A Method of Determination of an Acquisition Program in Order to Maximize the Total Utility Using Linear Programming in Integer Numbers

Alin Cristian Ioan
Bucharest University
alincristianioan@yahoo.com
Associate Professor Catalin Angelo Ioan, PhD
Danubius University of Galati
catalin_angelo_ioan@univ-danubius.ro

Abstract

This paper solves in a different way the problem of maximization of the total utility using the linear programming in integer numbers. The author uses the diofantic equations (equations in integers numbers) and after a decomposing in different cases, he obtains the maximal utility.

Keywords: utility, maximization, Simplex, Gomory
Jell Classification: C70

A method of maximization the total utility

Let a consumer which has a budget of acquision of r goods G_{1}, \ldots, G_{r}, in value of S u.m. The prices of the r goods $\mathrm{G}_{\mathrm{i}}, \mathrm{i}=\overline{1, \mathrm{r}}$ are $\mathrm{p}_{\mathrm{i}}, \mathrm{i}=\overline{1, r}$. The marginal utlities corresponding to an arbitrary number of doses are in the following table:

No. of dose	$\mathrm{U}_{\mathrm{m} 1}$	\ldots	U_{mr}
1	u_{11}	\ldots	$\mathrm{u}_{1 \mathrm{r}}$
\ldots	\ldots	\ldots	\ldots
i	$\mathrm{u}_{\mathrm{i} 1}$	\ldots	u_{ir}
\ldots	\ldots	\ldots	\ldots
n	$\mathrm{u}_{\mathrm{n} 1}$	\ldots	u_{nr}

We propose, in what follows, the determination of the number of doses a_{i} from the good $G_{i}, i=\overline{1, r}$ such that the total utility: $U_{t}=\sum_{j=1}^{r} \sum_{i=1}^{a_{j}} u_{i j}$ be maximal.

Let note: $\mathrm{x}_{\mathrm{ij}}=\left\{\begin{array}{c}1 \text { if the } \mathrm{i}-\text { th dose from the good } \mathrm{j} \text { is used } \\ 0 \text { if the } \mathrm{i}-\text { th dose from the good } \mathrm{j} \text { is not used }\end{array}\right.$
Because the impossibility of using the (i-1)-th dose involved the existence's impossibility of the i-th dose, we shall put the condition that: $\mathrm{x}_{\mathrm{ij}} \in \mathbf{N}, 0 \leq \mathrm{x}_{\mathrm{ij}} \leq \mathrm{x}_{\mathrm{i}-1, \mathrm{j}}$ for $\mathrm{i}>1$ and $\mathrm{j}=\overline{1, \mathrm{r}}$.

We have also: $\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{S}$.
The problem consists in the determination of X_{ij} such that to have max $\sum_{\mathrm{j}=1}^{\mathrm{r}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}$.
The problem is therefore:

$$
\left\{\begin{array}{c}
\max \sum_{\mathrm{j}=1}^{\mathrm{r}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}} \tag{1}\\
\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{S} \\
\mathrm{x}_{\mathrm{ij}} \leq \mathrm{x}_{\mathrm{i}-1, \mathrm{j}}, \mathrm{i}=\overline{2, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}} \\
\mathrm{x}_{\mathrm{ij}} \leq 1, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}} \\
\mathrm{x}_{\mathrm{ij}} \geq 0, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}}
\end{array}\right.
$$

Finally we shall have: $\mathrm{a}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}}, \mathrm{j}=\overline{1, \mathrm{r}}$.
Because the problem (1) is in integer numbers, we shall apply the algorithm of Gomory.

After the solving of (1) using the Simplex algorithm, we shall have two cases:

Case 1

If $\overline{\mathrm{x}}_{\mathrm{ij}} \in \mathbf{N}, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}}$ the problem is completely solved.

Case 2

If $\exists \overline{\mathrm{x}}_{\mathrm{kp}} \notin \mathbf{N}, \mathrm{k}=\overline{1, \mathrm{n}}, \mathrm{p}=\overline{1, \mathrm{r}}$ the variable $\overline{\mathrm{x}}_{\mathrm{kp}}$ is obvious in the basis.

In this case, let note $y_{k p t s}$ the element of the Simplex table at the intersection of $x_{k p}{ }^{-}$ row with x_{ts}-column. In order to simplify the notations, let: $\mathrm{v}_{\mathrm{kpts}}=\left\{\mathrm{y}_{\mathrm{kpts}}\right\} \in[0,1)$, $\mathrm{v}_{\mathrm{kp}}=\left\{\overline{\mathrm{x}}_{\mathrm{kp}}\right\} \in[0,1)$ the fractional part of these quantities, $B=\left\{(\mathrm{g}, \mathrm{h}) \mid \mathrm{x}_{\mathrm{gh}}\right.$ is a basis variable $\}$ and $S=\left\{(\mathrm{t}, \mathrm{s}) \mid \mathrm{x}_{\mathrm{ts}}\right.$ is not a basis variable $\}$.

We have now, from: $\mathrm{x}_{\mathrm{gh}}=\overline{\mathrm{x}}_{\mathrm{gh}}-\sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{y}_{\mathrm{ghts}} \mathrm{x}_{\mathrm{ts}} \forall(\mathrm{g}, \mathrm{h}) \in B$:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{kp}}=\overline{\mathrm{x}}_{\mathrm{kp}}-\sum_{(\mathrm{t}, \mathrm{~s}) \in S} \mathrm{y}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}}=\left[\overline{\mathrm{x}}_{\mathrm{kp}}\right]+\mathrm{v}_{\mathrm{kp}}-\sum_{(\mathrm{t}, \mathrm{~s}) \in S}\left[\mathrm{y}_{\mathrm{kpts}}\right] \mathrm{x}_{\mathrm{ts}}-\sum_{(\mathrm{t}, \mathrm{~s}) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \tag{2}
\end{equation*}
$$

We can write (2) also in the form:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{kp}}-\left[\overline{\mathrm{x}}_{\mathrm{kp}}\right]+\sum_{(\mathrm{t}, \mathrm{~s}) \in S}\left[\mathrm{y}_{\mathrm{kpts}}\right] \mathrm{x}_{\mathrm{ts}}=\mathrm{v}_{\mathrm{kp}}-\sum_{(\mathrm{t}, \mathrm{~s}) \in \mathrm{S}} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \tag{3}
\end{equation*}
$$

In order that the problem has integer solution it therefore necessary and sufficient that: $\mathrm{x}_{\mathrm{kp}}-\left[\overline{\mathrm{x}}_{\mathrm{kp}}\right]+\sum_{(\mathrm{t}, s) \in S}\left[\mathrm{y}_{\mathrm{kpts}}\right] \mathrm{x}_{\mathrm{ts}} \in \mathbf{Z}$ or, in other words: $\mathrm{v}_{\mathrm{kp}}-\sum_{(\mathrm{t}, s) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \in \mathbf{Z}$.

Let now:

$$
\begin{equation*}
\mathrm{v}=\mathrm{v}_{\mathrm{kp}}-\sum_{(\mathrm{t}, \mathrm{~s}) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \tag{4}
\end{equation*}
$$

from where:

$$
\begin{equation*}
\sum_{(\mathrm{t}, \mathrm{~s}) \in \mathrm{S}} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}}=\mathrm{v}_{\mathrm{kp}}-\mathrm{v}, \mathrm{v} \in \mathbf{Z} \tag{5}
\end{equation*}
$$

From the hypotesis, $\mathrm{v}_{\mathrm{kpts}}, \mathrm{v}_{\mathrm{kp}} \in[0,1)$ and $\sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \geq 0$ from the positive character of variables.

We have now three cases:

Case 2.1

If $\mathrm{v}>0$ we have $\mathrm{v} \in \mathbf{N}^{*}$ therefore $0 \leq \sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{v}_{\mathrm{kpps}} \mathrm{x}_{\text {ts }}=\mathrm{v}_{\mathrm{kp}}-\mathrm{v}$. From this: $\mathrm{v}_{\mathrm{kp}} \geq \mathrm{v} \geq 1-$ contradiction with the choice of v_{kp}.

Case 2.2
If $\mathrm{v}=0$ we have that $\sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\text {ts }}=\mathrm{v}_{\mathrm{kp}} \geq \mathrm{v}_{\mathrm{kp}}$.

Case 2.3

If $v<0$ we have from the condition that v is integer: $v \leq-1$ which implies: $-\mathrm{v} \geq 1$.
Finally: $\sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}}=\mathrm{v}_{\mathrm{kp}}-\mathrm{v} \geq \mathrm{v}_{\mathrm{kp}}+1>\mathrm{v}_{\mathrm{kp}}>0$.
From these cases, we have that the condition to be integer for x_{kp} is: $\sum_{(t, s) \in S} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}} \geq \mathrm{v}_{\mathrm{kp}}$.

After all these considerations, making the notation: $\mathrm{y}=\sum_{(\mathrm{t}, \mathrm{s}) \in S} \mathrm{v}_{\mathrm{kpps}} \mathrm{x}_{\mathrm{ts}}-\mathrm{v}_{\mathrm{kp}}$ we shall obtain the new problem:
(6)

$$
\left\{\begin{array}{c}
\max \sum_{\mathrm{j}=1}^{\mathrm{r}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}} \\
\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{S} \\
\mathrm{y}-\sum_{(\mathrm{t}, \mathrm{~s})=\mathrm{S}} \mathrm{v}_{\mathrm{kpts}} \mathrm{x}_{\mathrm{ts}}=-\mathrm{v}_{\mathrm{kp}} \\
\mathrm{x}_{\mathrm{ij}} \leq \mathrm{x}_{\mathrm{i}-1, \mathrm{j}}, \mathrm{i}=\overline{2, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}} \\
\mathrm{x}_{\mathrm{ij}} \leq 1, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}} \\
\mathrm{x}_{\mathrm{ij}} \geq 0, \mathrm{i}=\overline{1, \mathrm{n}}, \mathrm{j}=\overline{1, \mathrm{r}}, \mathrm{y} \geq 0
\end{array}\right.
$$

If the problem (6) will has at finally an integer solution the problem will be completely solved. If not, we shall resume the upper steps.

Example

No. of dose	U_{mx}	$\mathrm{U}_{\mathrm{m} 3}$	U_{mz}
1	10	12	15
2	8	10	12
3	7	5	10
4	6	2	7

$\mathrm{p}_{\mathrm{x}}=6, \mathrm{p}_{\mathrm{y}}=5, \mathrm{p}_{\mathrm{z}}=4, \mathrm{~S}=50$.
The linear programming problem is:

$$
\left\{\begin{array}{c}
\max \left(10 \mathrm{x}_{11}+8 \mathrm{x}_{21}+7 \mathrm{x}_{31}+6 \mathrm{x}_{41}+12 \mathrm{x}_{12}+10 \mathrm{x}_{22}+5 \mathrm{x}_{32}+2 \mathrm{x}_{42}+15 \mathrm{x}_{13}+12 \mathrm{x}_{23}+10 \mathrm{x}_{33}+7 \mathrm{x}_{43}\right) \\
6\left(\mathrm{x}_{11}+\mathrm{x}_{21}+\mathrm{x}_{31}+\mathrm{x}_{41}\right)+5\left(\mathrm{x}_{12}+\mathrm{x}_{22}+\mathrm{x}_{32}+\mathrm{x}_{42}\right)+4\left(\mathrm{x}_{13}+\mathrm{x}_{23}+\mathrm{x}_{33}+\mathrm{x}_{43}\right) \leq 50 \\
\mathrm{x}_{\mathrm{ij}} \leq \mathrm{x}_{\mathrm{i}-1, \mathrm{j}}, \mathrm{i}=\overline{2,4}, \mathrm{j}=\overline{1,3} \\
\mathrm{x}_{\mathrm{ij}} \leq 1, \mathrm{i}=\overline{1,4}, \mathrm{j}=\overline{1,3} \\
\mathrm{x}_{\mathrm{ij}} \geq 0, \mathrm{i}=\overline{1,4}, \mathrm{j}=\overline{1,3}
\end{array}\right.
$$

After the application of the Simplex algorithm we obtain:
$\mathrm{x}_{11}=1, \mathrm{x}_{21}=1, \mathrm{x}_{31}=1, \mathrm{x}_{41}=1 / 6, \mathrm{x}_{12}=1, \mathrm{x}_{22}=1, \mathrm{x}_{32}=1, \mathrm{x}_{42}=0, \mathrm{x}_{13}=1, \mathrm{x}_{23}=1, \mathrm{x}_{33}=1, \mathrm{x}_{43}=1$
We shall add the restriction:
$y-0,8 x_{42}=-1 / 6$
and we obtain now the problem:

$$
\left\{\begin{array}{c}
\max \left(10 \mathrm{x}_{11}+8 \mathrm{x}_{21}+7 \mathrm{x}_{31}+6 \mathrm{x}_{41}+12 \mathrm{x}_{12}+10 \mathrm{x}_{22}+5 \mathrm{x}_{32}+2 \mathrm{x}_{42}+15 \mathrm{x}_{13}+12 \mathrm{x}_{23}+10 \mathrm{x}_{33}+7 \mathrm{x}_{43}\right) \\
6\left(\mathrm{x}_{11}+\mathrm{x}_{21}+\mathrm{x}_{31}+\mathrm{x}_{41}\right)+5\left(\mathrm{x}_{12}+\mathrm{x}_{22}+\mathrm{x}_{32}+\mathrm{x}_{42}\right)+4\left(\mathrm{x}_{13}+\mathrm{x}_{23}+\mathrm{x}_{33}+\mathrm{x}_{43}\right) \leq 50 \\
\mathrm{y}-0,8 \mathrm{x}_{42}=-1 / 6 \\
\\
\mathrm{x}_{\mathrm{ij}} \leq \mathrm{x}_{\mathrm{i}-1, \mathrm{j}}, \mathrm{i}=\overline{2,4}, \mathrm{j}=\overline{1,3} \\
\mathrm{x}_{\mathrm{ij}} \leq 1, \mathrm{i}=\overline{1,4}, \mathrm{j}=\overline{1,3} \\
\mathrm{x}_{\mathrm{ij}} \geq 0, \mathrm{i}=\overline{1,4}, \mathrm{j}=\overline{1,3}
\end{array}\right.
$$

Finally, we have:
$\mathrm{x}_{11}=1, \mathrm{x}_{21}=1, \mathrm{x}_{31}=1, \mathrm{x}_{41}=1, \mathrm{x}_{12}=1, \mathrm{x}_{22}=1, \mathrm{x}_{32}=0, \mathrm{x}_{42}=0, \mathrm{x}_{13}=1, \mathrm{x}_{23}=1, \mathrm{x}_{33}=1, \mathrm{x}_{43}=1$ and: $\mathrm{a}_{1}=\mathrm{x}_{11}+\mathrm{x}_{21}+\mathrm{x}_{31}+\mathrm{x}_{41}=4, \mathrm{a}_{2}=\mathrm{x}_{12}+\mathrm{x}_{22}+\mathrm{x}_{32}+\mathrm{x}_{42}=2, \mathrm{a}_{3}=\mathrm{x}_{13}+\mathrm{x}_{23}+\mathrm{x}_{33}+\mathrm{x}_{43}=4$ and the maximal utility will be $\mathrm{U}_{\mathrm{t}}=97$ for 4 goods $\mathrm{x}, 2$ goods y and 4 goods z .

