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1. Introduction

In the process of acquisition of goods, the firdh@pal problem is those of
maximizing the utility under a budget constraingt therefore two goods A and B
with corresponding pricesypand g and the total budget for acquisition V. The

utility function is U:R? - R, (x,y)-U(X,y) where x and y are the quantities of A
and B respectively. The classical conditions foximézing the utility are:

maxU(x,y)
PaX +pgysV
X,y=20
It is shown that, if the goods are perfectly divigj the extreme of U is reached on
the straight line: gx+pgy=V.

The question which arises is those related torntisibility of A and B. Before to

formulate the new problem, let suppose that theeprpa, ps and the budget V are
integers. This is not a forced assumption becaiiseamultiply with a convenient
factor this supposition becomes true.
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The problem is therefore:

maxU(x,y)

PaX+pPgy sV
X, yON

For example, let consider the problem of acquisidrere p=11, k=10, V=184
and the utility function is one of Cobb-Douglas g¢ypU(x,y)=X>y°% The
classical solution is: x=6.189 and y=11.592 wita thaximal utility }=9.190. At a
first sight, we can take the round values:6cand y=12 with U;=8,243. But the
necessary budget is;¥116+1012= 186>V therefore the combination is not good.
Another allocation is find on integer values ofnday, that is: x=6 and y=11 with
Up,=8,790 and Y=116+1011=176V.

In what follows, we shall see that neither thisigoh is acceptable.

2. The Allocation of an Integer Number of Goods irorder to Maximize
the Total Utility

Let R (X,y)(X,y=0,pX+pgy<V} the budget region and y\RRNnNxN the
restriction of R to all pairs of positive integerardinates.

Because px+pgy<V we have: )gi and 3&1 therefore (x,yJRy implies that:
Pa Ps

A B

xO {0[lﬂ nN (where [a] is the greatest integer less thanaad ﬁ{O[lﬂ

N N.

For a value KIN such that 8ks {l} , we find that ¥{V—_kpﬂ
Pa Ps

V —Kkp,

Let now )S[V—_kpﬂ such that y+s’t.[ } Because the utility is an
Ps

Pe

increasing function with respect to x and y we khmve U(X,y+1>U(X,y)
therefore (x,y+1) will be preferred to (x,y).

After these considerations we have the answerhiptoblem. We must compute

all the vaIuesU[k,{V;—kpAD, O<ks {l} and choose the greatest.
B Pa
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Example For the problem presented in introduction, we Isbatain the best
solution: x=4, y=14, 8,807 and V=184 which differ essentially from #imove.

3. The Simplex Algorithm for the Allocation of an Integer Number of
Goods

Let a consumer which has a budget V of acquisitibtwo goods A and B. The
corresponding prices of A and B argand g respectively. The utility function is

U:R? ZR, (x.y)-U(x,y) where x and y are the quantities of A anteBpectively.

Let also the marginal utilities ,M:g—u and UnB:g_U which generate for each
X y

integer value k of x and p of y the correspondidugs uk:g—u(k) and @p=
X

Z—;J(p) respectively. Let note also a — the number of goddnd b — the number

of goods B taking into account in a consumer’s plan

Because the total utility is the sum of the marlimdities, we shall search the

a b
maximum of the function: B u, +> Ug; .
i=1 =1
1if thei-th dosefromthegood Aisused
Let notex, =4 . ) .
0if thei-th dosgrom thegood A isnotused

lif thei-th dosefromthegood Bisused
and also for Bxg =1 | ) )
0if thei -th dosefrom thegood Bisnhotused

Because the impossibility of using the (i-1)-th elosvolved the existence’s
impossibility of the i-th dose, we shall put thenddion that: %;,Xgi[IN, 0<Xai<Xai.
1, 0=2Xgi<Xgi1 for i>1.
v v
L’A} L’J
We have also:} paXu + Y PgXg <V.
=1

i=1 i

The problem consists in the determination ofy,% such that
HEE
Pa Ps

max > UxXa + X UgXg; |-
in =
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The problem is therefore:

bl L

Pa Pg

max > UxXa + D UgXg;
i1 i

o 1l
;pAXAi + D PpXg <V

=1
Xai S Xpj-11 Xgj S Xgjg

Xp Sl Xxg <1
Xa 20,Xg 20

= [

Pa Ps

Finally we shall have: a3 X, and b= xg; .
i=1 =1

Because the problem (1) is in integer numbers, &l spply the algorithm of
Gomory.

After the solving of (1), using the Simplex algbrit, we shall have two cases:
Case 1l

If Xa ,;Bj 0N, i=l{l} ,j:l[pl} the problem is completely solved.
Pa B

Case 2
For the simplicity, let note the good A with thelex 1 and B with 2.
If D;kp 0N, the variableikp is obvious in the basis.

In this case, let notgy; the element of the Simplex table at the intere@otif %-
row with xs-column. In order to simplify the notations, let,¥{Yipg U[0,1),

Vip={ ;kp}D[O,l) the fractional part of these quantiti®s{(g,h) Xy, is a basis
variablg andS={(t,s) X is not a basis varialjle

We have now, fromxy, =Xgn = Y Yo 0(9,h)IB:

(ts)ds

(2) ka =Xip — Zykptsxts = [kaJ+ Vkp - Z[ykpts]xts - kaptsxts
(ts)s (ts)s (t9)0s
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We can write (2) also in the form:

(3) ka - IXKPJ+ (Z)[ykpts]xts = Vkp - (kaptsxts
ts)s )

ts)s

In order that the problem has integer solutioméréfore necessary and sufficient
that: x,, —[xka+ Z[ykpts]xts 0Z or, in other wordsy, Zv X, OZ.

kpts”* ts
(ts)ds (ts)d

Let now:

(4) z Vkpts ts

from where:

(5) kapts « Vip-V, VOZ

(ts)ds

From the hypothesis.s VipU[0,1) and > v, x, 20 from the positive character
(ts)as

of variables.
We have now three cases:
Case 2.1.

If v>0 we have UN* therefore & > v, X, =Vip-v. From this: y2v21 —
(ts)as

contradiction with the choice ofy
Case 2.2.

If v=0 we have that(z)vkmsxts =Vi=Vicp-
ts)as

Case 2.3.

If v<O we have from the condition that v is integes- which implies: -#1.

Finally: 3 v, X, =Vip-V2Vipt 1>Vip>0.
(ts)as
From these cases, we have that the condition totbger for %, is: > v, X,
(ts)as
ZVkp.
After all these considerations, making the notatiga > v, X -V, We shall

(ts)as
obtain the new problem:
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ol L

max > UxXa + D UgXg;

ol [

Pa
(6) ZipAXAi + 2 PeXg sV

=1

y- kaptsxts ="V

(t90s
Xai S Xpj-15Xgj S Xgjq
Xa S1Xg <1
Xa 20X 20

If the problem (6) will has at finally an integeolstion the problem will be
completely solved. If not, we shall resume the ugeps.
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