A Method of Determination of an Acquisition Program in Order to Maximize the Total Utility Using Linear Programming in Integer Numbers

Alin Cristian Ioan Bucharest University alincristianioan@yahoo.com

Associate Professor Catalin Angelo Ioan, PhD Danubius University of Galati catalin_angelo_ioan@univ-danubius.ro

Abstract. This paper solves in a different way the problem of maximization of the total utility using the linear programming in integer numbers. The author uses the diofantic equations (equations in integers numbers) and after a decomposing in different cases, he obtains the maximal utility.

Keywords: utility, maximization, Simplex, Gomory

Jell Classification: C70

A method of maximization the total utility

Let a consumer which has a budget of acquision of r goods $G_1,...,G_r$, in value of S u.m. The prices of the r goods G_i , $i=\overline{1,r}$ are p_i , $i=\overline{1,r}$. The marginal utilities corresponding to an arbitrary number of doses are in the following table:

No. of dose	U _{m1}	 U _{mr}
1	u ₁₁	 u_{1r}
i	u _{i1}	 u _{ir}
n	u _{n1}	 u _{nr}

We propose, in what follows, the determination of the number of doses a_i from the good G_i , $i=\overline{1,r}$ such that the total utility: $U_t = \sum_{j=1}^r \sum_{i=1}^{a_j} u_{ij}$ be maximal.

Let note: $\mathbf{x}_{ij} = \begin{cases} 1 \text{ if the } i \text{ - th dose from the good } j \text{ is used} \\ 0 \text{ if the } i \text{ - th dose from the good } j \text{ is not used} \end{cases}$

Because the impossibility of using the (i-1)-th dose involved the existence's impossibility of the i-th dose, we shall put the condition that: $x_{ij} \in \mathbf{N}$, $0 \le x_{ij} \le x_{i-1,j}$ for i>1 and $j=\overline{1,r}$.

We have also:
$$\sum_{i=1}^{n} \sum_{j=1}^{m} p_j x_{ij} \leq S.$$

The problem consists in the determination of x_{ij} such that to have max $\sum_{j=l}^r \sum_{i=l}^n u_{ij} x_{ij}$.

The problem is therefore:

(1)
$$\begin{cases} \max \sum_{j=1}^{r} \sum_{i=1}^{n} u_{ij} x_{ij} \\ \sum_{i=1}^{n} \sum_{j=1}^{m} p_{j} x_{ij} \leq S \\ x_{ij} \leq x_{i-l,j}, i = \overline{2, n}, j = \overline{1, r} \\ x_{ij} \leq 1, i = \overline{1, n}, j = \overline{1, r} \\ x_{ij} \geq 0, i = \overline{1, n}, j = \overline{1, r} \end{cases}$$

Finally we shall have: $a_{j}{=}\sum_{\scriptscriptstyle i=1}^{n}x_{\scriptscriptstyle ij}$, $j{=}\overline{1,r}$.

Because the problem (1) is in integer numbers, we shall apply the algorithm of Gomory.

After the solving of (1) using the Simplex algorithm, we shall have two cases:

Case 1

If $\overline{x}_{ij} \in \mathbf{N}$, $i=\overline{1,n}$, $j=\overline{1,r}$ the problem is completely solved.

Case 2

If $\exists x_{kp} \notin \mathbf{N}$, $k=\overline{1,n}$, $p=\overline{1,r}$ the variable \overline{x}_{kp} is obvious in the basis.

125

In this case, let note y_{kpts} the element of the Simplex table at the intersection of x_{kp} -row with x_{ts} -column. In order to simplify the notations, let: $v_{kpts} = \{y_{kpts}\} \in [0,1)$, $v_{kp} = \{\overline{x}_{kp}\} \in [0,1)$ the fractional part of these quantities, $B = \{(g,h) \mid x_{gh} \text{ is a basis variable}\}$ and $S = \{(t,s) \mid x_{ts} \text{ is not a basis variable}\}$.

We have now, from: $x_{gh} = \overline{x}_{gh} - \sum_{(t,s)\in S} y_{ghts} x_{ts} \quad \forall (g,h) \in B$:

(2)
$$\mathbf{x}_{kp} = \mathbf{\overline{x}}_{kp} - \sum_{(t,s)\in\mathcal{S}} \mathbf{y}_{kpts} \mathbf{x}_{ts} = \left[\mathbf{\overline{x}}_{kp}\right] + \mathbf{v}_{kp} - \sum_{(t,s)\in\mathcal{S}} \left[\mathbf{y}_{kpts}\right] \mathbf{x}_{ts} - \sum_{(t,s)\in\mathcal{S}} \mathbf{v}_{kpts} \mathbf{x}_{ts}$$

We can write (2) also in the form:

(3)
$$\mathbf{x}_{kp} - \left[\overline{\mathbf{x}}_{kp}\right] + \sum_{(t,s)\in\mathcal{S}} \left[\mathbf{y}_{kpts}\right] \mathbf{x}_{ts} = \mathbf{v}_{kp} - \sum_{(t,s)\in\mathcal{S}} \mathbf{v}_{kpts} \mathbf{x}_{ts}$$

In order that the problem has integer solution it therefore necessary and sufficient that: $x_{kp} - [\overline{x}_{kp}] + \sum_{(t,s)\in S} [y_{kpts}] x_{ts} \in \mathbb{Z}$ or, in other words: $v_{kp} - \sum_{(t,s)\in S} v_{kpts} x_{ts} \in \mathbb{Z}$.

Let now:

(4)
$$v = v_{kp} - \sum_{(t,s) \in S} v_{kpts} x_{ts}$$

from where:

(5)
$$\sum_{(t,s)\in\mathcal{S}} v_{kpts} \mathbf{x}_{ts} = v_{kp} - v, \ v \in \mathbf{Z}$$

From the hypotesis, v_{kpts} , $v_{kp} \in [0,1)$ and $\sum_{(t,s) \in \mathcal{S}} v_{kpts} x_{ts} \ge 0$ from the positive character of

variables.

We have now three cases:

Case 2.1

If v>0 we have $v \in \mathbf{N}^*$ therefore $0 \le \sum_{(t,s) \in S} v_{kpts} x_{ts} = v_{kp} - v$. From this: $v_{kp} \ge v \ge 1 - v_{kp} - v_{kp} + v_{kp} - v_$

contradiction with the choice of v_{kp} .

Case 2.2

If v=0 we have that $\sum_{(t,s)\in S} v_{kpts} x_{ts} = v_{kp} \ge v_{kp}$.

Case 2.3

If v<0 we have from the condition that v is integer: v \leq -1 which implies: -v \geq 1. Finally: $\sum_{(t,s)\in S} v_{kpts} x_{ts} = v_{kp} - v \geq v_{kp} + 1 > v_{kp} > 0.$

From these cases, we have that the condition to be integer for x_{kp} is: $\sum_{(t,s)\in\mathcal{S}} v_{kpts} x_{ts} \ge v_{kp}.$

After all these considerations, making the notation: $y = \sum_{(t,s)\in S} v_{kpts} x_{ts} - v_{kp}$ we shall obtain the new problem:

$$(6) \begin{cases} \max \sum_{j=1}^{r} \sum_{i=1}^{n} u_{ij} x_{ij} \\ \sum_{i=1}^{n} \sum_{j=1}^{m} p_{j} x_{ij} \leq S \\ y - \sum_{(t,s) \in S} v_{kpts} x_{ts} = -v_{kp} \\ x_{ij} \leq x_{i-1,j}, i = \overline{2,n}, j = \overline{1,r} \\ x_{ij} \leq 1, i = \overline{1,n}, j = \overline{1,r} \\ x_{ij} \geq 0, i = \overline{1,n}, j = \overline{1,r}, y \geq 0 \end{cases}$$

If the problem (6) will has at finally an integer solution the problem will be completely solved. If not, we shall resume the upper steps.

Example

No. of dose	U _{mx}	U _{m3}	U_{mz}
1	10	12	15
2	8	10	12
3	7	5	10
4	6	2	7

 $p_x=6, p_y=5, p_z=4, S=50.$

The linear programming problem is:

$$\begin{cases} \max(10x_{11} + 8x_{21} + 7x_{31} + 6x_{41} + 12x_{12} + 10x_{22} + 5x_{32} + 2x_{42} + 15x_{13} + 12x_{23} + 10x_{33} + 7x_{43}) \\ 6(x_{11} + x_{21} + x_{31} + x_{41}) + 5(x_{12} + x_{22} + x_{32} + x_{42}) + 4(x_{13} + x_{23} + x_{33} + x_{43}) \le 50 \\ x_{ij} \le x_{i-1,j}, i = \overline{2,4}, j = \overline{1,3} \\ x_{ij} \le 1, i = \overline{1,4}, j = \overline{1,3} \\ x_{ij} \ge 0, i = \overline{1,4}, j = \overline{1,3} \end{cases}$$

After the application of the Simplex algorithm we obtain:

$$x_{11}=1, x_{21}=1, x_{31}=1, x_{41}=1/6, x_{12}=1, x_{22}=1, x_{32}=1, x_{42}=0, x_{13}=1, x_{23}=1, x_{33}=1, x_{43}=1$$

We shall add the restriction:

 $y-0,8x_{42}=-1/6$

c

and we obtain now the problem:

$$\begin{cases} \max(10x_{11} + 8x_{21} + 7x_{31} + 6x_{41} + 12x_{12} + 10x_{22} + 5x_{32} + 2x_{42} + 15x_{13} + 12x_{23} + 10x_{33} + 7x_{43}) \\ 6(x_{11} + x_{21} + x_{31} + x_{41}) + 5(x_{12} + x_{22} + x_{32} + x_{42}) + 4(x_{13} + x_{23} + x_{33} + x_{43}) \le 50 \\ y - 0,8x_{42} = -1/6 \\ x_{ij} \le x_{i-1,j}, i = \overline{2,4}, j = \overline{1,3} \\ x_{ij} \le 1, i = \overline{1,4}, j = \overline{1,3} \\ x_{ij} \ge 0, i = \overline{1,4}, j = \overline{1,3} \end{cases}$$

Finally, we have:

 $x_{11}=1, x_{21}=1, x_{31}=1, x_{41}=1, x_{12}=1, x_{22}=1, x_{32}=0, x_{42}=0, x_{13}=1, x_{23}=1, x_{33}=1, x_{43}=1$

and: $a_1 = x_{11} + x_{21} + x_{31} + x_{41} = 4$, $a_2 = x_{12} + x_{22} + x_{32} + x_{42} = 2$, $a_3 = x_{13} + x_{23} + x_{33} + x_{43} = 4$ and the maximal utility will be $U_t=97$ for 4 goods x, 2 goods y and 4 goods z.