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Abstract: Fault Diagnosis in real systems usually involtxesnan expert’s shallow
knowledge (as pattern causes-effects) but also #eepledge (as structural / functional
modularization and models on behavior). The papmppses a unified approach on
diagnosis by abduction based on plausibility antkvance criteria multiple applied, in a
connectionist implementation. Then, it focusesitation of deep knowledge on target
conductive flow systems — most encountered in indasd not only, in the aim of fault
diagnosis. Finally, the paper gives hints on desayid building of diagnosis system by
abduction, embedding deep and shallow knowledgeofding to case) and performing
hierarchical fault isolation, along with a case dyuon a hydraulic installation in a rolling
mill plant.
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1.INTRODUCTION

Real systems are so complex that someone’s efbortdetailed modeling
fail. So, diagnosis (in technical, medical or eaoiwal domains) performed by
human diagnosticians, often relies on incompleteprécise and uncertain
knowledge. Human experts think in terms diScrete pieces: events, modules,
causes and effects - all as separate knowledgegi¢tuman concepts are also
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qualitative — regarding relations between causes and effddesigners and
practitioners cope with complexity of real systemysmeans of physical, functional
and behavioral units.

Diagnostic problem solving is abductive problem vew; human
diagnostician's way involves shallow knowledge gamling associations between
causes and effects from practice, and deep knowledggarding causal links from
laws in the domain.

The paper proposes a unified model for diagnosialdguction with straight
forward connectionist implementation, able to emtdedp and shallow knowledge
of human experts on the target system'’s faulty ehaagain computational issues
included. The study that follows integrates congepbm means-end and bond-
graphs modeling, in the effort to embed deep amdlsh knowledge in a diagnosis
system based on abduction.

2 UNIFIED MODEL FOR DIAGNOSIS BY ABDUCTION

Abduction means finding causes as explanation fefcef observed in the
target system. This chapter proposes a unified mimdediagnosis by abduction,
based orplausibility of causes from effects andlevanceof causes. Plausibility
embeds shallow and deep knowledge on cause-efigetsons, relevance embeds
deep knowledge on causes, related to physical andtibnal structures and to
behavioral aspects of the target system.

2.1 Characteristics of abductive problem solving

Abductive reasoning in fault diagnosis considers ¢huseas single or
multiple fault explainingeffectsappeared and observed by instance manifestations.
Diagnosis in real systems faces a huge number usesa due to various sources
(equipment, environment human operator) and tamuarcombinations of faults. On
the other hand, the effects-to-faults links are plicated, while effects may enter,
for example, conjunction or disjunction grouping emh evoking faults, also
interaction between causes when provoking somectsffeg5] proposes four
categories of abduction problems:

- independenabduction problems - no interaction exists betwesrses;
- monotonicabduction problems - an effect appears if cumdatiauses
appear,;
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- incompatibility abduction problems — pair of causes are mutually
exclusive;

- cancellationabduction problems — pair of causes cancel sorfextef
otherwise explained separately.

[4] has a sound approach on abductive problem repldased on neural
networks adapted to abductions problems above. Thegduced a fifth
category:

- open abduction problems - when observations cordisthree sets:
present, absent and unknown observations.

Human diagnostician usually master target systarostare and behavior
complexity dealing with discrete pieces of knowledmodules and components on
physical structure, then process ends and compaonég on functional structure.
Regarding diagnosis, he or she employs other descpgeces — faults and
manifestations, which have truth values attachedrafer to physical and functional
units in a qualitative manner.

Various links between effects and causes (as redecausal relation)
commonly get a connectionist computational modated to abduction. Diagnosis
applications meant for real complex systems expkbié great number of effects-to-
faults patterns, obtained from human diagnostisigomactice or from experiments,
and embeds that shallow knowledge by training ieidif neural networks. Deep
knowledge — on causes and effects as in abductioblgms above, may enter
various dedicated processing (as in [4]).

2.2 Abductive problems solving by plausibility andrelevance

Direct relations between effects and causes repirgdausibility criteria
[5]. From the set of all plausible causes only lassti represent actual causes, usually
obtained through a parsimonious principle. [6] cdess the minimum cardinality as
a relevance criterionand applies it to the set of plausible faults twam the
diagnostic subset.

2.2.1 Cause isolation by relevance

Plausibility criteria detects causes (e.g. faulighile relevance criteria
isolate them. The paper extends the concept ofaete and makes it effective in
Fault Detection and Isolation (FDI).
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Relevance assumes some grouping of causes follbweélection of most
plausible item from the group (in [1] calleelevance group For example, all faults
occurring at a physical component form a groupy amle likely to be the cause of
effects appeared. Following the minimum cardingtitinciple over the structure, if
one fault is relevant there is a single fault d@zgis and if certain number of faults
there is performed multiple fault diagnosis.

The concept of relevance is useful when fault disgrelies on expert's
deep knowledge, when he or she applies differepumging criteria to faults
according to deep knowledge in the domain. Hereleyance is effective not only
regarding the minimum cardinality principle ovee thtructure but also regarding
some phenomena happening in the target system @ndil For example, while
relevance criterion over structure states “a corepois unlikely to have more than
one fault at a time”, in conductive flow systemier relevance criterion may
apply “leakage is unlikely to be caused by morentbae fault at a time”. Relevance
involves first grouping causes, then selectingniost relevant by some processing —
for example sorting causes by plausibility.

2.2.2. Plausibility and relevance in a connectiomigproach

As a general idea, abductive problem solving prdsd® multiple applying
the two functions:

- Plausibility (P_CRITERIA, EFFECT)Swhich output is the set of all
plausible CAUSES activated from instanceeFFECTS according to
plausibility criteriaP_CRITERIA

- RelevancdR_CRITERIACAUSES$ which output is a subset GIAUSES
from the set of the plausible ones, in groups aslévance criteria
according tR_CRITERIA

Various P_CRITERIAand R_CRITERIAmay apply sequentially to effects
and causes until a final setGAUSEShave truth values of highest level achievable.
If cardinality of the final set ofCAUSESIis 1 then one deals with single fault
diagnosis, else with multiple fault diagnosis.

In a computational model using Artificial Neural tMerks (ANN)
plausibility criteria get implemented in forwardogatory links fromEFFECTSto
CAUSESand relevance criteria get implemented in competinks between
CAUSES In ANN implementation of diagnosis, both effeetsd faults get logical
truth values, while in the incomplete and imprecise/ironment they may get
following meanings: effects “almost” appeared, avalises “possibly” occurred.
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Links between effects and causes enforce or recaeses’ truth values, toward the
diagnostic — that is the set of most plausible r@helant causes.

However, ANN architecture must be adapted to comptir general types
of abduction problems above, also to conjunctidisjunction grouping of effects to
causes. In this respect, human diagnostician wagctifig is again helpful, while
plausibility and relevance get certain logical megs from his or her point of view,
as shown below.

2.2.3. Characteristics of plausibility and relexan

When activating causes form actual effects plalisibcriteria should
exhibit qualitative andlogical features, for example when activating causes even
their effects are not certain (i.e. as long asotfferuth value grows, the cause truth
value grows), or when cause activation dependsamjunction of some effects.
Relevance criteria should exhibijuantitative features, while causes have to be
compared to select the relevant one. In the cortipntd model for abductive
problem solving:

- plausible causes result from qualitative or logipebcessing that activate all
causes from given set of effects;

- relevant causes result from quantitative processiag selects causes from the
plausible set if exhibit a given certainty degregeéter than the threshold
value).

While computational model deals with numbers, tiwe triteria should
handle them adequately: numbers involved in plalitgitcriteria should suffer
“logical overload to allow conjunction / disjunction of effects toauses (and
between causes) and numbers involved in relevaiitegi@ assess thdegreecauses
may belong to the diagnostic set.

The “logical overload” of numbers is a meaning &itd to a range of
values, similar to fuzzy truth values attached tements in fuzzy subsets.
Cardinality of partition, over the universe of discse of a numerical variablé
may take the values: 2 — if processing refers &ssital logical approach (truth
values 0 and 1), 3 or more — if processing refersukasiewicz or to Zadeh logic,
depending on horizontatx{cuts) or vertical (continuous) representationhaf tuzzy
subsets.

An example of logical overload of numbers is thiéofging: if the input of a
fault-neuron from a manifestation-neuron is grettan 0.5 (doubt threshold) then
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the link is declared as “important” and enters fidaglt neuron (added to the other
inputs), else it is “not important” hence blockedt(to 0).

2.3. Connectionist model of abduction by plausibtly and relevance

In the presented approach, the ANN architectureatoductive problem
solving is not a particular one; the only restdo8 that apply are: the two layers
EFFECTSandCAUSESare neighbour causes (because of possible coignaaf
effects to a fault — see 82.3.1). Plausibility eniet are forward links between
EFFECTSandCAUSES relevance criteria form various grouping@AUSESthen
provoke competitions inside the relevance group.NA&rchitecture as Adaline,
Perceptron or Counterpropagation, etc. are suitedmplement the presented
approach on abduction.

2.3.1 Neural models of plausibility

Let consider a caus€; as a neuron that observes general equation for
neuron activation by forward excitatory link froimetlayer of effectf; (see Figure
1. a):

G=fEw [E+6) )

If both cause and effects get truth values,Gi&0,1] and effectd0[0,1],
then a link with weightw enforces the cause truth value at some effectsseCa
neuron truth valué€; indicates how plausible is that cause in the cdraé actual
effects valuess;. However, the above equation should also complglaoisibility
criteria where effects enter a conjunction firlsgn attack the neuron’s input.

In the presented approach, an input of cause-neggbfiogical overload”
to allow logical processing (e.g. conjunction) riegd by plausibility criteria. After
the training phase the weightsget certain values and the an actual input atecaus
neuronG; in recall phase will bd;; = w; LE;. If the effect is not certairE(<0.5) then
input islj < w; /2, hence:

if 1 >w; /2then | = “importart” else } = “not important” (2)

It is now possible to perform logical aggregatiom @ffects and causes.
Neural model of plausibility is thsite that performs the aggregation of input effects
as follows (see Figure 1):
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- disjunctive aggregation— performed by default through cumulative
processing of effects at case-neuron inpltt

li =2w; [E. (3)

- conjunctive aggregatior performed by thecbnjunction sit& see Figure
1. a, and the truth table; outpDtof the site observes the rule:

if 1;>w/2AND bL>w,/2then O =} + I, else O =0 (4)

- negation— performed by theregation sitge see Figure 1. b, and the truth
table; outpuD of the site observes the rule:

O:W1'|1 (5)

The original architecture of ANN is changed by 8ies added to cause-
neurons that require logical aggregation.

Conjunctive sitel{) AND

O [1< I1<
O W1/2 W1/2

Il 2 < wsy/2 0 0

b) | O Negation site{) NOT

@) w2 11>
- W1/2
|
! | wr. L. wr. L.

Figure 1. Neural sites for logical aggregation of effectctuses.
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Note that added sites do not disturb or changeotlggnal running of the
initial ANN, while they do not change either thaifiing procedure or the values
of weights. For example, if two effects enter ajonantion aggregation, the input
pattern for training such situation presents the tmputs with truth values greater
than doubt value (0.5), while that pattern comgle teal situation (both input
effects are important); at recall phase it wortladtvate the fault only if both actual
effects are important.

2.3.2 Neural models for abduction problems

®

Wi
a) b) C) absent
© o © ©
I | | |
/A /A N/ /N
1 1 _‘|\_ 7&
W Wi Wi Wi

d) e)

Figure 2. Abduction problem solving using neural network nteder
plausibility criteria

Neural (sites) models for the five abduction profdein the literature are
depicted in Figure 2. and solve each category &a@rt as follows:

a) Forindependentabduction problems — excitatory links apply dingdtiom
effect Ej to corresponding causg (see Figure 2. a. If there exist also conjunction
grouping of effects to the cause, conjunction sjtget “mounted” and entering the
default disjunctive grouping to neuron input.
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b) For monotonicabduction problems — caus€s and C, evoking both the
same effect;, suffer conjunction with one-another and with t@wmmon effect
through conjunction sites as in Figure 2. b:

(C.— G ANDE)AND(C ~ C ANDE) (6)

¢) For incompatibility abduction problems — the pdx andC, of causes are
mutually exclusive, i.e. one is active if the otloere is not, both evoking the same
effect §. The pair of causes suffers conjunction with niegabf another one
conjunction with the common effect as in Figurel2.

(C. - NOTGANDE) AND(C, - NOTGANDE)  (7)

d) For cancellationabduction problems — the pai and C, of causes are
mutually exclusive, i.e. one is active if the otloere is not, both evoking the same
effect . The pair of causes suffers conjunction with niegabf another one
conjunction with the common effect as in Figure2.

(C. - NOT G AND E) AND(C, - NOT G ANDE) (8)

e) For openabduction problems — the only problem is dealinthvabsent
effects: caus€; is activated if no effedE; exists see Figure 2. c:

G - NOTE 9)

Original ANN architecture for abductive problem\sof is changed adding
sites specific to each abduction problem, adecquwatauses and effects in concern.
However, similar to final note at 82.3.1, the ANNnning is not changed —
regarding the training procedure and values of sigbtained.

2.3.3 Neural models of relevance

A relevance criterion usually observes minimal czatity of CAUSESover
criterion’s specific relevance group. In generalevance involves three stage
processing:

i) Consider all plausible causes belonging to relesamoup.

i) Start competition between causes inside relevaraeg

iif) Select cause(s) for diagnostic set, observing dmair property of causes and
some selection threshold.
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Neural model of relevance is competition betwearsea. Computationally,
it may consist from sorting all causes in the rafee group, then selecting the
one(s) with higher degree according to a maximummbar (e.g. 1 if single fault
diagnosis), or a “relevance value” (e.g. minimuntivation of causes — if they
exceed the doubt value 0.5). For example, if thdinai property for sorting is
plausibility of causes (truth values &AUSES, then the sorting procedure is
applied to all causes in the relevance group -ondt to plausible ones, while those
not plausible have the lowest degree. So, competipiroceeds always over the
entire set o£AUSESN the relevance group.

3 DEEP AND SHALLOW KNOWLEDGE IN DIAGNOSIS

Knowledge elicitation is a very important phaseliagnosis system design,
while it involves information on various causes aftects, on physical structure
and on normal and faulty behavior of the targetesyisin real life. Any approach on
diagnosis depends on how knowledge covers spaceauskes, effects and their
relations; otherwise, one gets open spaces andnplete knowledge leads to
inaccurate diagnosis. When the target system désraluctive flow systerfCFS)
diagnosis is more difficult due to propagated affe¢broughout the system.

Few works refer to methodical procedures to guidevkedge elicitation,
and fewer to generic models suited to control aunidleg knowledge covering for
diagnosis purposes. [3] proposes knowledge piadgtesdso cover faulty behavior of
CFSs based on means-end modeling approach andgpapls, and [2] presents a
CAKE (Computer Aided Knowledge Elicitation) toolrfonethodical covering of
structural and behavioral complexity of a targeSCF

Present chapter stresses main directions to extteep knowledge on
structure and behavior of conductive flow systenféctv perform simultaneously
multiple functions — further denominaté&tlltifunctional Conductive Flow Systems
(MCFSs), and the ways such knowledge is represemtddecome plausibility and
relevance criteria for diagnosis by abduction.

3.1 Abstraction levels for structure and behavior

It is commonly accepted that discrete pieces insigay and functional
structure of a real target system is only an abttna that requires also models for
continuous behavior; the entire model obtained iByhrid dynamic mode(as
discussed in [7]). In this view, deep knowledgelomtarget MCFS refers to:
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- physical and functional units, from means-end maodelperspective — as
Discrete Event System abstraction;

- bond graph components and junctions, from bondrgrapdeling perspective —
as Continuous System abstraction required to assesermal behavior of
structural units.

For CFSs bond graphs represent powerful modelirgnseas they not only
capture essential ideas from Kirchkoff’s laws batditionally, offer a proper
modularization of the target system’s model, ireaayal conceptualization.

3.1.1 Physical and functional structure

From means-end point of view theoduleis a network otomponentsand
the entire targeMCFSis a network of modules. Modules accomplish sjeeifids
during specificactivitiesthrough componentow functionsas in [8]. Each module
may accomplish more ends, provided one end attaslueshg one activity; each
components may have more functions but only onénguone activity of the
superset module.

From bond graph point of view, modules correspondbbnd graph
junctions. [3] proposes three generic flow funcsigdhat correspond to bond graph
primitive components, so reducing them to a medningubset for diagnosis
purposes:

- flow transport function fff) — R component; when faulty, directly affects
propagation of power flow along paths in the taQes;

- flow storing function fsf) — C andl components; when faulty, directly affect time
delays in the running process;

- flow processing functionfgff) — TR and GY components; when faulty, directly
affect the ends of modules.

3.1.2 Faulty behavior structure

Fault is a physical non-conformity occurred at comporiem!|, opposed to
designed specifications from producer. Fault’'s narften suggests a disorder or a
physical damage so, it reflects knowledge incongpless about component
structure. The set of all “known” faults should decided at elicitation phase; some
of them indicate a specific damage, some — a diedamages.

Manifestationis a piece of knowledge assessing values of aerobd
variable at component, during a certain activity thfe superset module.
Manifestation is a linguistic variable with truthalues for normalrno) or “too low”
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(lo), “too high” (hi) linguistic values. Some manifestations arriveseynsors (from
continuous or binary variables), some by humanaipes tests (from human senses
— as adjectives, or from test points — as numbenspbserved variables in the
process. Manifestations may refer to primary effectto secondary effects.

Anomaly or symptom is a piece of knowledge obtained fronsea of
manifestation by some processing, and deposits kieepledge in the domain, so
helpful in diagnosis (see below).

3.1.3  Generic anomalies in the faulty behavior
To each generic flow function a generic anomalgtiached:

i) Process anomalyAnoP) — means deviation from the normal valug.(&oo
high” or “too low”) of an end-variable; it refer® transformations the flow
undergoes.

i) Transport anomaly(AnoT) - means changes on flow variables or on rinne
structure of component, relative to flow transpdang flow paths.

iii) Store anomalyAnoS) — refers to deviation from the normal valaethe delay
specific to storing (capacitor-like) or inertiah@uctance-like) component (see
82.3.).

Note that only transport anomalies refer to propedyaffects, while process
and store anomalies are located at component shawimesponding flow function
fpf or fsf as above. If there is a definite set of transpadmalies located at faulty
component, then they get meanings of primary effect

[3] presents signatures with manifestations aorefand flow (bond graph)
variables in 1-junction and O-junction, specificttansport anomaly occurred in the
junction.

3.1.4 Orthogonal transport anomalies

It works on fault diagnosis deal with concepts lasKage” or “obstruction”.
[3] defines a set of four orthogonal transport-aates for bond graph components,
as follows:

a) Obstruction— change of resistance parameter (increase), wtitiow path
modification, e.g. clogged pipe.

b) Tunneling - change of resistance parameter (decrease), withoa path
modification,e.g. broken-through pipe.

172



ECONOMICA

c) Leakage- structure change (balance too low on flow), imi@ flow path
modification, e.g. whole in pipe.

d) Infiltration — structure change (balance too high on flow), inigvflow path
modification, e.g. flow injection.

Transport anomalies are orthogonal in pairs (obstm to tunneling and
leakage to infiltration), each pair orthogonal be tother. A fault causes a unique
transport anomaly that appears at respective coemp@nd, by default, at module it
belongs. Thus, transport anomaly is a primary éffamated at module level, hence
isolating it means isolating the faulty module.

Each type of transport anomaly has a specific sigea— regarding
deviations for bond graph junctions.

3.2 Guidelines on knowledge embedding in plausiidy and relevance
criteria

The main problem raised on diagnosis by abductionthe proposed
approach is deep and shallow knowledge elicitatind embedding in the neural
network for diagnosis.

During elicitation phase, knowledge engineer dimorates:

- physical structure- i.e. modules and components;

- functional structure— i.e. activities for modules and flow functionsr f
components, bond graph junctions for interconneatedules and bond graph
components with specific parameters for correspantlow functions;

- behavioral structure — i.e. faults, manifestations and flow anomalies
(processing, store, transport).

Note that components result from hierarchical dgmusiion of physical
structure according to the accepted granularifiaolt isolation, that is location units
for faults may also have structure.

Plausibility criteria embed shallow knowledge attgras of non-propagated
manifestations-to-faults (e.g. color, position) aramhomalies-to-faults. Deep
knowledge refers to conjunction and abduction motsl related to manifestations
and certain faults.

Relevance criteria involve modularization of fauk&cording to deep
knowledge on physical and functional structure andanomalies they provoke (in
the given structural unit).
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It worth stressing that shallow knowledge for plhilisy is obtained for
each module separately. So, practical survey ragkperiments on real complex
systems seem realistic (in technical and econondicalains), while they are much
easier performed and less combinatorial burdenrdbem for the entire system.

3.3.Abduction procedure for diagnosis

All discrete concepts resulted from elicitation ghashould enter in ANN
structure for diagnosis by abduction. So, all ufiiéen behavioral structure become
neurons: manifestations on input layer, faults atpet layer and anomalies on an
intermediate level (activated by manifestations attdcking faults). All behavioral
units attached to a module belong to a separateain@etwork (ANN). Links
between neurons get weights by training procedwoen(shallow knowledge) and
sites from deep knowledge, all according to plalisibecriteria stated by human
diagnostician at elicitation phase.

All units from physical and functional structurescbme relevance groups
related to relevance criteria at elicitation phase.

For proper diagnosis, each component (as finaltitlmtan fault isolation)
have attached the “normal’AUSE beside all faults at component in concern. So, to
the setFq, Fi,... F,1 Of neurons indicating faults, it is added tRg neuron —
assessing the truth value of normal running. limportant to exist &, neuron
becauseNORMAL situation enters relevance competition WRAULTY situation.
So, before finding the cause when faulty situatoourred, diagnosis system should
asses if the target systenHBULTY (i.e. it performs fault detection).

To asseSAULTY situation a relevance criterion is applied ovédatisions
Foto F,.. and F, as follows:

if OFi > 05(=1.n-1) O nz_lFi>nm1 thenFAULTY (10)

i=0

in words: if any of activated faults have truthued greater than the “doubt
value” and the relative level of ttdORMAL situation is greater than all current
(activated) faults, then tHEAULTY situation is credited.

Diagnosis is performed in hierarchic and sequenti@nner, detecting
transport anomaly at module, then isolating faylbis abduction through multiple
plausibility and relevance criteria:
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1) faulty module isolation- by plausibility and relevance of transport
anomalies possibly occurred based on signatur@gsations of the system’s bond
graph model (see [2]);

2..n-1)fault isolation— proceed by sequential application of a gives sét
plausibility and relevance criteria, specific todute detected in stage 1;

n) diagnostic — fault(s) obtained after assessing faulty situatversus
normal situation at module, by relevance as in.(10)

Because modules of target MCFS simultaneously aplisim ends
(independent from one another), combinations aviéiess raise to a huge number.
In the hierarchic way proposed, diagnosis reliely @m shallow knowledge and
deep knowledge at module level, then on groups oflules in bond graph
junctions.

4 CASE STUDY ON A HYDRAULIC INSTALLATION

Fault diagnosis was meant for a simple hydraulgtaitation in a rolling
mill plant (see Figure 3), comprising three modulespply Unit (pump, tank and
pressure valve), Hydraulic Brake (control valveakar cylinder) and Conveyor
(control valve, self, the conveyor cylinder). Féret20 faults to 8 components
considered, manifestations come from sensor®,aso, hi values (2 flow-rate, 4
pressure, 5 temperature), 8 binary values (cylmaédeft/right ends and open/shut
valves) also 10 linguistic manifestations from @jer observed variables (for noise
and oil-mud). Software architecture exhibit 6 ANNrgeptron blocks — 2 per
module.

The three modules — corresponding to Hydraulic BraRarrier and Oil
Supply, are all bond graph 1-jonctions (if consiagrcomponents on the loop for
each) and they enter a O-junction, correspondinghéo entire hydraulic MCFS.
Modules evolve (somehow) independently those wildrdwulic cylinders in 4
activities and the third with 2 activities.
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Hydraulic Brake Carrier
1-
Drossel

Ctrl. Valve Brake

- * O- ‘ Ctrl. Valve Carrier
Pressure Valve

1-
A L
Pump Tank

Figure 3. Hydraulic installation under fault diagnosis.

Figure 4 presents the diagnostic for 20 simulatat$ in the example
hydraulic installation and the maximum number afcassive activities in which the
diagnosis system is able to properly indicate theltf additional observations
supplied by human operator count as distinct atsi

12
10

Sy
=
—
%
=
=

Figure 4. 20 faults and the number of activities in whichythee properly
recognized.

Diagnosis performed on the target hydraulic sysegplied plausibility
criteria from human diagnostician concerning pageof manifestations-to-faults
from practice and deep knowledge on specific trarispnomalies for the faults in
concern. Deep knowledge for relevance criteriarrédephysical structure and to
transport anomalies shared by faults.
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5 CONCLUSION

Diagnosis is a difficult task in real life, whileis often performed on open
spaces of causes and effects, in an incompleteimpecise knowledge milieu.
Human diagnostician performs diagnosis by abduratauctive reasoning itself is
a challenge for philosophy, science and practice.

The paper proposes a unified model for diagnosistmuction, based on
plausibility and relevance criteria on causeslitives connectionist implementation
through various artificial neural network types f adequate to implement
plausibility by excitatory links between effects darauses, and relevance by
competition in special groups of causes; all effestd causes become neurons with
graded levels of truth — regarding evidence of affeand certainty of cause,
respectively.

The unified model for diagnosis by abduction is @en than the one
proposed by [4], and offers also natural meanings Human diagnosticians
interested on practical implementation in technaradéconomical domains.

The unified for abductive problem solving modefu#ly functional for all
categories of abduction problems, also for disjuecand conjunctive grouping of
effects to a cause. It is meant to embed shalladvdmep knowledge from human
diagnostician in the way he or she actually doepractice and the connectionist
model

The paper presents also hints on knowledge elmitaif deep and shallow
knowledge on the class of multifunctional conduetilow systems (MCFSs), i.e.
systems that perform simultaneously multiple fumtsi, based on (multiple) flow
conduction. Such systems are often met in indumityalso in other domains of real
life. So, along with the diagnosis model by abductthe paper offers design
guidelines for computational model of an automategjnosis system. Application
in simulated environment shows good performanceljaginostic, however strongly
dependent on available knowledge.
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