umbilical degenerate foliation F, the formula 
(3.37) becomes: 

(5.3)   ∇XY=∇F
XY+g(X,Y)HL+g(X,Y)HS ∀X,Y∈D F 

Also, the formula (3.44) becomes: 

(5.4)     g(HS,W)g(X,Y)+g(Y,DL(X,W))=g(AWX,Y) ∀ X,Y∈D F ∀W∈S 
(F ⊥) 

 From (3.45) we have: 

(5.5)   g(Y,∇F
Xξ)=-g(X,Y)g(HL,ξ) ∀X,Y∈D F ∀ξ∈N 
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 If we shall note (Dξ)(X)=∇F
Xξ we have from (5.5): 

(5.6)     g(Y,(Dξ)(X))=g(X,(Dξ)(Y)) ∀ X,Y∈D F 

 From (5.6) follows therefore: 

Theorem 5.1 On a totally umbilical degenerate foliation for any ξ∈N the 
operator Dξ is self-adjoint on D F  with respect to g. 

From the definition, we have also 

(5.7)              hL(X,ξ)=0 

(5.8)       hS(X,ξ)=0 

∀ X∈D F ∀ξ∈N . 

Theorem 5.2 If (F, g, S (F ), S (F ⊥)) is a totally umbilical degenerate foliation 
of a Semi-Riemannian manifold (M,g) then the null distribution N is integrable. 

Proof. From the theorem 3.26 we have that N is integrable if and only if 
hL(ξ,P2X)=0 ∀ξ∈N ∀X∈D F . From (5.7) follows this type of foliations satisfies that 
this. 

Theorem 5.3 A totally umbilical isotropic foliation is totally geodesic 
degenerate. 

Proof. If F is isotropic then N =D F . From (5.7) and (5.8) follows that hL=hS=0 
and from the theorem 4.1.i) follows that the foliation is totally geodesic. 

Because the totally degenerate foliations are totally geodesic and after the 
theorem 5.3 the isotropic are also totally geodesic from this moment we shall 
consider only the cases of r-degenerate with r<min{m,n} or coisotropic foliations. 

From (5.7) and the theorem 3.26 we have therefore: 

Theorem 5.4 On a totally umbilical r-degenerate with r<min{m,n} or 
coisotropic foliation we have that ∀ξ∈N  the operator A*ξ of S (F ) vanishes 
identically on N . 
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 From (3.67) we have now: 

(5.9)           (∇F
Xg)(Y,Z)=g(HL,Z)g(X,Y)+g(HL,Y)g(X,Z) 

∀ X,Y,Z∈D F . 

 From (5.9) follows: 

(5.10)        ∇F
ξg=0 

Theorem 5.5 On a totally umbilical degenerate foliation ∇F is a linear 
connection metric on S (F ). 

Proof. From (5.9) for Y→P2Y and Z→P2Z we have: 

(5.11)             (∇F
Xg)(P2Y,P2Z)=0 

∀X,Y,Z∈D F ∀ξ∈N . 

Theorem 5.6 On a totally umbilical r-degenerate with r<min{m,n} or 
coisotropic foliation the induced connection ∇F is metric if and only if HL=0 (or 
hL=0). 

Proof. From (5.9) we have: 

(5.12)    (∇F
Xg)(P2Y,ξ)=g(HL,ξ)g(X,P2Y)+g(HL,P2Y)g(X,ξ)=g(HL,ξ)g(X,P2Y) 

∀X,Y∈D F ∀ξ∈N . If F is r-degenerate with r<min{m,n} or coisotropic then S 
(F ) does not coincides with the null distribution, therefore we can choose a non-null 
vector field X∈S (F )). If ∇F is a metric connection then from (5.12) follows: 
0=(∇F

Xg)(P2X,ξ)=g(HL,ξ)g(P2X,P2X) therefore g(HL,ξ)=0 ∀ξ∈N  that is HL=0. 
Reciprocally, from (5.12) follows that if HL=0 then (∇F

Xg)(PY,ξ)=0 ∀X,Y∈D F 

∀ξ∈N . Also, from (5.9) follows: (∇F
Xg)(ξ,ξ‘)= g(HL,ξ‘)g(X,ξ)+g(HL,ξ)g(X,ξ‘)=0 

∀ξ,ξ‘∈N . From (5.11) we have: 

(∇F
Xg)(P2Y,P2Z)=0 ∀X,Y,Z∈D F therefore ∇F is a metric connection. 

Corrolary 5.2 On a totally umbilical coisotropic foliation the induced 
connection ∇F is metric if and only if it is totally geodesic. 
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Proof. On coisotropic foliations we have P3=0 and therefore from the theorem 
5.6 follows that ∇F is a metric connection if and only if hL=0. But this does not 
means else that the foliation is degenerate totally geodesic. 

Theorem 5.7 On a totally umbilical foliation r-degenerate with r<min{m,n} or 
coisotropic any vector field of the screen distribution is proper for the Weingarten 
operator of S (F ): A*ξ ∀ξ∈N . 

Proof. From (3.84) we have: 

(5.13)              g(A*ξP2X,P2Y)=g(P2X,P2Y)g(HL,ξ) 

∀X,Y∈D F ∀ξ∈N . 

Because A*ξP2X∈S (F )) ∀ξ∈N ∀X∈D F and S (F ) is nondegenerate, from 
(5.13) follows: 

(5.14)      A*
ξP2X=g(HL,ξ)P2X ∀ξ∈N  ∀X∈D F 

Theorem 5.8 On a totally umbilical foliation (F, g, S (F ), S (F ⊥)) r-degenerate 
with r<min{m,n} the following statements are equivalents: 

a) ∇t is a linear metric connection relative to S (F ); 
b) AWP2X=g(HS,W)P2X ∀X∈D F  ∀W∈S (F ⊥) 

Proof. a)⇒b) From (3.72)-(3.74) follows: 

(5.15)                  g(AWP2X,N)=0 

∀X∈D F ∀W∈S (F ⊥) ∀N∈deg(F ). 

 From (5.15) we have that AWP2X∈S (F )) ∀X∈D F  ∀W∈S (F ⊥). 

 From (5.4) we have also: 

(5.16) g(AWP2X,P2Y)=g(HS,W)g(P2X,P2Y)+g(P2Y,DL(P2X,W))=g(HS,W)g(P2X, 
P2Y) 
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therefore: 

(5.17)   g(AWP2X-g(HS,W)P2X,P2Y)=0 

∀ X,Y∈D F ∀W∈S (F ⊥). How S (F ) is nondegenerate follows from this: 

(5.18)           AWP2X=g(HS,W)P2X ∀X∈D F ∀W∈S (F ⊥) 

b)⇒a) If (5.18) holds then AWP2X∈S (F )) ∀X∈D F ∀W∈S (F ⊥). From (3.72)-
(3.74) follows ( gt

XP2
∇ )(V,V’)=0 ∀V,V’ ∈tr(F )). 

Theorem 5.9 Let (F, g, S (F ), S (F ⊥)) a foliation r-degenerate with r<min{m,n} 
or coisotropic of (M,g). Then F is degenerate totally umbilical if and only if the 
following statements hold: 

(i) hL(X,ξ)=hS(X,ξ)=0 ∀X∈D F ∀ξ∈N; 

(ii) ∃α∈Λ1(S (F ⊥)) such that g(AWP2X,P2Y)=α(W)g(P2X,P2Y) ∀X,Y∈D F 

∀W∈S (F ⊥); 

(iii) ∃β∈Λ1(N ) such that A*ξP2X=β(ξ)P2X ∀X∈D F ∀ξ∈N . 

Proof. If F is totally umbilical then (i) follows from (5.7) and (5.8). From (5.16) 
defining α(W)=g(HS,W) ∀W∈S (F ⊥)) follows (ii). Finally, from (5.14) defining 
β(ξ)=g(HL,ξ) ∀ ξ∈N  follows (iii). 

 Reciprocally, let suppose that (i), (ii), (iii) are true. We define now HS∈S (F 
⊥) such that: 

(5.19)      g(HS,W)=α(W) ∀W∈S (F ⊥) 

and HL∈deg(F ) such that 

(5.20)       g(HL,ξ)=β(ξ) ∀ ξ∈N 

From (3.44) we have g(hS(P2X,P2Y),W)=g(AWP2X,P2Y)=g(HS,W)g(P2X,P2Y) 
and because S (F ⊥) is nondegenerate follows that hS(P2X,P2Y)=g(P2X,P2Y)HS. From 
(i) we have now (5.2). From (3.84) follows that g(hL(P2X,P2Y),ξ)= 
g(A*

ξP2X,P2Y)=g(HL,ξ)g(P2X,P2Y) therefore hL(P2X,P2Y)=g(P2X,P2Y)HL and with 
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(i) we have (5.1). From (5.1) and (5.2) follows that F is totally umbilical degenerate 
foliation. 

Let see now some examples that illustrate the phenomenon of totally 
geodesibility or umbilicality. 

5.1. If we go back to the example 2.1 we have: 

( ) ξ
−ϕα

αϕϕ−
−ϕ

ϕ−=∇
32122

2121

3
212

21

X

1)x,x(cos

sin)x,x(')x,x(
W

1)x,x(

)x,x('
X  

ξ
−ϕ

ϕϕ=ξ∇
3

212

2121

X

1)x,x(

)x,x(')x,x(2
 

0=ξ∇ξ  

therefore: 

( ) ξ
−ϕα

αϕϕ−=∇
32122

2121

X
1)x,x(cos

sin)x,x(')x,x(
X  

ξ
−ϕ

ϕϕ=ξ∇
3

212

2121

X

1)x,x(

)x,x(')x,x(2
 

0=ξ∇ξ  

Finally we have: 

hL(X,X)=0, hL(X,ξ)=0, hL(ξ,ξ)=0, hS(X,X)= W
1)x,x(

)x,x('
3

212

21

−ϕ

ϕ− , hS(X,ξ)=0, 

hS(ξ,ξ)=0. If we consider now HS= W
1)x,x(

)x,x('
3

212

21

−ϕ

ϕ−  follows hS(X,X)=g(X,X)HS 

therefore the foliation is totally umbilical 1-degenerate. 
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5.2. We shall present now an example from [2]. Let the 1-degenerate foliation in 
R4

2(-,-,+, +) with a quasi-orthonormal basis given by: 

[ ] [ ]
( ) [ ]

321

4
221

3
12

2
12

4
21

3
221

2
221

321

2

1
2
1

2
1

N

)xx(1)xx(2xx2W

)xx(2)xx(1)xx(12X

2

∂+∂+∂−=

∂−++∂−+∂−=

∂−−∂−++∂−+=

∂+∂+∂=ξ

 

where N =Span(ξ),S (F )=Span(X),S (F ⊥)=Span(W) and deg(F )=Span(N ). 

The fact that it is a foliation follows from: 

[ ] 02)xx(2)xx(222)xx(2)xx(22X, 43
21

2
21

43
21

2
21 =∂+∂−−∂−−∂−∂−+∂−=ξ  

 We have now easy that hL=0, hS(X,ξ)=hS(ξ,ξ)=0 and 

( )
W

)xx(1

)xx(12
)X,X(h

421

421
S

−+
−−=  

Because g(X,X)=-(1+(x1-x2)4) we have that hS(X,X)=g(X,X)HS where 

HS=
( )

( ) W
)xx(1

1)xx(2
2421

421

−+
−−

. We have therefore that F is a totally umbilical 1-degenerate 

foliation in R4
2. 

5.3. Let consider now the example 2.3. Because hL(ξ,X)=h(ξ,ξ)=0 we have 
hL

1(X,X)=g(∇XX,ξ)=-2y(sin z+cos z)(sin z+cos z-1). Let therefore: 

[
]zy

x22L

1)-z cos+z (sinz) cos-z (sin32)-z cos z sin3(y

1)-z cos+z (siny
1)-z cos+z (sinz) cos-z (siny9

z) cos+z (sin2
H

∂+∂

+∂−=
 

We have HL∈deg(F ) and hL(X,X)=g(X,X)HL. Because 0=hL(X,ξ)=g(X,ξ)HL 
and 0=hL(ξ,ξ)=g(ξ,ξ)HL follows that the foliation is coisotropic, totally umbilical. 

5.4. From the corrolary 4.3 follows that the example 2.5 is a totally degenerate 
and totally geodesic foliation. 
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6. Examples of degenerate foliations 

on manifolds provided with relativistic metrics 

 Let therefore the manifold M with the metric: 

(6.1)         ds2= [ ]22222
2

22 dsindrdr
)r(V

1
dt)r(V ϕθ+θ−−  

where V≠0. 

Remark We have the following particular cases: 

metric; Minkowski  the tocorrespond 1)r(4)V

metric;Sitter  de  the tocorrespond 
R

r
1)r(3)V

metric; Weil-Reissner  the tocorrespond 
r

e

r

m2
1)r(2)V

metric; ildSchwarzschexterior   the tocorrespond 
r

m2
1)r(V)1

2

2

2
2

2

2
2

2

=

−=

+−=

−=

 

5)V(r)=Cr, C∈R* 

We shall note for the simplicity: 
∂ϕ
∂=∂

∂θ
∂=∂

∂
∂=∂

∂
∂=∂ ϕθ ,,

r
,

t rt . 

Theorem 6.1 Let the Semi-Riemannian manifold M endowed with the metric: 

ds2= [ ]22222
2

22 dsindrdr
)r(V

1
dt)r(V ϕθ+θ−− , V≠0 

If ∇ is the Levi-Civita connection on M then the following relations hold: 

θϕ∂

ϕθ∂ϕ∂θ∂ϕ∂ϕ∂

θ∂θ∂∂∂∂∂

θ∂θ−θ∂−=∂∇

∂
θ
θ=∂∇=∂∇∂−=∂∇∂=∂∇=∂∇

∂=∂∇=∂∇∂−=∂∇∂=∂∇=∂∇∂=∂∇

ϕ

ϕθθϕ

θ

cossinsinrV

sin

cos
   rV   

r

1
r

1
   

V

'V
   

V

'V
   'VV

r
22

r
2

r

rr
r

rt
r

trrr
3

t

r

rrrtt
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restul componentelor fiind nule. 

Proof. Through direct calculus. 

6.1. Let the foliation F  generated by the vector fields: ξ= θ∂+∂
r

1

V

1
t  and 

X=etV∂ϕ. We have [ξ,X]=[ θ∂+∂
r

1

V

1
t ,etV∂ϕ]=etV∂ϕ=X, [ξ,ξ]=[X,X]=0 therefore F  is 

a foliation. Because g(ξ,ξ)=g( θ∂+∂
r

1

V

1
t , θ∂+∂

r

1

V

1
t )=0, g(ξ,X)=0, g(X,X)=-

r2e2tVsin2θ≠0 follows that the foliation is degenerate. We have therefore N =Span(ξ) 
and S (F )=Span(X). Considering D F ={αξ+βXα,β∈ 
F (M)} we have: D F 

⊥={ar∂t+b∂r+aV∂θa,b∈F (M )}=Span(r∂t+V∂θ,∂r)= Span(ξ,∂r). 

We obtain therefore S (F ⊥)=Span(W) where W=∂r. If consider now N=
V

1 ∂t+V∂r we 

have deg(F )=Span(N) and therefore the foliation is 1-degenerate with a local quasi-
orthonormal basis given by {X,W,ξ,N}. 

If we compute the principal geometrical objects we have: 

hL(ξ,ξ)=hL(X,ξ)=0, hL(X,X)=re2tVsinθcosθN 

hS(ξ,ξ)=(VV’ r -
r

V 2

)W, hS(ξ,X)=0, hS(X,X)= -rVe2tVsinθcosθW 

0)N,X(D,W
r

V
)N,(D,0)W,X(D,N

r

1

V

'V
)W,(D

X
r

V
XA,

r

V
A,X

r

1
XA,

r

1
A

X
sinr

cos
XA,0A

cossinre)X,X(h,0)X,(h

0

0X,X
sinr

cos
1X

X
sinr

cos
,cossinreX,X

sinr

cos
1X,0

S
2

SLrL

NNWW

**

tV2**

X
t*t*

X
**

X
FtV2

X
FFF

==ξ=






 −=ξ

−=ξ−=ξ−=ξ−=ξ

θ
θ−==ξ

θξθ−==ξ

=ξ∇=ξ∇

=∇








θ
θ+=∇

θ
θ=ξ∇θξθ−=∇









θ
θ+=∇=ξ∇

ξξ

ξ

ξ

ξξ
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 From these and the theorem 4.1 follows that F is not totally geodesic. In 

order that F  be totally umbilical it must that: hS(ξ,ξ)=0⇔VV’ r-
r

V 2

=0 herefore 

V(r)=Cr, C∈R*. Reciprocally, if V(r)=Cr, C∈R* then hS(ξ,ξ)=0. If we define: 

W
sin

cosC
H and N

sinr

cos
H SL θ

θ=
θ
θ−=  

we have hL(X,Y)=g(X,Y)HL and hS(X,Y)=g(X,Y)HS ∀X,Y∈D F therefore the 
foliation is totally umbilical. 

6.2. Let the foliation F generated by the vector fields 

θ

α
∂

∫
∂+∂=ξ

dr
V(r)

1

rt e=X ]i V
V
1

, α∈R. We have [ξ,X]=αX,[ξ,ξ]=[X,X]=0 therefore F 

is really a foliation. Because g(ξ,ξ)=0, g(ξ,X)=0, g(X,X)=
∫

−
α dr

)r(V

1
2

2er ≠0 follows 
that the foliation is degenerate. We have therefore: N = Span(ξ) and S (F )=Span(X). 
Considering now D F ={αξ+ βXα,β∈F (M)} we have: D F 
⊥={a∂t+aV2∂r+b∂ϕa,b∈F (M )}=Span(ξ,∂ϕ). We obtain therefore S (F ⊥)=Span(W) 

where W=∂ϕ. Considering N= rt 2

V

V2

1 ∂−∂  we have deg(F )=Span(N) and therefore 

the foliation is 1-degenerate with a local quasi-orthonormal basis given by 
{X,W,ξ,N}. 

If we compute the principal geometrical objects we have: 

0)X,X(h , 0)X,(h , 0),(h

NrVe)X,X(h , 0)X,(h , 0),(h
SSS

dr
)r(V

1
2

LLL

==ξ=ξξ

∫
==ξ=ξξ

α

 

0X,X
r

V
X

X
r

V
,e

2

rV
X,X

r

V
X,)r('V

X
**

X
F

dr
)r(V

1
2

X
FFF

=∇






 +α=∇

=ξ∇ξ
∫

−=∇






 +α=∇ξ=ξ∇

ξ

α
ξξ

 

ξ
∫

−==ξ

=ξ∇ξ=ξ∇
α

ξ

dr
)r(V

1
2

**

X
t*t*

e
2

rV
)X,X(h,0)X,(h

0 , )r('V
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0)N,X(D,0)N,(D,0)W,X(D,0)W,(D

X
r

V
XA,0A,0XA,0A

X
r

V
XA,0A

SSLL

2NNWW

**

==ξ==ξ

−==ξ==ξ

==ξ ξξ

 

 From these and the theorem 4.1 follows that the foliation F is not totally 

geodesic because hL(X,X)≠0. If we define now HL=
r

V− N and HS=0 we have 

hL(X,Y)=HLg(X,Y) and hS(X,Y)=HSg(X,Y) ∀X,Y∈D F  therefore the foliation is 
totally umbilical. 

6.3. Let the foliation F generated by the vector fields ξ=f(r)∂t+V2f(r)∂r, X1=
r

1 ∂θ, 

X2= θsinr

1 ∂ϕ where f:R→R is a smooth map non-null everywhere. 

We have [ξ,X1]=
r

)r(fV 2

− X1, [ξ,X2]= θ
−

sinr

)r(fV
2

2

X2, [X1,X2]= θ
θ−

sinr

cos
X2 therefore 

F is really a foliation. Because g(ξ,ξ)=g(ξ,X1)=g(ξ,X2)=0, 
g(X1,X1)=-1, g(X2,X2)=-1 follows that F is a degenerate foliation. 

We have therefore: N = Span(ξ) and S (F )=Span(X1,X2). Like upper we have: 

N= rt2 )r(f2

1

)r(fV2

1 ∂−∂  therefore deg(F )=Span(N ). The foliation is therefore 

coisotropic 1-codimensional with a local quasi-orthonormal basis given by 
{X1,X2,ξ,N}. 

If we compute now the degenerate second fundamental form of F , we have: 

N
r

)r(fV
)X,X(h)X,X(h , 0=)X,(h , 0)X,(h , 0),(h

2

22
L

11
L

2
L

1
LL ==ξ=ξ=ξξ  

Defining now: HL=
r

)r(fV 2

N follows that hL(X,Y)=HLg(X,Y) ∀X,Y∈D F 

therefore the foliation F  is coisotropic totally umbilical. 

6.4. Let the foliation F generated by the vector field ξ=f(r)∂t+V2f(r)∂r where 
f:R→R is a smooth map non-null everywhere. Because g(ξ,ξ)=0 and [ξ,ξ]=0 
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follows that the foliation F is degenerate. If we shall proceed like in the first 
example, we have: 

ϕθ ∂
θ

+∂
θ

+∂
θ

=∂+∂+∂=
sinr

1

sinr

V

sinr

1
 W,

r

1

r

V

r

1
W r

2

t2r

2

t1  

where g(W1,W1)=g(W2,W2)=-1. 

 Also: 

ϕθ ∂
θ

−∂−∂
θ
+θ−+∂

θ
+θ+= 222r22

2222

t222

2222

sinr)r(f

1

r)r(f

1

sinr)r(f2

Vsin)rV(

Vsinr)r(f2

Vsin)rV(
N  

where g(N,N)=1. 

The foliation is therefore isotropic 1-codimensional with a local quasi-
orthonormal basis given by {ξ,W1,W2,N}. 

If we compute the degenerate second fundamental form of F  and the screen 
second fundamental form we have: hL=0, hS=0 therefore the foliation F  is isotropic 
degenerate totally geodesic. 

6.5. Because dim N =min {1,3}=1 we have therefore that on manifolds endowed 
with relativistic metrics does not exists totally degenerate foliations. 
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