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Abstract: The article is the first in a series that will treat underlying conditions to generate a 

production function. The importance of production functions is fundamental to analyze and forecast 

the various indicators that highlights different aspects of the production process. How often forgets 

that these functions start from some premises, the article comes just meeting these challenges, 

analyzing different initial conditions. On the other hand, where possible, we have shown the concrete 

way of determining the parameters of the function. 
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1 Introduction 

Theory of production functions is vitally important in microeconomic analysis. 

The need of economic phenomena mathematization, not only from a desire to give 

legitimacy to scientific economic theory but rather, to draw conclusions and 

prediction of enterprise activity required a careful analysis of them. 

Well-thought literature profile, but especially practical applications encountered in 

all kinds of handouts, printed or online, we drew a number of issues that sometimes 

are neglected (probably considered insignificant) or omitted with true intent. 

The first issue found by us is that of verification of sufficient conditions (not 

always necessary, but depending on the actual nature of the problem) as a function 

to be truly of production. 

Another aspect which seems essential is the practical applicability. One question 

that could be asked of any student from any part of the Earth, is: ―Departing from a 
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series of discrete data, how you will generate the output and, especially, what kind 

of production function will choose?‖ 

By own researches, I realized that maybe over 90% of production functions 

presented in teaching applications are of Cobb-Douglas type (requiring, however, 

the constancy of elasticity), the remainder being more or less created artificial 

(often they even unverified existing conditions). 

It might object here that the learning exercises aims to increase math skills with 

these functions. The problem is not this, but what follow... 

I rarely saw concrete applications, showing clearly how to practically apply these 

functions. Without this approach, the theory remains dry, with beautiful graphics 

(as an aside, all graphs of production looks pretty much the same, what will result 

in the following) and without practical application. 

Following these minimum considerations, we will try in the following pages to 

generate major production functions based on practical conditions (the approach 

being not new, meeting in original papers), but systematized and then explaining in 

each case how can apply them practically. 

 

2 General Notions 

In what follows, we assume that resources are infinitely divisible, which implies 

the use of specific tools of mathematical analysis to analyze specific phenomena. 

We thus define on R
n
 the space of production for n fixed resources as: 

SP=(x1,...,xn)xi0, i= n,1  

where xSP, x=(x1,...,xn) is an ordered set of resources (inputs). 

Because within a production process, depending on the nature of applied 

technology, but also its specificity, not any amount of resources possible, we will 

restrict the production area to a subset DpSP called production domain. 

It is now called production function (output) an application: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

For an effective and complex mathematical analysis of a production function we 

will require a number of axioms (not all essential) both its scope and its definition. 

A1. The production domain Dp is convex i.e. x=(x1,...,xn), y=(y1,...,yn)Dp 

[0,1] follows 

(1-)x+y=((1-)x1+y1,...,(1-)xn+yn)Dp. 
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Axiom A1 only mean that in the process of changing of the inputs from a level x to 

y, the linear shift is achieved through a series of successive steps which keeps them 

in the field of production, so by default the possibility of using the production 

function chosen. The condition could relax here, requiring domain to be, for 

example, connected by arches, that to be a continuous path between any two n-uple 

inputs. 

A2. Q(0,0,...,0)=0 

The axiom reflects a common sense assumption namely that in the absence of any 

input can not get any output. 

A3. The production function is continuous. 

Continuity, in purely mathematical sense, represents that for any fixed point 

 n1 x,...,x  of the production domain Dp and any string of inputs (yk)k1, yk=

 k
n

k
1 y,...,y  which converges to  

n1
x,...,x  (or otherwise i

k

i
xy   i= n,1 ) the 

production  k

n

k

1
y,...,yQ  converges to  

n1
x,...,xQ . 

More simply, the continuity of the production function means that for two sets of 

resources (x1,...,xn) and (y1,...,yn)Dp close enough, result outputs Q(x1,...,xn) and 

Q(y1,...,yn) close enough. In other words, a very small change of inputs lead to a 

reasonable production obtained. 

An axiom, not necessarily required, but particularly useful for obtaining significant 

results (using differential calculus) is: 

A4. The production function is of class C
2
(Dp) i.e. admits 2nd order continous 

partial derivatives. 

The condition of belonging to the class C
2
 may seem, at first glance, restrictive, but 

is not really. All basic functions (constant, power, exponential, logarithmic, 

trigonometric functions as those obtained from them by arithmetic operations of 

addition, subtraction, multiplication, division, power lifting, composing or reversal) 

are of C

 class (implicitly of class C

2
) on the definition domain i.e. have their 

partial derivatives of any order and these are continues. As a function of class C
k
, 

k0 is continuous implies that axiom A3, given that accept A4, is a simple 

consequence of the latter, so it can be removed. 

What is actually at least C
1
 class differentiability? If for a continuous function 

means, at an immediately approach (without much mathematical rigor) that its 

graph is not „broken‖ on the definition domain, the derivativability of class C
1
 

means that it does not have „corners‖ or „folds‖, the graph being smooth. In 

addition, for example in a corner point (for functions of one variable – different left 
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and right derivatives) we can not make predictions, the behavior at left/right not 

anticipates the behavior at right/left. 

A5. The production function is monotonically increasing in each variable. 

A5 axiom states that in ―ceteris paribus‖ hypotesis, i= n,1  if xiyi then> 

 
n1ii1i1

x,x,x,x,...xQ


  
n1ii1i1

x,x,y,x,...xQ


 
k

x 0, k= n,1 , ki such that 

 
n1ii1i1

x,x,x,x,...x


,  
n1ii1i1

x,x,y,x,...x


Dp. If the function Q is at least C
1
(Dp) 

the character of monotonically increasing becomes 
i

x

Q




0, i= n,1 . In terms of a 

―classic‖ production function with two variables: K – capital and L - labor, we 

have: 
K

Q




0, 

L

Q




0. 

Also from the axiom A5 result, as an immediate consequence, that if x1y1,...,xnyn 

then: Q(x1,x2,...,xn)Q(y1,x2,...,xn)Q(y1,y2,...,xn)...Q(y1,y2,...,yn). It is obvious 

that the relationship occurs only if the nature of the inequalities between 

components is the same for all of them. 

A condition often referred to in the definition of the production function is:â 

A6. The production function is quasi-concave. 

The quasi-concavity of a function means: 

Q(x+(1-)y)min(Q(x),Q(y)) [0,1] x,yRp 

Geometrically speaking, a quasi-concave function has property to be above the 

lowest values recorded at the end of a certain segment. The property is equivalent 

to the convexity of the set Q
-1

[a,) aR, where Q
-1

[a,)={xRpQ(x)a}. 

What does the quasi-concavity so? Convexity of the set Q
-1

[a,) lies in that if 

Q(x)a, Q(y)a then Q ((1-)x+y)a. This specifies, in conjunction with the 

axiom A1, that the transition from one set of inputs x to y is at a production level 

equal to or greater than a specified lower limit. Neither this condition would not 

necessarily be required, existing situations (for example, the transition to a market 

economy of the former communist states) the refurbishment (thus changing the 

structure of inputs) was made with temporary dip in the level of production. But as 

economic analysis, most often refers (unfortunately) to the processes that are 

somewhat stabilized, we will retain this condition. 

Considering so a production function Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ 

(x1,...,xn)Dp let the bordered Hessian matrix: 
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H
B
(f)=





























































































2
n

2

2n

2

1n

2

n

n2

2

2
2

2

12

2

2

n1

2

21

2

2
1

2

1

n21

x

Q
...

xx

Q

xx

Q

x

Q
...............

xx

Q
...

x

Q

xx

Q

x

Q

xx

Q
...

xx

Q

x

Q

x

Q

x

Q
...

x

Q

x

Q
0

 

and B
k  - the boarded principal diagonal determinants formed with the first (k+1) 

rows and columns of the matrix H
B
(f). We have the following theorem: 

Theorem If Q is a quasi-concave function then   B
k

k
1  0, k= n,1 . If   B

k

k
1  0 

then Q is quasi-concave function. 

Notes from the theorem that if at least one determinant is null we have not ensured 

the existence of quasi-concavity. 

For classical production functions Q=Q(K,L) the sufficient condition for quasi-

concavity becomes: 

2

22

2

2

2

L

Q

LK

Q

L

Q
LK

Q

K

Q

K

Q
L

Q

K

Q
0































0 therefore: 

2

22

2

222

K

Q

L

Q

L

Q

K

Q

LK

Q

L

Q

K

Q
2














































0. 

Recall, near the end of this introduction, that a function is called homogeneous if 

rR such that: Q(x1,...,xn)=
r
Q(x1,...,xn) R*. r is called the degree of 

homogeneity of the function. 

We say that a production function Q:DpR+ is with constant return to scale if 

Q(x1,...,xn)=Q(x1,...,xn) (so homogeneous of first degree), with increasing return 

to scale if Q(x1,...,xn)>Q(x1,...,xn) and with decreasing return to scale if 

Q(x1,...,xn)<Q(x1,...,xn) (1,) (x1,...,xn)Dp. The fact that a return to 

production is at constant scale means that the production has the same 

multiplication factor with those of the two factors. Similarly, the return of 

increasing (decreasing) scale production is multiplied by a factor higher (lower) 

than that of inputs. 
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We will note below for functions Q=Q(K,L): =
L

K
. 

In what follows we will analyze production functions of the form: Q=Q(K,L) 

 

3 Main Indicators of a Production Function 

Let a production function: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

We will call the marginal productivity relative to a production factor xi: 
ix =

ix

Q




 

and represents the trend of variation of production at the variation of the factor xi. 

In particular, for a production function of the form: Q=Q(K,L) we have K=
K

Q




 - 

called the marginal productivity of capital and L=
L

Q




 - called the marginal 

productivity of labor. 

If the output is given by discrete values, we define: 
i

x
x

Q
i 


  meaning the mean 

variation of the production on the interval of length ix . 

We call also the average productivity relative to a production factor xi: 
ixw =

ix

Q
 

and represents the value of production at the consumption of a unit of factor xi. 

In particular, for a production function of the form: Q=Q(K,L) we have: wK=
K

Q
 - 

called the productivity of capital, and wL=
L

Q
 - the productivity of labor. 

From [4], we have that in the general case of the variation of all inputs, for k1 units 

of input 1,...,kn units of input n, and Q(0,...,0)=0: 

Q(k1,...,kn)=  
1

0

n1xn

1

0

n1x1 dt)tk,...,tk(k...dt)tk,...,tk(k
n1

 

In particular, for Q=Q(K,L) we have: Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K . 
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Again, from [7], considering the factors i and j with ij, we define the restriction of 

production area: Pij=(x1,...,xn)xk=ak=const, k= n,1 , ki,j, xi,xjDp relative to the 

two factors when the others have fixed values and Dij=(xi,xj)(x1,...,xn)Pij - the 

domain of production relative to factors i and j. 

Defining Qij:DijR+ - the restriction of the production function to the factors i and 

j, i.e.: Qij(xi,xj)=Q(a1,...,ai-1,xi,ai+1,...,aj-1,xj,aj+1,...,an) we obtain that Qij define a 

surface in R
3
 for every pair of factors (i,j). 

We call partial marginal rate of technical substitution of the factors i and j, relative 

to Dij (caeteris paribus), the opposite change in the amount of factor j to substitute a 

variation of the quantity of factor i in the situation of conservation production level 

and note: RMS(i,j, x )=
i

j

dx

dx
 =

ijj

iji

Dx

Dx




 in an arbitrary point x =  n1 x,...,x . We 

define also ([7]) the global marginal rate of substitution between the i-th factor and 

the others as: RMS(i, x )=









n

ij
1j

2
x

x

)x(

)x(

j

i . The global marginal rate of technical 

substitution is the minimum (in the meaning of norm) of changes in consumption 

of factors so that the total production remain unchanged. 

In particular, for a production function of the form: Q=Q(K,L) we have: 

RMS(K,L)=
L

K




, RMS(L,K)=

K

L




 

It is called elasticity of production in relation to a production factor xi: 
ix =

i

i

x

Q

x

Q





=

i

i

x

x

w


 - the relative variation of production at the relative variation of factor xi. In 

particular, for a production function of the form: Q=Q(K,L) we have K=

K

Q
K

Q





=
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K

K

w


 - called the elasticity of production in relation to the capital and L=

L

Q
L

Q





=

L

L

w


 - the elasticity factor of production in relation to the labor. 

If the production function is homogenous of degree r, after Euler‘s relation: 

rQ
x

Q
x

n

1i i

i 






 we obtain that r
n

1i
x i




. 

 

4 Conditions of Marginal Productivity 

4.1. K =constant=, L constant 

In this case, we have: Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K =

 
1

0

L

1

0

dt)Lt,Kt(LdtK = K+Lg(K,L). Because 




K

Q
 we have that 0

K

g





 

that is g=g(L). Therefore: Q(K,L)=K+f(L). Now 
L

Q




=f‘(L)0fconstant. 

The conditions from the axioms become: 

 Q(0,0)=0f(0)=0 

 f – continuous 

 fC
2
(Dp) 

 
K

Q




=0 

 
L

Q




= f‘(L)0 

 
2

22

2

222

K

Q

L

Q

L

Q

K

Q

LK

Q

L

Q

K

Q
2














































=-

2
f‖(L)0f‖(L)0 

After these considerations we obtain that 0 and f is a monotonically increasing, 

strictly concave differentiable function of class at least two and vanishing in 0. 
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If now Q is homogenous, we have: rR: Q(K,L)=
r
Q(K,L) that is: 

K+f(L)=
r
(K+f(L)).  

If r1K+f(L)=
r
K+

r
f(L)

 1r

r

1

)L(f)L(f
K




 .Because K and L are 

independent variables follows K=constant therefore contradiction. We have r=1 

that is: f(L)=f(L), f being linear: f(L)=L. We obtained: Q=K+L – the linear 

production function. Let note in this case that Q is quasi-concave even though 

f‖(L)=0 for f(L)=L. 

For the linear production function, the determination of the parameters is very 

simple (using Least Square Method). 

Let (Ki,Li,Qi)i=1,...,n values of the capital, labor and production at the moments 1 to 

n. The minimum condition of the expression: E=  



n

1i

2

iii QLK  (relative to  

and ) becomes: 




























0QLLLK
E

2

1

0QKLKK
E

2

1

n

1i
ii

n

1i

2
i

n

1i
ii

n

1i
ii

n

1i
ii

n

1i

2
i

 

therefore: 






























































2
n

1i
ii

n

1i

2
i

n

1i

2
i

n

1i
ii

n

1i
ii

n

1i

2
i

n

1i
ii

2
n

1i
ii

n

1i

2
i

n

1i

2
i

n

1i
ii

n

1i
ii

n

1i

2
i

n

1i
ii

LKLK

LKQKKQL

LKLK

LKQLLQK

 

4.2. L =constant=, K constant 

Like previous, we obtain (permuting K with L): Q(K,L)=L+f(K) with f satisfying 

the same conditions like above. The determination of the parameters is as above. 
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4.3. K =constant=, L =constant= 

Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K =  
1

0

1

0

dtLdtK =K+L – the linear 

production function. The determination of the parameters is as above. 

4.4. K =

=






L

K
 

Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K =  


 1

0

L

1

0

dt)Lt,Kt(Ldt
L

K
K =

)L,K(g
L

K 1








. 

But 









L

K

K

Q


 
















L

K

K

g

L

K1
 from where: 










L

K

K

g








 dKK

L
g = 























)L(f

1

K

L

1

 therefore: Q(K,L)= 
 

)L(f
LL1

K 1



 





=

)L(hLK
1

1 


   where h(L)= )L(f
L


 . 

The conditions from the axioms become: 

 h – continuous 

 hC
2
(Dp) 

 



LK

K

Q
0  0 

 )L('hLK
1L

Q 11 







 
0 

 
2

22

2

222

K

Q

L

Q

L

Q

K

Q

LK

Q

L

Q

K

Q
2














































0

)L("hLK)L('h
1

LK 1

2
11






















 0 

After these considerations we obtain that 0 and h has the properties: 
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 11LK
1

)L('h 




  

 0)L("hLK)L('h
1

LK 1

2
11



















 



 

If now, we want that the function be homogenous, we have: 

Q(K,L)= )L(hLK
1

1 



  =

r
Q(K,L)= )L(hLK

1

r1r 



   that is: 

  )L(h)L(hLK
1

r1r 



   

If r1 we find that: 
 
 

 )L(h)L(h
L

1
K r

r

1 








 that is K depends from L – 

contradiction. 

We have therefore: r=1, that is: )L(h)L(h  , h being linear: h(L)=L. 

The production function becomes (after obvious notations): 

Q(K,L)= LLK
1

1 


   - Bruno production function with (-1,0) (after the 

above conditions), 0, 0. 

Let now (Ki,Li,Qi)i=1,...,n values of the capital, labor and production at the moments 1 

to n. The minimum conditions of the expression: E=
















n

1i

2

iii
1

i QLLK
1

 

(relative to ,  and ) are very difficult to be solve (and is not relevant because the 

existence of this function requires the particular form of K ), therefore we shall 

determine first, the discrete values of K =
K

Q




 that is: p,K =

p1p

p1p

KK

QQ








, p=

1n,1   and after, from the initial condition, that K =





L

K
 we have that: 

L

K
lnlnln K  . Let now E1=



















1n

1p

2

p,K

p

p
ln

L

K
ln  where  =ln . 

The Least Square Method gives us: 
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 





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






















































0ln
L

K
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L

K
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L

K
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E

2

1

0ln
L

K
ln1n

E

2

1

1n

1p
p,K

p

p
1n

1p

2

p

p
1n

1p p

p1

1n

1p
p,K

1n

1p p

p1

 

therefore: 

 

 

 


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




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














































































































































2
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1p p

p
1n

1p

2

p

p

1n

1p p

p
1n

1p
p,K

1n

1p
p,K

p

p

*

2
1n

1p p

p
1n

1p

2

p

p

1n

1p
p,K

p

p
1n

1p p

p
1n

1p

2

p

p
1n

1p
p,K

*

L

K
ln

L

K
ln1n

L

K
lnlnln

L

K
ln1n

L

K
ln

L

K
ln1n

ln
L

K
ln

L

K
ln

L

K
lnln

 

and 
*

e*  . 

After these: Q(K,L)= LLK
1

** 1

*

*




 
. The determination of  can be 

determined in the following way. Let note: 
**

i
1

i*

*

ii LK
1

Q 




 , i= n,1  and 

the condition that the expression: 

E2=  



n

1i

2

iiL  be minimum. We have therefore   0LL
d

dE

2

1 n

1i
iii

2 





 

therefore: 












n

1i

2
i

n

1i
ii

*

L

L

 where at least one Li0. Finally: Q(K,L)=

LLK
1

*1

*

*
**




 
. Let note here that because * =constant we must have that 

the values: 
i

i

L


, i= n,1  must be approximately constant. To inquire this we can use 
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the 3-rule that is in the interval (M-3,M+3)= 






 





M
31,

M
31M  lies over 

89% values, where M is the average of these. Therefore, we shall compute for the 

values 
i

i

L


, i= n,1  the average: M=

n

L

n

1i i

i




 and the standard deviation =

n

LL
n

2
n

1i i

i
n

1i

2

i

i








 








 



. If the value 
M


 is sufficiently small we can assume that 

*  is almost a constant and the determination is as in the upper. 

4.5. L =

=






L

K
 

 Because the relation can pe written as: L =





K

L
 we shall proceed as in 4.4. 

and we shall obtain (permuting K with L and replacing  with -): Q(K,L)=

)K(hLK
1

1 


  . 

The conditions from the axioms become: 

 h – continuous 

 hC
2
(Dp) 

 



LK

L

Q
0  0 

 )K('hLK
1K

Q 11 







 
0 

 
2
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2

222

K

Q

L

Q

L

Q

K

Q

LK

Q

L

Q

K

Q
2
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





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
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








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

















0

)K("hKL)K('h
1

KL 1

2
11






















 0 

After these considerations we obtain that 0 and h has the properties: 
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 11 KL
1

)K('h 




  

 0)K("hKL)K('h
1

KL 1

2
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

















 



 

If now, we want that the function be homogenous, we have, as previous: r=1, that 

is: )L(h)L(h  , h being linear: h(L)=L, the production function becoming 

(after obvious notations): 

Q(K,L)= KKL
1

1 


   - Bruno production type function with (0,1) (after 

the above conditions), 0, 0. 

Let now (Ki,Li,Qi)i=1,...,n values of the capital, labor and production at the moments 1 

to n. We shall determine first, the discrete values of L =
L

Q




 that is: p,L =

p1p

p1p

LL

QQ








, p= 1n,1   and after, from the initial condition, that L =






K

L
 we 

have that: 
K

L
lnlnln L  . Let now E1=


















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2
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p

p
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K

L
ln  where 

 =ln . The Least Square Method gives us (as upper): 
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and 
*

e*  . 
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After these: Q(K,L)= KKL
1

**1

*

*




  . The determination of  can be 

determined in the following way. Let note: 
**

i
1
i*

*

ii KL
1

Q 




 , i= n,1 and the 

condition that the expression: 

E2=  



n

1i

2

iiK  be minimum. We have therefore   0KK
d

dE

2

1 n

1i
iii

2 





 

therefore: 












n
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2
i

n
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ii

*

K

K

 where at least one Ki0. Finally: Q(K,L)=

KKL
1

*1

*

*
**




  . The demarche relative to the constancy of *  is similarly to 

4.4. 

4.6. K =


 

K

bLaK
, L =



 

L

dLcK
 

Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K =

 





 


 1

0

1

0

dt
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tdLtcK
Ldt
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tbLtaK
K = 


 

1

0

1
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0

1
1

0

1
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   
 

1

0

11
1

0

11 dttdLbKLdttcLaKK  

4.6.1. If --1, --1 then: Q(K,L)=

    





1111 dLbKL
1

1
cLaKK

1

1
. 

The conditions from the axioms become: 

 
  
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 
   
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If now, we want that the function be homogenous (of degree r), we have: 

Q(K,L)=     




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        0dLbKL
1

1
cLaKK

1

1 11r111r1 





   

4.6.1.a. If now r-+1 we have: 
 
 



















11

11

r1

r1

cLaKK

dLbKL

1

1
. 

4.6.1.a.i. If r=-+1 we obtain:    11 dLbKL =0 that is L= constant – 

contradiction or   11 L
b

d
K  - contradiction with the independence of K and L 

(if b0) or 
1dL =0 (b=0) which is true only of d=0. But in this case, we have that: 

K =
aK , L =

LcK  and Q(K,L)=
1

LcKaK 11



 

= 














L

K
qLpK 11

 with obvious notations. 

Let now (Ki,Li,Qi)i=1,...,n values of the capital, labor and production at the moments 1 

to n. We shall determine first, the discrete values of K =
K

Q




, L =

L

Q




 that is: 

p,K =
p1p

p1p

KK

QQ








, p,L =

p1p

p1p

LL

QQ








, p= 1n,1   and after, from the initial 

condition, that K =
aK , L =

LcK  we have that:   Klnalnln K   

and LlnKlnclnln L  . Let now first E1=
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 





1n

1p

2

p,Lpp lnLlnKln  where  =ln c and The Least Square Method 

gives us (as upper): 

 

 

 





































































1n

1p
pp,L

1n

1p

2

p

1n

1p
pp

1n

1p
p

1n

1p
pp,L

1n

1p
pp

1n

1p

2

p

1n

1p
p

1n

1p
p,L

1n

1p
p

1n

1p
p

LlnlnLlnLlnKlnLln

KlnlnLlnKlnKlnKln

lnLlnKln1n

 

from where we shall find: 
*

ec*  , 
* , * . 

After these:   Klnalnln **
K  . For the determination of ―a‖, let note 

here that because ln a is constant we must have that the values: 

  i
**

i,K Klnln  , i= n,1  must be approximately constant. To inquire this we 

can use the 3-rule that is in the interval (M-3,M+3)= 






 





M
31,

M
31M  lies 

over 89% values, where M is the average of these. Therefore, we shall compute for 

the values   i
**

i,K Klnln  , i= n,1  the average: M=
 

n

Klnln i
**

i,K 
 

and the standard deviation =

    

n

KlnlnKlnlnn

2
n

1i
i

**
i,K

n

1i

2

i
**

i,K 







 


. If the value 

M


 is 

sufficiently small we can assume that ln a is almost a constant and the 

determination is as in the upper. Let note also a
*
 this value. 

Now we have Q(K,L)=
1

LKcKa
**

1*1* ****



 

 with obvious notations. 

4.6.1.a.ii. If r-+1 we have that 

 
 
 





















11

11

r1

r1

cLaKK

dLbKL

1

1
f0  - contradiction with the fact 

that for constant K and L we shall have f=constant which is impossible. 
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4.6.1.b. Returning, now for r=-+1 we have: 

    0cLaKK
1

1 11r1 


  . 

4.6.1.b.i. For -+1r we shall obtain that the equality becomes true only if a=c=0 

(as upper) that is: K =  LbK , L = dL , Q(K,L)=
1

dLLbK 11



 

=














L

K
qKpL 11

. The deterination of the parameters can be done like in 

4.6.1.a.i replacing  with , K with L, a with d and c with b. 

4.6.1.b.ii. If -+1=r we have an identity. In this case: ==r+-1 and: K =

  LbKaK , L =
  dLLcK , Q(K,L)=

1

KbLLcKdLaK 1111



 

. The determination of the parameters in 

this case is a little bit difficult because  and  lies also at power of K and L and at 

the denominator of Q. 

If, in particular, ==
2

1
 we shall have: Q(K,L)= dLLKbaK   - Diewert 

production function (homogenous of degree 1). 

4.6.2. If -=-1 or -=-1 then the integral becomes - which is a contradiction 

which the nature of production. 

4.7. K =
LaK , L =

LbK  

In this case Q(K,L)=  
1

0

L

1

0

K dt)Lt,Kt(Ldt)Lt,Kt(K =


 

1

0

1

0

dtLKbtLdtLKatK  

4.7.1. If +-1 and +-1 we have: Q(K,L)=
1

LbK

1

LaK 11








. 

The conditions from the axioms become: 

 



LaK

K

Q
0 that is a0 
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 



LbK

L

Q
0 that is b0 

 
2

22

2

222

K

Q

L

Q

L

Q

K

Q

LK

Q

L

Q

K

Q
2














































=

    21221222 LKabLK2ba 0 that is:     LKbLK2a 11

0 

If now, we want that the function be homogenous (of degree r), we have: 

Q(K,L)=
1

LbK

1

LaK 1
1

1
1











 =

1

LbK

1

LaK 1
r

1
r









 that is: 

    0
1

LbK

1

LaK 1
r1

1
r1 











 . 

If r++1 we obtain: 
 

 1a

LK1b 11

r1

r1








 





. 

If ++1r and ++ the expression from left depends from  which is a 

contradiction with the right. 

If ++1=r we shall find that:   11LK1b  =0 that is ++1=r=0 which 

is a contradiction with the hypothesis. 

If +=+-1 we have: aLbK 11 
that is a contradiction with the 

variability of K and L. 

We have therefore: r=++1 and with the same arguments r=++1. In this case 

the production function is homogenous and has the expression: Q(K,L)=

1

LbKLaK 11



 

. With new notations: Q(K,L)=
  LBKLAK . For 

A=0 or B=0 we obtain the classical Cobb-Douglas production function. 

The determination of the parameters follows obviously (like upper) from the 

conditions: K =
LaK , L =

LbK . 

4.7.2. If +=-1 or +=-1 then the integral becomes - which is a contradiction 

which the nature of production. 
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5 Conditions of Marginal Rate of Substitution 

5.1. RMS(K,L)=
dc

ba




 where =

L

K
, Q being homogenous of degree 1. 

Because Q(K,L)=  L,LQ  =  1,LQ   we will note  q =  1,Q   and we have: 

Q(K,L)=L  q . 

Now: K =
K

Q




=  

K
'Lq




 =  'q  and L =

L

Q




=    

L
'Lqq




 =     'qq

. 

We have RMS(K,L)=
L

K




=

 
    dc

ba

'qq

'q









. 

In this case:          qba'qdcba 2  which it can be written as: 

 
    dcba

ba

q

'q
2 







 if   dcba 2  0. 

Integrating:  
  




 d

dcba

ba
qln

2
 

5.1.1. If   0ad4cb
2

  we have that: 

   
   

C
cbad4

cba2
arctg

cbad4

cb
dcbaln

2

1
qln

22

2 







 , CR 

therefore:        22
cbad4

cba2
arctg

cbad4

cb

2 edcbaCq








 , C *
R . 

Expressing in function of K and L, we find that: 

Q(K,L)=    

 

 22
cbad4L

LcbaK2
arctg

cbad4

cb

22 edLKLcbaKC








  , C *
R . 

In particular, for b=c we have: Q(K,L)=
22 dLbKL2aKC   , C *

R  with b
2
-

ad0 – the Allen production function. 
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5.1.2. If   0ad4cb
2

  we have that:   C
cba2

cb

a2

cb
lnqln 







  

therefore: 

  cba2

cb

e
a2

cb
Cq 




 , C *
R . 

Finally: Q(K,L)=  
 

 LcbaK2

Lcb

eL
a2

cb
KCq 




  

5.1.3.   0ad4cb
2

  we have that: 

   
   




 d

1

a2

cb
dcbaln

2

1
qln

21

2
=

 
2

1

21

2 ln
1

a2

cb
dcbaln

2

1








  where 1  and 2  are the real roots 

of   dcba 2  =0. 

We have now:    
 21a2

cb

2

12 dcbaCq







  , C *

R . and finally: 

Q(K,L)=  
 21a2

cb

2

122

LK

LK
dLKLcbaKC








  , C *

R . 

In particular, for b=c we have: Q(K,L)=
22 dLbKL2aKC   , C *

R  with b
2
-

ad0 – the Allen production function. 
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