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A method of maximization the total utility 

Let a consumer which has a budget of acquision of r goods G1,...,Gr, in value of S 

u.m. The prices of the r goods Gi, i= r,1  are pi, i= r,1 . The marginal utlities 

corresponding to an arbitrary number of doses are in the following table: 

No. of dose Um1 … Umr 

1 u11 … u1r 

… … … … 

i ui1 … uir 

… … … … 

n un1 … unr 
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We propose, in what follows, the determination of the number of doses ai from the 

good Gi, i= r,1  such that the total utility: Ut=∑∑
= =

r

1j

a

1i
ij

j

u  be maximal. 

Let note:




=
usednot  is j good  thefrom doseth -i  theif 0

used is j good  thefrom doseth -i  theif 1
x ij  

Because the impossibility of using the (i-1)-th dose involved the existence’s 
impossibility of the i-th dose, we shall put the condition that: xij∈N, 0≤xij≤xi-1,j for 

i>1 and j= r,1 . 

We have also: ∑∑
= =

n

1i

m

1j
ijj xp ≤S. 

The problem consists in the determination of xij such that to have max ∑∑
= =

r

1j

n

1i
ijij xu . 

The problem is therefore: 
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Finally we shall have: aj=∑
=

n

1i
ijx , j= r,1 . 

Because the problem (1) is in integer numbers, we shall apply the algorithm of 
Gomory. 

After the solving of (1) using the Simplex algorithm, we shall have two cases: 

Case 1 

If ijx ∈N, i= n,1 , j= r,1  the problem is completely solved. 

Case 2 

If ∃ kpx ∉N, k= n,1 , p= r,1  the variable kpx  is obvious in the basis. 
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In this case, let note ykpts the element of the Simplex table at the intersection of xkp-

row with xts-column. In order to simplify the notations, let: vkpts={ykpts}∈[0,1), 

vkp={ kpx }∈[0,1) the fractional part of these quantities, B={(g,h)xgh is a basis 

variable} and S={(t,s)xts is not a basis variable}. 

We have now, from: ∑
∈

−=
S)s,t(

tsghgh xxx ghtsy  ∀(g,h)∈B: 

(2) [ ] [ ] ∑∑∑
∈∈∈

−−+=−=
SSS )s,t(

ts
)s,t(

tskpkp

)s,t(
tskpkp xxvxxxx kptskptskpts vyy  

We can write (2) also in the form: 

(3) [ ] [ ] ∑∑
∈∈

−=+−
SS )s,t(

tskp
)s,t(

tskpkp xvxxx kptskpts vy  

In order that the problem has integer solution it therefore necessary and sufficient 

that: [ ] [ ]∑
∈

+−
S)s,t(

tskpkp xxx kptsy ∈Z or, in other words: ∑
∈

−
S)s,t(

tskp xv kptsv ∈Z. 

Let now: 

(4) v= ∑
∈

−
S)s,t(

tskp xv kptsv  

from where: 

(5) ∑
∈S)s,t(

tsxkptsv =vkp-v, v∈Z 

From the hypotesis, vkpts, vkp∈[0,1) and ∑
∈S)s,t(

tsxkptsv ≥0 from the positive character of 

variables. 

We have now three cases: 

Case 2.1 

If v>0 we have v∈N* therefore 0≤ ∑
∈S)s,t(

tsxkptsv =vkp-v. From this: vkp≥v≥1 – 

contradiction with the choice of vkp. 

Case 2.2 

If v=0 we have that ∑
∈S)s,t(

tsxkptsv =vkp≥vkp. 
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Case 2.3 

If v<0 we have from the condition that v is integer: v≤-1 which implies: -v≥1. 

Finally: ∑
∈S)s,t(

tsxkptsv =vkp-v≥vkp+1>vkp>0. 

From these cases, we have that the condition to be integer for xkp is: 

∑
∈S)s,t(

tsxkptsv ≥vkp. 

After all these considerations, making the notation: y= ∑
∈S)s,t(

tsxkptsv -vkp we shall 

obtain the new problem: 
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If the problem (6) will has at finally an integer solution the problem will be 
completely solved. If not, we shall resume the upper steps. 

Example 

No. of dose Umx Um3 Umz 

1 10 12 15 

2 8 10 12 

3 7 5 10 

4 6 2 7 

px=6, py=5, pz=4, S=50. 

The linear programming problem is: 
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After the application of the Simplex algorithm we obtain: 

x11=1, x21=1, x31=1, x41=1/6, x12=1, x22=1, x32=1, x42=0, x13=1, x23=1, x33=1, x43=1 

We shall add the restriction: 

y-0,8x42=-1/6 

and we obtain now the problem: 















==≥
==≤

==≤
−=−

≤+++++++++++
+++++++++++

−

1,3j ,1,4i ,0x

1,3j ,1,4i ,1x

1,3j ,2,4i ,xx
6/1x8,0y

50)xxxx(4)xxxx(5)xxxx(6
)x7x10x12x15x2x5x10x12x6x7x8x10max(

ij

ij

j,1iij

42

433323134232221241312111

433323134232221241312111

 

Finally, we have: 

x11=1, x21=1, x31=1, x41=1, x12=1, x22=1, x32=0, x42=0, x13=1, x23=1, x33=1, x43=1 

and: a1=x11+x21+x31+x41=4, a2=x12+x22+x32+x42=2, a3=x13+x23+x33+x43=4 and the 
maximal utility will be Ut=97 for 4 goods x, 2 goods y and 4 goods z. 


