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Abstract: The main purpose of this paper is to examine theoretically the current models of credit 
portfolio management. There are currently three types of models to evaluate the risk of credit portfolio; 

the structural models (Moody’s KMV model and CreditMetrics model) also defined as the models of 
the value of the firm, the actuarial models and the econometric models (the Macro-factors model). The 
development of these models is based on a theoretical analysis developed by several researchers. Then, 
the evaluation of the default frequencies and the size of the loan portfolio are defined by credit risk 
factors which are conditioned by macroeconomic and microeconomic circumstances. Also, we 
sundeexplain the different characteristics of these models. Additionally, the purpose of these models is 
to assess the default probability of credit portfolios.  
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1. Introduction 

The problem of evaluation of the failure probability of any borrower was the center 

of the bankers as soon as they began to lend some money. The quantitative modeling 
of the credit risk for a debtor is rather recent in fact. Besides, the modeling of the 

credit risk associated with instruments of a portfolio of credit such as, the loans, the 

pledges, the guarantees and the by-products (who constitute a recent concept). 

Glasserman (2010) analyzes portfolio risk and volatility in the presence of 
constraints on portfolio rebalancing frequency. This investigation is motivated by 

the incremental risk charge (IRC) introduced by the Basel Committee on Banking 

Supervision. In contrast to the standard market risk measure based on a 10-day value-
at-risk calculated at 99% confidence, the IRC considers more extreme losses and is 

measured over a 1-year horizon. More highly, whereas 10-day VaR is ordinarily 

calculated with a portfolio’s holdings held fixed, the IRC assumes a portfolio is 
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managed dynamically to a target level of risk, with constraints on rebalancing 

frequency. The IRC employs discrete rebalancing intervals (e.g., monthly or 

quarterly) as a rough measure of potential illiquidity in underlying assets. 
Glasserman (2010) analyzes the effect of these rebalancing intervals on the 

portfolio’s profit and loss distribution over a risk-measurement horizon. Glasserman 

(2010) derives limiting results, as the rebalancing frequency increases, for the 
difference between discretely and continuously rebalanced portfolios; we employ 

these to approximate the loss distribution for the discretely rebalanced portfolio 

relative to the continuously rebalanced portfolio. This analysis leads to explicit 
measures of the impact of discrete rebalancing under a simple model of asset 

dynamics. 

A certain number of models were developed, including at the same time the 

applications of property developed for the internal custom by the financial 
institutions, and the applications intended for the sale or for the distribution 

(Hickman & Koyluoglu, 1999). 

The big financial institutions recognize his necessity, but there is a variety of 
approaches and rival methods. There are three types of models of credit portfolio in 

the course of use at present (Crouhy et al., 2000): 

 The structural models: there are two models of management of credit portfolio 
who are supplied in the literature: Moody’s KMV model (Portfolio Model) and 

CreditMetrics model by JPMorgan; 

 The Macro-factors model (Econometric model): The Credit Portfolio View 

model introduces in 1998 by Mckinsey; 

 The actuarial models CSFP (Credit Suisse First Boston): this model 

(CreditRisk+) is developed in 1997. 

The main idea for this study is to answer the question follows: Haw the default 
probability is defined by the credit portfolio models? 

Then, the organization of this paper is as follows. In section 2, we present the 

structural models and we define the forces and the weaknesses of each model. We 

provide the presentation of the econometric models in section 3. The section 4 is 
considered to present the development of the CreditRisk+ models and the final 

section is our conclusion. 

 

2. The Structural Models 

The structural models of management of credit portfolio were presented by Merton 

(1974) and then, developed by Leland (1994), Leland and Toft (1996), Anderson and 



ACTA UNIVERSITATIS DANUBIUS                                                     Vol 14, no 5, 2018 

186 

Sundaresan (1996) and Jarrow (2011). The characteristics to define a structural 

model are given by two conditions: 

 The process of management of the assets of the company has to be known on the 

market in which this one operates; 

 The structure of the liabilities of the company has to be known by all the actors 

operating on the market of this one. 

In the practice, to examine the models of management of credit portfolio, it is 

necessary to use parameters estimated implicitly because the values of the assets of 

the company are not observable. Nevertheless, the majority of the empirical evidence 
does not retain the structural models. The implicit prices obtained from the structural 

models does not seem to match the structure of maturity of the efficiencies on the 

assets of the company (Eom et al., 2004; Ericsson & Reneby, 2005; Jarrow et al., 

2003; Schaefer & Strebulaev, 2008; Li & Wong, 2008; Jarrow, 2011) and to allow 
the forecasts of defect of the borrowers (Patel & Pereira, 2007; Bharath & Shumway, 

2008). 

The analysis of the model of Merton (1974) shows that this one supposes that the 
value of the firm follows a process of distribution and the defect occurs when the 

value of the firm falls below the nominal value of the debt on the date of maturity of 

this one. In this respect, this model serves to determine a threshold of defect. 

The development of Merton’s model is made by adding the other variables such as; 

the interest rate (Longstaff & Schwartz, 1995), the optimal permanent capital 

(Leland & Toft, 1996), the variable time of the threshold of default (Collin-Dufresne 

& Goldstein, 2001), the unfinished accounting information (Duffie & Lando, 2001) 
and the risk of the events of defect (Driessen, 2005). 

The structural models are based on the theory of the options and the structure of the 

capital of the company (Hamisultane, 2008). In this aligned, the bankruptcy of a 
company took place when the value of assets is situated below the value of its debt. 

The structural models or the models of the value of the firm are based on the 

approach of Merton (1974) which supposes that the failure of a company appears in 
case the market value of its assets is lower than a certain threshold of its debts.  

Generally, the models of credit portfolio management resting on the approach of 

Merton are the model KMV (Kealhofer, McQuown & Vasicek) of Moody and the 

CreditMetrics model of JPMorgan (1997). The distinction between both structural 
models was described in the table below. 
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Table 1. The comparison between the KMV model and the CreditMetrics model 

The KMV approach The CreditMetrics approach 

 The conduct of the value of the asset; 
 Companies are decomposed into systematic 

components and that no-systematic; 
 The systematic risk is based on the industry 
and the country of debtor; 
 The correlation of defect ensues from the 
correlation of assets. 

 The indication of own capital; 
 Companies are decomposed systematic 

components and that no-systematic; 
 The systematic risk is based on the industry 
and the country of debtor and can be sensitive to 
the size of the asset; 
 The correlation of the defect ensues from the 
correlation of the efficiencies on own capital. 

Source: Smithson (2003) 

The structural models are also called models of the asset volatility. The Structural 

aspect of the models comes because there is a historical story behind by default that 

is something manages to start by default. The structural models are rooted in the 
knowledge of Merton. In Merton’s model, the correlation of defect has to be a 

function of correlation of assets. The estimation of a structural model requires the 

implementation of the market value of the assets of the company and its volatility. 

In the practice, the value of assets and their volatility are not observable for the most 
part of companies. The structural models lean strongly on the existence of assets 

quoted on the stock exchange so that we can estimate the necessary parameters. 

2.1. The KMV Model  

The KMV model of credit portfolio management was elaborated for the first time in 

1993. This model allowed the development of several models of quantification of 

the credit risk: Credit Monitor, Credit Edge and Private Firm Model for the 
individual credit risk and Portfolio Manager for the credit risk of a portfolio.  

The model KMV rests bases on the notion of default distance which is calculated by 

basing itself on the barrier which engages the defect. As soon as, the distance in the 

defect is calculated, it transformed into the probability of failure (Expected Default 
Frequency: EDF). 

The KMV model which was developed by the Moody’s-KMV company is based on 

the theory of the prices of Merton options. It is about an abstract frame used to 
estimate the default probability of a company. The KMV model supposes that the 

company is in situation of defect when the value of its asset is less than the value of 

its debts. The Figure 1 explains the relation between the estimated own capital and 
the value of the asset. According to Merton's basic idea, in the KMV model the value 

of the own capital of the company is considered as being an option to buy. So, the 

value of the asset is considered as being the underlying asset and the debt represents 

the price of exercise (Chen et al., 2010). 
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Figure 1. The relation between the market value of the assets of the company and the 

value of the debt (Merton, 1974) 

 

In the Figure 1, VA indicates the initial investment of the shareholders of the 

company; X indicates the point of default which corresponds to the sum of the long-
term debt and half of the current liabilities. When the value of assets (VA) is superior 

to the debt (X), the shareholders will choose to gain profits staying after payment of 

the debts (VA - X) and these will be chosen by default, what is shaped with a net 
value raised in the Figure 1. In this case, the investor executes the option to buy.  

So, if the value of assets is lower than the debt (VA < X), the shareholders will choose 

by default the transfer of the active total for the benefit of the creditors, what is 

coherent with a constant value of own capital indicated in the Figure 1, and it means 
that the option to buy is not executed (Caouandte et al., 1998; Kealhofer & Bohn, 

2001; Saunders & Allen, 2002; Bohn & Crosbie, 2003). 

Generally speaking, the shareholders receive Max (VA - X, 0) in the date of maturity 
T. According to Merton’s model, the evolution of the market value of the assets of 

the company follows a process of geometrical distribution of the following shape: 
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Where, 𝑾𝒕the process of Wiener Standard is, 𝝁 is the average of the efficiency of 

assets and 𝝈𝑨 is the standard deviation of the efficiency on assets. The market value 

of the company is given by basing itself on the purchase price of a European option 
to buy supplies by Black and Scholes (1973). 

   1 2

  rT

E AV  V N  d e XN d  

Where N (.) Indicate the function of distribution of the normal law with (Huang & 

Yu, 2010): 
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In the KMV model, there is a hypothesis which rests on the structure of the capital 

of the company. So, this capital has to consist only by actions, current liabilities and 

in the long term and convertible prices. Really, the value of the company VA and the 

volatility of assets 𝝈𝑨 are not observable (Hull, 1997; Chen et al., 2010). We are 

going to deduct these two values by using the values of the options VE.  

So land us note that:  

( , , , , )E A AV f V  σ  X  c  r  

( , , , , )E A Aσ g V  σ  X  c  r  

Where, c is the coupon paid on the long-term debt, r is the interest rate without the 

risk and 𝝈𝑬 is the volatility of share prices.  

By applying the Lemma of Itô to these two functions and by arranging the terms we 

obtain: 
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 who is deducted from the equation which measures the value 

of the VE which is defined by the following expression: 
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Thus: 
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Further to this transformation, we obtain a system of equation to two unknowns 𝑽𝑨 

and𝝈𝑨: 

   1 2 0  rT
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If the expressions of 𝑽𝑨 and 𝝈𝑨⁡are determined, then we can arrive at the writing of 

the following formulation of the distance of defect (DD): 
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According to the KMV model the distance of defect is defined in the following way 
(Crosbie & Bohn, 2003): 


 A

A A

V X
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From the distance of defect, we can deduct the value of the default probability as 

follows: 
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Then we can obtain the frequency planned by default (Expected Default Frequency: 

EDF) such as: 

( ) EDF   N  DD  

However, the default probability does not correspond to the normal law. KMV 

Company tries to obtain the empirical value of the EDF rather than the theoretical 
value of the models (Zheng, 2005). Fortunately, KMV Company possesses an 
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enormous base of historical data concerning the default of the companies. By basing 

itself on these data KMV defined tables which associate with the various possible 

values of the distance of default (DD) on a temporal horizon considered a default 
probability definite and noticed empirically. 

So, to protect itself against the risk which results from potential losses bound to the 

evolutions of the portfolio, Kealhofer, McQuown and Vasicek (1993) based on the 
determination of a random size L relative to the losses of the portfolio which is 

defined in a general way and on a horizon H as follows: 

 H H

ND

L  V  V  

Where H

ND

V  indicates the value of the portfolio H in the absence of the losses and 

𝑽𝑯 indicates the market value of the portfolio H. The development follows by KMV 
shows us that the distribution of L can be approached by an inverse normal 

distribution. 

Table 2. The forces and the weaknesses relative to the KMV model 

The forces The weaknesses 

 The default probability is connected with 
the information of the market. 
 Contrary to CreditMetrics models and 
CreditRisk+ models the debtors are specific. 

We can distinguish them by basing itself on 
their default probability, on their own 
structure of capital and on their own assets. 
  The threshold of defect is determined in 
an empirical way. 

 A hypothesis which is not realistic because she 
supposes that the debt of the company consists by 
bonds with zero-coupon and shares. 
 KMV supposes that the price of assets follows one 

moment Geometric Brownian. This modeling by a 
continuous process excludes all the early defaults. 
 This method is difficult because it depend a 
several data which are in most of the time 
unobservable or with difficulty accessible. 
 The interest rate is supposed constant. 

Source: Hamisultane (2008) 

2.2. The CreditMetrics Model  

CreditMetrics was thrown for the first time in 1997 by JP Morgan’s bank. 

CreditMetrics is considered as being an evaluation tool, for a portfolio, its variance 
of the values provoked by the changes of the quality of credit of the transmitter of 

the bonds (the credit migration) and leaves the defect of the counterpart. Unlike the 

approaches developed by the other models of management of a portfolio of credit, 
the probability of default in CreditMetrics is given by rating agencies for the big 

companies and by methods of scoring and mapping for small and medium-sized 

firms (Paleologo et al., 2010). 

CreditMetrics belongs to the structural models since it rests on the model of Merton 
(1974) for the definition of the thresholds of the migration of credit. (Jarrow, 2011) 
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According to Hamisultane (2008), CreditMetrics makes it possible to calculate 

CreditVaR of a portfolio. The methodology of this model is based on the probability 
of moving of a quality of credit to the other in a given horizon of time (analysis of 

the migration of credit). The calculation of CreditVaR by CreditMetrics rests on the 

four stages following (Crouhy et al., 2000; Hamisultane, 2008): 

 Determination of the risk isolated from each credit of the portfolio; 

 The construction of the matrix of the probabilities of transition from a notation to 

another; 

 The valuation of the assets of the portfolio according to the scenarios of transition 
from a notation to the other one; 

 The calculation of CreditVaR.  

The evaluation of a portfolio Value-at-Risk due to the credit (CreditVaR) by 

CreditMetrics is given the following Figure 2 (Crouhy et al., 2000): 

 
Figure 2. The evaluation of a portfolio 

In the model CreditMetrics, there are three categories of estimation to be used 

according to the nature of the composition of the portfolio. We are going to try, in 

what follows, to present the various principles of the model according to the 

composition of the portfolio. 

A. The portfolio in an Obligation  

According to Hamisultane (2008), the system of rating used by CreditMetrics is the 

one rating agency. So, the broadcasting issuers of debt securities are noted according 
to a ladder of seven categories going from AAA to CCC according to the financial 
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solidity of every company (Crouhy et al., 2000). The notation AAA is tuned to the 

healthy companies financially whereas those who are characterized by a bad 

financial situation are noted by CCC. 

The notations offered by the agencies of rating are regularly published. These 

notations present information relative to the broadcasting issuers of debt securities. 

The agencies of rating include these notations in indicating tables, either the rate of 
historic default of broadcasting issuers according to their notation on a horizon of 

well determined time, or the evolutions of these notations in the time. These tables 

recapitulating the notations tuned to the broadcasting issuers of debt securities are 
defined by “the matrices of transition”.  

The matrices of annual transition summarize all the changes of notation, on a horizon 

of time of one year, of a sand of broadcasting issuers is presented as follows: 

Table 3. Transition matrix: Probabilities of credit rating migrating from one rating 

quality to another, within 1 year 

Rating AAA AA A BBB BB B CCC Default  

AAA 90.81% 8.33% 0.68% 0.06% 0.12% 0.00% 0.00% 0.00% 

AA 0.70% 90.65% 7.79% 0.64% 0.06% 0.14% 0.02% 0.00% 

A 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06% 

BBB 0.02% 0.33% 5.95% 86.93% 5.30% 1.17% 0.12% 0.18% 

BB 0.02% 0.14% 0.67% 7.73% 80.53% 8.84% 1.00% 1.06% 

B 0.00% 0.11% 0.24% 0.43% 6.48% 83.46% 4.08% 5.20% 

CCC 0.22% 0.00% 0.22% 1.30% 2.38% 5.00% 64.85% 19.79% 

Default  0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.00% 100% 

Source: Standard & Poor’s CreditWeek (1996) 

According to Grundke (2009), this table must be carefully analyzed. So, by taking 

as an example the line corresponding to the BBB rating presented in the table above, 

we can deduct the probability of default as follows: 

Table 4. The potential rating relative to the BBB rating 

Initial rating Potential rating in a one year Probability  

 

 
 
 
BBB 
 

AAA 0.02% 

AA 0.33% 

A 5.95% 

BBB 86.93% 

BB 5.30% 

B 1.17% 

CCC 0.12% 

D 0.18% 

Total  100.00% 

Source: Grundke (2009) 
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After a period of one year, and settling on the asset of initial notation BBB, we can 

deduct that the probability that this active rest BBB after a period of one year is 86,93 
%, that to become AAA is 0,02 % and that to be lacking is 0,18 %.  

The use of this model is based on three main hypotheses (Morgan & Co. Inc, 1997; 

Glasserman & Li, 2005; Hamisultane, 2008; Grundke, 2009; Figlewski et. al., 2012): 

 The absence of multiple transitions: for a horizon of time given the number of 
transitions is in most of a single transition; 

 The stability of the matrix of transition in time: for every class of notation, two 

companies in different sectors or in different countries have the same probability to 
migrate from a notation to the other one; 

 The matrix of transition is of type Markov: for period given the probability to 

migrate of a class of notation in another class is independent from what took place 

for the last periods. These hypotheses are emitted for the simplification of the 
calculations of the matrix of transition for the posterior periods. 

CreditMetrics determines the current value of the bond by using the curve of the 

rates with zero coupons to proceed with the calculations of CreditVaR. In that case, 
the transmitter of debt securities is not in situation of bankruptcy. By continuing in 

the same context of analysis, that is the use of the notation BBB as the example, we 

can use the table of the Forward rates following: 

Table 5. One-year forward zero-curves for each credit rating (%) 

Category Year 1 Year 2 Year 3 Year 4 

AAA 3.60 4.17 4.73 5.12 

AA 3.65 4.22 4.78 5.17 

A 3.72 4.32 4.93 5.32 

BBB 4.10 4.67 5.25 5.63 

BB 5.55 6.02 6.78 7.27 

B 6.05 7.02 8.03 8.52 

CCC 15.5 15.02 14.03 13.52 

Source: CreditMetrics, JP Morgan 

We suppose in our case which a noted transmitter BBB has emitted a Bond for 100 

Euro over 4 years with a rate without annual risk of 6 %. The current value of the 
bond is given by the equation below: 

       
2 3 4

6 6 6 106
6 107.55

1 4.1 1 4.67 1 5.25 1 5.63
     

   
 

V
% % % %

 

By basing itself on the formula above, being able to us determine the various possible 

values of fire of type BBB according to his possible migrations towards other 
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notations (Crouhy et al., 2000; Hamisultane, 2008). The possible values of a bond 

rated BBB according to the possible migrations are presented in the table 5. 

In case the company had a bankruptcy, the value of the bond is determined by using 
the average recovery ratio calculated by CreditMetrics on historical data (Carty & 

Lieberman, 1996; Gordy, 1998).  

Further to the representative table of the various values of BBB according to the 
possible migrations, we can subtract the distribution of the variations of the price of 

the obligation in the following table: 

Table 6. Distribution of the bond values, and changes in value of a BBB bond, in 1 

year 

Rating  Probability: 

p (%) 

Price of the 

obligation(bond) 

V ($) 

Difference 

with regard to 
V: ∆V 

Difference with 

regard to the 

average µ 

µ2 * p (%) 

AAA 0.02 109.37 1.82 2.28 0.0010 

AA 0.33 109.19 1.64 2.10 0.0146 

A 5.95 108.66 1.11 1.57 0.1474 

BBB 86.93 107.55 0 0.46 0.1853 

BB 5.30 102.02 -5.53 -5.06 1.3592 

B 1.17 98.10 -9.45 -8.99 0.9446 

C 0.12 83.64 -23.91 -23.45 0.6598 

Default  0.18 51.13 -56.42 -55.96 5.6358 

 Average = 107.09 ($)  Variance = 

Standard 

deviation = 

8.9477 
 
2.99 ($) 

Source: CreditMetrics, JP Morgan 

The analysis of this table shows that CreditVaR in 1 % (at a level of 99 % confidence) 

is equal to the last value of the variation of the value of the bond which corresponds 

to the notation CCC. Thus, CreditVaR is equal to -23.91. 

B. The Portfolio in Two Obligations 

In the case of a portfolio consisted of two bands, the analysis is based on the level of 

correlation of the migrations. In fact, in a portfolio consisted of several assets the 
migrations of the various credits are correlated. CreditMetrics tries to estimate these 

correlations. As long, as there are no good data to be used. In that case, CreditMetrics 

used the correlations between the values of the assets of the broadcasting issuers of 
the credits which are approached by the correlations between the equity prices of 

these broadcasting issuers to calculate the correlations between the migrations of the 

credits (Treacy & Carey, 2000; Altman & Rijken, 2004; Gordy & Howells, 2006; 

Xing et. al., 2012). 

According to Iscoe et al. (1999), to be able to divert the correlations of the migrations 

of the credits of the correlations of the values of assets, it is necessary to have a 
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model linking the quality of a credit to the value of assets. The solution proposed by 

CreditMetrics is to use an extension of the model of Merton (1974) which 
incorporates the migrations of the credits. In this aligned, we suggest taking into 

account the probability of migration of a bond rated initially by BB. These 

probabilities are given by the following table: 

Table 7. Transition matrix based on actual rating changes 

Initial 

Rating 

Rating at year-end (%) 

AAA AA A BBB BB B CCC Défaut  

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0 

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0 

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06 

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18 

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06 

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20 

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79 

Source: Standard & Poor’s CreditWeek (1996) 

By basing itself on the model of Merton (1974), we can suppose that the efficiency 

on a bond modeled as follows: 

 r  μ  σε  

With: 𝜺⁡a term of error is such as ~ (0,1)ε   N   , 𝝁 is the average efficiency on the bond 

and 𝝈 is the standard deviation of the efficiencies of this bond. Then, the default 

probability of an issuer of the bond is given by the following expression: 

          Def DefPr default Pr r  Z Pr μ σε Z  

Thus,  

         Def DefPr default Pr r  Z Pr σε Z  

If 𝝁 = 𝟎 

  
   

     
   

Φ
Def DefZ Z

Pr default ε  
σ σ

 

Where, 𝚽 indicates the cumulative function of the normal law.  

By using the table above, we can establish the table according to who summarizes 
the distribution of the probability of migration affected in conformance with BB 

rating: 
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Table 8. The distribution of the probability of migration of BB rating 

Rating Probability from the transition 

matrix (%) 

Probability according to the asset value 

model 

AAA 0.03 𝟏 −𝚽(𝒁𝑨𝑨 𝝈)⁄  

AA 0.14 𝚽(𝒁𝑨𝑨 𝝈)⁄ − 𝚽(𝒁𝑨 𝝈)⁄  

A 0.67 𝚽(𝒁𝑨 𝝈)⁄ −𝚽(𝒁𝑩𝑩𝑩 𝝈)⁄  

BBB 7.73 𝚽(𝒁𝑩𝑩𝑩 𝝈)⁄ −𝚽(𝒁𝑩𝑩 𝝈)⁄  

BB 80.53 𝚽(𝒁𝑩𝑩 𝝈)⁄ −𝚽(𝒁𝑩 𝝈)⁄  

B 8.84 𝚽(𝒁𝑩 𝝈)⁄ −𝚽(𝒁𝑪𝑪𝑪 𝝈)⁄  

CCC 1.00 𝚽(𝒁𝑪𝑪𝑪 𝝈)⁄ −𝚽(𝒁𝑫𝒆𝒇 𝝈)⁄  

Default 1.06 𝚽(𝒁𝑫𝒆𝒇 𝝈)⁄  

Source: Crouhy and al. (2000) 

With, 1
 

  
 

Φ AA

 

Z
 

σ
 represent the probability so that the bond of BB rating can pass 

in the notation AAA and ZAA indicates the threshold from which BB passes to AAA.  

The transformation graphic of the data above is presented as follows: 

 
Figure 3. Generalization of the Merton model to include rating changes (Crouhy & al., 

2000) 

Thus: 

 1 1.06 . 2.30 ΦdefZ % σ    σ  
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The values of the other thresholds are calculated according to whom corresponds 

itself aside type of the normal distribution of the random on the assets of the notation 
BB (Gupton et al., 1997; Crouhy et al., 2000; Nickell et al., 2000; Bangia et al., 2002; 

Albanese & Chen, 2003; Albanese et al., 2003; Rosch, 2005; Feng et al., 2008).  

We suppose now, that a second issuer presents a rating A where the random on assets 

follow a normal distribution with a parameter⁡𝝈′. In that case, the values of 
thresholds relative for two bands who rated BB and A are presented as follows: 

Table 9. Transition probabilities and credit quality thresholds for BB and A rated 

obligors 

 

Rating in 1 

year  

Rated-A obligor Rated-BB obligor 

Probabilities (%) Thresholds: 𝒁(𝝈) Probabilities (%) Thresholds: 𝒁(𝝈) 

AAA 0.09 3.12 0.03 3.43 

AA 2.27 1.98 0.14 2.93 

A 91.05 -1.51 0.67 2.39 

BBB 5.52 -2.30 7.73 1.37 

BB 0.74 -2.72 80.53 -1.23 

B 0.26 -3.19 8.84 -2.04 

CCC 0.01 -3.24 1.00 -2.30 

Default 0.06  1.06  

Source: Crouhy and al. (2000) 

By taking into account the table above, we can calculate the probability of migration 

joined in the following way: 

   , , , ,r      
BBB AA

BB A

Z Z

' '

BB BBB A AA

Z Z

P Z Z Z r Z f r r σ σ' drdr'  

With r and r’ indicate respectively the random on the assets who are rated by BB 

and A and 𝒇(𝒓, 𝒓′, 𝝈, 𝝈′) represent the joint density function by the Gaussian 
distribution which depends on the coefficient of correlation ρ.  

The joint density function of the Gaussian distribution of two variables X and Y is 

presented by the form below: 

 
2 2

2 2 22

1 1 2
,

2(1 )2 1

  
          x y x yx y

x y ρxy
f x  y  exp

ρ σ σ σ σπσ σ ρ
 

According to Hamisultane (2008), for ρ = 20% the matrix of joint transition which 

considers the correlation banding both entities BB and A is the following one: 
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Table 10. Joint rating probabilities (%) for BB and A rated obligors when correlation 

banding asset random is 20% 

Rating of 

first 

company 

(BB) 

Rating of second company (A) 

 

AAA AA A BBB BB B CCC Default  Total  

AAA 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 

AA 0.00 0.01 0.13 0.00 0.00 0.00 0.00 0.00 0.14 

A 0.00 0.04 0.61 0.01 0.00 0.00 0.00 0.00 0.67 

BBB 0.02 0.35 7.10 0.20 0.02 0.01 0.00 0.00 7.69 

BB 0.07 1.79 73.65 4.24 0.56 0.18 0.01 0.04 80.53 

B 0.00 0.08 7.80 0.79 0.13 0.05 0.00 0.01 8.87 

CCC 0.00 0.01 0.85 0.11 0.02 0.01 0.00 0.00 1.00 

Default  0.00 0.01 0.90 0.13 0.02 0.01 0.00 0.00 1.07 

Total  0.09 2.29 91.06 5.48 0.75 0.26 0.01 0.06 100 

Source: CreditMetrics, JP Morgan (Lucas, 1995) 

The last column of the table and the last line of this one represent the marginal 

probability for the entities BB and A which are equal to the sum of the joint 
probability by line or by the column. According to Crouhy et al. (2000) these 

marginal probabilities correspond to the probability of migration of BB and of A 

taken individually. The variation of the portfolio of both bands is calculated for each 

of the joint probability. (Brady & Bos, 2002; Brady et al., 2003) 

C. The Portfolio in Several Obligations  

In case the portfolio consists further more than 2 bands calculates its joint probability 

will more be complicated. So, model CreditMetrics propose the use of the 
simulations of Monte Carlo and the decomposition of Cholesky to generate 

trajectories correlated to the bond and build the distribution of the values of the 

portfolio on certain horizon of time. (Gouriéroux & Monfort, 1995; Fishmen, 1997; 

Crouhy et al., 2000; Hamilton et al., 2002) 

According to Hamisultane (2008) and Feng et al. (2008), to generate trajectories 

correlated to the variables which follow a normal distribution N (µ, ∑). The 

determination of these trajectories requires the respect for the following five stages: 

Stage 1: The regression of the random 𝒓⁡𝒕 of the band on the sectorial indications. 

For example, in the case of three bands and two sectorial indications. 

1, 1 1, , 1, , 1,    t  X X  t  Y Y  t  tr α α I α I ν  

2, 2 2, , 2, , 2,    t  X X  t  Y Y  t  tr α α I α I ν  

3, 3 3, 3, , 3,    t  X X t Y Y  t  tr α α I α I ν  

To pass in the second stage it is necessary to estimate the various parameters of three 

models.  



ACTA UNIVERSITATIS DANUBIUS                                                     Vol 14, no 5, 2018 

200 

Stage 2: The calculation of the variances and the covariance’s banding 2 bands i and 

j: 

𝒄𝒐𝒗(𝒓𝒊, 𝒓𝒋) = 𝜶̂𝒊,𝑿𝜶̂𝒋,𝑿𝑽(𝑰𝑿) + 𝜶̂𝒊,𝒀⁡𝜶̂𝒋,𝒀𝑽(𝑰𝒀)

+ (𝜶̂𝒊,𝑿⁡𝜶̂𝒋,𝒀 +⁡𝜶̂𝒊,𝒀⁡𝜶̂𝒋,𝑿)⁡𝒄𝒐𝒗(𝑰𝑿, 𝑰𝒀) 

And  

𝑽(𝒓𝒊) = 𝜶̂𝒊,𝑿
𝟐
⁡
𝑽(𝑰𝑿) + 𝜶̂𝒊,𝒀

𝟐 𝑽(𝑰𝒀) + 𝑽(𝝂𝒊
𝟐)𝟐(𝜶̂𝒊,𝑿⁡𝜶̂𝒊,𝒀)⁡𝒄𝒐𝒗(𝑰𝑿, 𝑰𝒀) 

By using these two formulae, we can obtain the matrix of the variances-covariance’s 

∑. 

Stage 3: The decomposition of Cholesky of the matrix of the variances of the 

variances-covariance’s ∑ in the following way (Hamisultane, 2008): 


T

   AA  

With A represent the lower triangular matrix and A
T
 transposed by the matrix A. 

Stage 4: The simulation of variables  , ~ 0,1Ni t Z . In fact, the existence of the 

bond to be feigned allows the existence of⁡𝒁𝒊,𝒕. 

Stage 5: The simulation of the values of the correlated variables  ~ , V N μ  

by basing itself on a process of geometrical distribution: 

 
dV

μ dt A dt  Z
V

 

Thus: 

𝒅𝑽

𝑽
=

(

 
 
 
 

𝒅𝑽𝒕
𝟏 𝑽𝒕

𝟏⁄

𝒅𝑽𝒕
𝟐 𝑽𝒕

𝟐⁄
⋮

𝒅𝑽𝒕
𝒊 𝑽𝒕

𝒊⁄
⋮

𝒅𝑽𝒕
𝒏 𝑽𝒕

𝒏⁄ )

 
 
 
 

≈

(

 
 
 
 

𝒍𝒏𝑽𝒕
𝟏 − 𝒍𝒏𝑽𝒕−𝟏

𝟏

𝒍𝒏𝑽𝒕
𝟐 − 𝒍𝒏𝑽𝒕−𝟏

𝟐

⋮
𝒍𝒏𝑽𝒕

𝒊 − 𝒍𝒏𝑽𝒕−𝟏
𝒊

⋮
𝒍𝒏𝑽𝒕

𝒏 − 𝒍𝒏𝑽𝒕−𝟏
𝒏 )

 
 
 
 

 

𝝁 =

(

 
 

𝝁𝟏
𝝁𝟐
⋮
𝝁𝒊
⋮
𝝁𝒏)

 
 

 

𝒅𝒕 =⁡∆𝒕 
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𝑨 =

(

 
 
 

𝜷𝟏𝟏 𝟎 … ⁡ 𝟎
𝜷𝟐𝟏 ⋱ ⁡ ⁡⁡𝟎
⋮
𝜷𝒊𝟏
⋮
𝜷𝒏𝟏

⁡

𝜷𝒏𝟐

⋱ 𝟎 ⁡ ⋮
𝜷 ⋱ ⁡ ⋮
⁡ 𝜷 ⋱ 𝟎

… ⁡ 𝜷𝒏𝒏)

 
 
 

 

√𝒅𝒕⁡𝒁 ≈ √∆𝒕

(

 
 
 

𝒁𝟏,𝒕
𝒁𝟐,𝒕
⋮
𝒁𝒊,𝒕
⋮
𝒁𝒏,𝒕)

 
 
 

 

According to Crouhy et al. (2000), Nickell et al. (2000) and Bangia et al. (2002), the 

forces and the weaknesses of this model are presented in the following table: 

 

 

 

 

Table 11. The forces and the weaknesses relative to the CreditMetrics model 

The forces The weaknesses 

 In the model 
CreditMetrics, both 
aspects of the credit 
risk are taken into 
account. 

 The rating according to companies must be correct; 

 The interest rates are supposed constant; 

 The existence of a relation between the economic situation and the 
probability of defect. In that case, every economic cycle has to have 
matrices of transition appropriate for him; 

 The variability of the actions of a company can be used to deduct the 
variability of the price of the assets of the company. 

Source: Crouhy and al. (2000), Nickell al. (2000); Bangia and al. (2002) 

 

3. The Econometric Models (Credit Portfolio View of Mackinsey) 

Credit Portfolio View is a model with multiple factors which is used to feign the 

common conditional distribution of the default probability and migration for various 
groups of estimation and in different industries (Crouhy et al., 2000). This model 

was developed by Wilson (1997) within McKinsey. The approach developed by this 

author bases itself on the hypothesis that the probability of defect and migration are 



ACTA UNIVERSITATIS DANUBIUS                                                     Vol 14, no 5, 2018 

202 

connected to macroeconomic factors such as the level of the long-term interest rate, 

the growth rate of the GDP, the global unemployment rate, the exchange rates, the 
public spending, the savings.  

Credit Portfolio View is based on the occasional observation which supposes that 

the default probability, as well as the probability of migration, is connected to 

economic cycles. When the economy is in situation of recession, then the cycles of 
credit are also lesser. If it is the opposite case (the economy is in situation of 

expansion) then the cycles of credit become stronger. In other words the cycles of 

credit follow the tendency of economic cycles. Because the state of the economy is 
widely driven by macroeconomic factors, Credit Portfolio View proposes a 

methodology to connect these macroeconomic factors to the probability of default 

and migration. 

Provided that the data are available, this methodology can be applied in every 
country, in the different sectors and in the diverse classes of borrowers of the obligors 

who react differently within the economic cycle.  

The way that a model Credit Portfolio View works is as follows (Smithson, 2003): 

 Simulate the state of the economy;  

 Adjust the rate of default to the state of the simulation of the economy; 

 Attribute a probability of default for every debtor on the basis of the simulations 
of the state of the economy; 

 The value of the individual transactions attributed to the debtors according to the 

probability of defect is determined on the basis of the simulations of the state of the 

economy; 

 Calculate the loss of the portfolio by adding the results for all the transactions; 

 Repeat all the stages quoted above certain number of times to map finally the 

distribution of the losses; 

In the model Credit Portfolio View of McKinsey, the historic rates of default for the 

various industries are described according to the macroeconomic variables specified 

by the user of the model:  

 ( , , , Probabillity of default f GDP  Unemployment Rate   Exchange Rate

In the approach McKinsey, the rates of defect are commanded by a sensibility in a 
sand of the factors of the systematic risk, or the specific factors to the company. The 

table below summarizes the main characteristics of the model of McKinsey 

(Smithson, 2003): 
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Table 12. The main characteristics of the model Credit Portfolio View 

Unit of analysis Segmentation towards industries and on countries. 

The data by default Empirical estimation of the rates of default according to 

the macroeconomic variables. (For example: the GDP, 

the unemployment rate) 

The structure of 

correlation 

Obtained from the correlations banding the chosen 

macroeconomic variables and the estimated factors of 

sensibility. 

The engine of the risk The adjustment of the ARMA model (Autoregressive 

Moving Average model) with the evolution of the 

macroeconomic factors. The shocks undergone by the 
system determine the standard deviation of the average of 

the rates of defect concerning the level of the segment. 

The distribution of the 

rates of defect 

Logistic (Normal distribution). 

The horizon The maturity of the marginal default rate year by year. 

Source: Smithson (2003) 

3.1. The Forecast of the Default Rate  

In the Credit Portfolio View model, the probabilities of default are modeled as being 

a Logit function. In this modeling the independent variable is a specific speculative 
index in every country and which depends on macroeconomic variables. The Logit 

function allows that the values of probability of default are included between 0 and 

1 (Crouhy et al., 2000; Hamisultane, 2008). 

,
,

1

1



 j t

j t Y
P  

e
 

, ,0 ,1 ,1, ,2 ,2, , , , ,    j t j j j t j j t j m j m t j tY β β X β X β X ε  And 
2

, ,~ (0,  )Nj t ε jε σ  

Where, 𝑷𝒋,𝒕 indicate the conditional probability of default for period t for the debtors 

of the industry j and 𝒀𝒋,𝒕 represent an indication stemming from a model in m factors. 

𝜷𝒋,𝟎, 𝜷𝒋,𝟏, ..., 𝜷𝒋,𝒎 are coefficients to be estimated by the method the Ordinary Last 

Squares (OLS). 𝑿𝒋,𝟏,𝒕 , 𝑿𝒋,𝟐,𝒕, …, 𝑿𝒋,𝒎,𝒕 are values of economic variables in the date 

t of the industry or the country j. 𝜺𝒋,𝒕 represent a term of error which is normally 

distributed and independent of 𝒀𝒋,𝒕.  

The model of McKinsey so land us land us note, as it is a model of macro-factors 

𝑿𝒋,𝒕 who are represented by variable macroeconomic who follow a Autoregressive 

model of order 2 (AR2): 

, , , ,0 , ,1 , , 1 , ,2 , , 1 ,    j i t j i j i j i t j i j i t j tX γ γ X γ X ω  And 
2

, ,~ (0,  )Nj t ω jω σ  
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Where: 𝜸𝒋,𝒊,𝟎, 𝜸𝒋,𝒊,𝟏 and 𝜸𝒋,𝒊,𝟐 are a coefficients to be estimated and 𝝎𝒋,𝒕 is a term of 

error which is normally distributed and independent of 𝑿𝒋,𝒊,𝒕.  

In this frame, our objective is to resolve the system below: 

,
,

1

1



 j t

j t Y
P  

e
 

, ,0 ,1 ,1, ,2 ,2, , , , ,    j t j j j t j j t j m j m t j tY β β X β X β X ε  

, , , ,0 , ,1 , , 1 , ,2 , , 1 ,    j i t j i j i j i t j i j i t j tX γ γ X γ X ω  

Where 𝑬𝒕 is the vector of the innovations such as: 

~ (0, )
 

  
 


t

t

t

ε
E    N  

ω
 And 

,

,

 
 
 
 

 


 
ε ε ω

ω   ε ω

 

With ∑𝜺,𝝎 and ∑𝝎,𝜺 Represent the matrices of correlation. 

In case the parameters are estimated, then it is possible to feign the probability of 

default by basing itself on historical data. Credit Portfolio View uses tired matrices 

of transition of economic cycles. 

3.2. The Conditional Matrices of Transition 

By basing itself on the matrices of transition in the economic cycles which are 

proposed by the Credit Portfolio View, we can determine the situation of the 
economy (Crouhy et al., 2000). Noting in this respect that, the matrices of transition 

in the Credit Portfolio View are different to those of the matrices of migration in the 

CreditMetrics (Hamisultane, 2008).  

Credit Portfolio View proposes a tool based on the following ratio: 
,j tP

φSDP
 

Where 𝑷𝒋,𝒕 represent the probability of default feigned for date t and for the sector j 

and 𝝋𝑺𝑫𝑷 represent the historic default probability which is based on observed data.  

If 
,

1
j tP

φSDP
 then the economy is in period of recession and if 

,
1

j tP

φSDP
 then the 

economy is in period of expansion. 
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Credit Portfolio View suggests employing this ratio to adjust the probability of 

migration. So, the matrix of transition multi-period is given by the following 

formula: 

,

1

( )



T

j t

t

P
M   M

φSDP
 

Where M(.) can take two different values. So, M(.) = ML if 𝑷𝒋,𝒕
𝝋𝑺𝑫𝑷

> 1 and M(.) = 

MH if 
,

1
j tP

φSDP

 .  

With ML indicate the matrix of transition in the case of a period of recession and MH 

indicates the matrix of transition in the case of a period of expansion. 

We can simulate a lot of time the matrix of transition to determine the probability of 
default for any estimation and for any period. The methodology of Monte Carlo 

Simulation can be used to determine the distribution of the default probability for 

any period. 

The forces and the weaknesses relative to the Credit Portfolio View model are 

presented in the table below: 

Table 13. The forces and the weaknesses relative to the Credit Portfolio View model 

The forces The weaknesses 

 Credit portfolio View connects the 

probability of default and the matrices of 

transition with economic indicators. In 

other words, the probability of default is 

stronger in period of recession than in 
period of expansion. 

 In the Credit Portfolio View model, we 

use macroeconomic data which cannot be 

available for a country or a business sector. 

 This model determines only the 

probability of default of a country or a 
business sector and not an issuer. 

Source: Hamisultane (2008) 

 

4. The Model CSFP: Credit Risk+ Market Risk  

Since 1990s, Credit Suisse First Boston (CSFB) has developed new methods of risk 
management. In 1993, the credit Swiss Group launched, in parallel of an important 

project which aims at modernizing its credit risk management and by using the 

expertise of CSFB, new one management tool of the credit portfolio in the future. In 
December, 1996, Credit Suisse Group presented the CreditRisk+ model as being a 

model of the credit portfolio management.  
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The structural models present an inconvenience concerning the default. These 

models suppose that the default cannot have arisen by surprise because the market 
value of assets is supposed to follow a continuous process of distribution. In this 

aligned, a process of Fish was used in the actuarial models the purpose of which is 

to model the unpredictable character of the emergence of the default what is 

developed in the model CreditRisk+. 

CreditRisk+ is a model with intensity is which presents no hypothesis on the causes 

of failure of a company. It is model statistical of the default of credit risk which 

makes no claim about the causes of the default. This approach is similar to that of 
the management of the market risk, in which no attempt is made model the causes of 

the movements of market prices. This model does not consider the consequences of 

a deterioration of the quality of the quality of the counterparty.  

So, the number of failures in a credit portfolio during the given period justifies itself 
by a process of Fish. CreditRisk+ uses a methodology based on techniques and 

quantitative methods. The present model is based on an actuarial calculation to 

determine and present the distribution of the losses of a credit portfolio. 

CreditRisk+ presents four hypotheses:  

 Every individual credit presents only two possible states: failures or no failures; 

 The default probability of an individual credit is low; 

 The default probability for a big group of borrowers is very low; 

 The number of default over a period is independent from that of any other period; 

By basing itself on these hypotheses, the probability distribution of the number X of 

defaults over a given period (one month or one year for example) can be represented 

by using the law of Fish of average µ and of standard deviation√𝝁⁡: 

 
!



 
n μμ e

P X n
n

 

Where, µ is the average of the number of default a year. 

 Aμ P  

With PA indicate the default probability of the obligor A. 

The annual number of the defaults, n, is a stochastic variable of average µ and a 

standard deviation√𝝁⁡. According to CreditRisk+, the calculation of the distribution 

of the losses requires the use of an approach by bonds; that is issued in a portfolio 
are grouped and collected by edge of exposure. 
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The process of determination of the distribution of the losses of a portfolio is 

constituted by three stages: 

 The determination of the generative function of probability for every bond; 

 The diversion of the generative function of probability for the whole portfolio; 

 The determination of the distribution of the losses for the whole portfolio. 

The distribution of the losses of default for a portfolio is diverted in two stages as 
the watch represents it below: 

 

Figure 4. CreditRisk+ risk measurement framework (Crouhy et. al., 2000) 

Until here, we supposed that the distribution of fish allows moving closer to the 
distribution of the number of the events of defect. Then we should expect that the 

standard deviation of the default rate is approximately equal to the square root of the 

average. 

In case of defect of an obligor, the counterparty incurs a loss equal to the quantity 
possessed by the obligor less a quantity of restoring. In CreditRisk+ the exposure for 

every obligor is adjusted by the rate planned by restoring, to calculate the loss of 

default. These adjusted exposures are exogenous in the model, and are independent 
of the market risk and minimize the risk. 

To divert the distribution of loss for a diversified portfolio, the losses are divided 

into bands with the level of the exposure in every band.  

To analyze the distribution of the resultant losses of the whole portfolio, presenting 

us the default probability expressed by the function defined in terms of variables 
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auxiliary z by respecting itself the following approach of the formulation of the 

generative function:  

We considered X a whole and positive random variable. The generative function of 

X is the whole series: 

 
0

( )




 
k

k

G z P X k z  

Where P(X=k) is the probability that the random variable X takes the value k. to 
obtain P(X=k) from the generative function G(z), we use the following formula: 

 
1

(0)
!

 
k

 

k

d G
P X k  

k dz
 

In that case, the generative function associated among default X arisen among all the 

bonds of a portfolio is given by the expression below: 

      
0 0

. . 1
!

  

 

      exp
n μ

n n

n n

μ e
F z P X n z z μ  z

n
 

This function can be written as follows: 

  ( ) A  

A

F z F z  

Where 𝑭𝑨(𝒛)⁡ indicate the generative function of a portfolio constituted by a single 

bond of the issuer A. 

So, every portfolio consists of m identical bond of exposure of indications j (j = 1, 

2, m). 

Every bond is characterized by:     j j jε μ *  

Thus implies that:  



j

j

j

ε
μ    

With, 𝜺𝒋 indicate the expected average loss expressed in multiple of a standard 

exposure L, 𝝁𝒋 indicate the expected number of defaults which is a known value and 

𝝑𝒋 indicate the exposure expressed in multiple of L in the band j.  

In that case, the inputs of the model to be developed are: the individual exposure L 

and the probability of default 𝑷𝑨 for the issuer (debtor) A. Then, the loss hoped for 

the debtor A is expressed as follows: 
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A A Aλ  L * P  

 A
A

λ
ε  

L
 

The expression above is obtained when the expected loss is expressed in units of L. 

So, the expected loss 𝜺𝒋 for the bond j is given then as follows:  

j Aε   ε  

In this perspective, the expected number of defects 𝝁𝒋 for each of the indicated bond 

j is then given by: 

   

   
j j

j A A
j

 j j A

ε ε ε
μ    

Thus, the number of waited defects total µ for them m bond is expressed as follows 

1 1 

  
m m

j

j

j j j

ε
μ μ    

The expression of the generative function of the included losses is obtained by: 

   
0





 
n

n

G z P Agregate losses n* L z  

 
1

( )



m

j

j

G z G z  

Thus:  

 
0

( ).






  jn 

j j j

n

G z P V k   z  

Where 𝑽𝒋 represents the amount of the losses of the bond j and 𝑷(𝑽𝒋 = 𝒌𝒋) indicates 

the probability of the loss⁡𝒌𝒋. 

Furthermore, we have: 

   
!



   

j jn μ

j

j j j j

j

μ  e
P V k P X n  

n
 

Thus we obtain: 
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 
0

. ( )
!


 





    exp

j j

j j j

n μ

nj

j j j

n j

μ e
G z   z   μ μ z

n
 

And 

 
0 1

( )


 

    j

m m

j j

n j

G z exp μ μ z  

Then, if we put: 

 
1

1

1

1














 
  
  
 
  
 






j

j

m j

jm
j

j

mj j

j
j

ε
z

P z   μ z  
μ ε

 

Then, the generative function of the included losses can be written in the following 
way: 

       exp 1 ( )  G z μ  P z F P z  

Where from, we can obtain the distribution of the losses of the total portfolio of an 
amount (n*L) as follows: 

𝑨𝒏 =⁡
𝟏

𝒏⁡!

𝒅𝒏𝑮⁡
𝒅𝒛𝒏

⁡(𝟎) 

Land us note in that case that, 𝑨𝒏 can be calculated in continuous by basing itself on 
the following formula and under the hypothesis according to which µ is constant. 

Where from we obtain: 

 

 

 

 

 

 

 

   0

1

0 exp


 
      

 

m

j
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ε
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







 
  
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The CreditRisk+ model considers that every sector is driven by a simple fundamental 

factor. This factor explains the variability of the rate of average defect measured for 

this sector. The fundamental factor influences the rate of defects planned in the 
concerned sector which is modeled by a random variable of average µ and of 

standard deviation √𝝁⁡indicated for every sector. 

The standard deviation reflects the degree to which, in all the probability of default, 

the obligors in the portfolio are exposed are more or less that their levels of the 

average. By continuing this analysis, the model CreditRisk+ bases on the hypothesis 

that µ is constant. So, by basing itself on the distribution of Fish of parameter µ the 
probability of failures are underestimated. In that case, it is necessary to take into 

account the existence of an average number of variable failures. 

In this aligned, the parameter µ is considered as being a stochastic variable and 
depends on characteristics of the sector. In fact, and according to the CreditRisk+ 

model, a sector is considered as being a sand of credits the rates of failure of which 

are subjected to the same influences. In the CreditRisk+ model, every portfolio is 

divided into sectors indicated by k with 1 ≤ k ≤ K.  

In particular, for every sector k, we introduce one random variable 𝒙𝒌 which 

represents the average number of defaults in this sector. The average number of the 

defects is equal in µ.  

So, the hope of 𝒙𝒌 for the sector k is noted µ and its standard deviation is equal in𝝈𝒌. 

In this frame µ is calculated as follows:  

( )( )

( )
1 


km k

j

k k
j j

ε
μ    

In the case that µ is no constant; the generative function of the number of defaults is 

given by: 

   
1


k

k

k

F z F z  

And 

       1

0 0 0

( )

 


  

   
x zn

k

n x x

F z z   P n defaults f x dx    e f x dx  

Where 𝒇(𝒙) indicates the density of the variable𝒙𝒌.  

The continuation of the calculations is conditioned by the presence of a nature of 

distribution given in𝒙𝒌. In the CreditRisk+ model, the choice is fixed to a distribution 

Gamma Г of average µ and of standard deviation𝝈𝒌. Thus we obtain: 
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 
1

( 1)

0
( )









 
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k

x

β α
x z

k α

k kx

e x
F z e

β Г α
 

Where the Gamma function written as follows: 

  1

0


 



 
x α

x

Г α e X dx  

For every sector k, we have two parameters of Gamma function to be estimated 𝛂𝐤 

and𝛃𝐤. 

Thus: 

2

2
 k

k

k

μ
α  

σ
 

2

 k
k

k

σ
β

μ
 

By substituting and by basing itself on the definition of the Gamma function, we 
obtain then:  
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1
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0
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




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 
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x
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⇔⁡  
   1 1

1

( ) 1 1 
 

   

Γ

Γ
k k

k k

k α α
α α   

k k k k
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β α  β    z β  β  z

 

 

After this simplification, the generating function of the distribution of the 

probabilities of default for the sector K is given by the following expression: 

 
1

1

 
  

 

kα

  k
z

  k  

p
F z

p z
 

Thus: 
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1
 k

k

  k

β
p

β
 

After the determination of the number of defaults in a portfolio, one goes in what 

follows to present the generating function of the losses incorporated in a portfolio 
functions written is the following; 

   
0





 
n

n   

G z p Agregate losses n* L z  

So: 

     
1 1

( )
 

  
k k

k   k k  

k k

G z G z   F P z  

Where the polynomial function 𝑷𝒌(𝒛)⁡is written as follows: 
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One can deduce the expression from the generating function 𝐆(𝐳) which is written 

in the following way: 

 
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In this respect, we can deduct the distribution of the losses of portfolios from the An 
which is given by: 

 
0






n

n

n

G z A Z  

So, in case 𝐆(𝐳) verify the following relation: 

( ) ( )

( ) ( )


'
G z A z

G z B z
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Where 𝐀(𝐳) and 𝐁(𝐳) are two polynomials of the following shape: 

  0   r

  rA z a a z  

  0   s

  sB z b b z  

Thus, the coefficients 𝐀(𝐳) verify the relation of following recurrence: 
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0 00
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This relation is applied knowing that 𝐆(𝐳) verify the following condition:  
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Generally, the CreditRisk+ model is based on mathematical techniques in the 

modeling of the distribution of the losses in the field of the banking activities and of 
the insurance. The behavior of common default of the borrowers is incorporated by 

treating the rate of default as being a common random variable for multiple 

borrowers. So, the borrowers are assigned among the sectors among which each has 

a rate of average default and a volatility of rate of default. The volatility of rate of 
default is the standard deviation which would be observed on a portfolio of infinitely 

diversified homogeneous credit. The forces and the weaknesses relative to the 

CreditRisk+ model are presented in the table below (Hamisultane, 2008): 

Table 14. The forces and the weaknesses relative to the CreditRisk+ model 

The forces The weaknesses 

 The use of a minimum of data since the 

distribution of the losses depends only on one 

reduced number of parameters. This 

characteristic makes it possible the 

CreditRisk+ model to reduce and minimize 

the risk of errors due to the uncertainty of the 

parameters. 

 The CreditRisk+ model uses models 

based on closed formulas what allows him a 

fast execution of calculations. 

 The CreditRisk + model do not take 

into account the earnings or the loss of 

value of the portfolio provoked by 

changes of Rating. 

 The interest rates are supposed 

constant. 

 The used techniques of calculation are 

not simple and are not necessarily 

accessible to every user of the model. 

Source: Hamisultane (2008) 
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5. Conclusion  

In this paper we developed a comparative theoretical approach’s concerning the 
model of management of credit portfolio. Then, we studied the four mains models 

of credit portfolio management. In the financial literature those models are grouped 

by three types of credit portfolio models (Crouhy et al., 2000). 

The structural models: there are two models of management of credit portfolio who 

are supplied in the literature: Moody’s KMV model (Portfolio Model) and 

CreditMetrics model by JPMorgan. The Macro-factors model. (Econometric model) 

The Credit Portfolio View model introduces in 1998 by Mckinsey. The actuarial 
models CSFP (Credit Suisse First Boston): this model (CreditRisk+) is developed in 

1997. 

The KMV model and Credit Portfolio View base their approach on the same 
empirical observation that default and migration probabilities vary over time. The 

KMV model adopts a microeconomic approach which relates the probability of 

default of any obligor, to the market value of its assets. The Credit Portfolio View 
model proposes a methodology which links macroeconomics factors to default and 

migration probabilities. The calibration of this model necessitates reliable default 

data for each country, and possibly for each industry sector within each country. 

Structural models are based on option theory and capital structure the company. On 
econometric models, they link the probability fault of the company to the state of the 

economy. The probability of failure depends in these models of macroeconomic 

factors such as unemployment, the rate of increase GDP, the interest rate long-term. 
Moreover, in the CreditRisk+ models, the probability of default varies over time. 
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