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1. Introduction 

In the process of acquisition of goods, the first principal problem is those of 
maximizing the utility under a budget constraint. Let therefore two goods A and B 
with corresponding prices pA and pB and the total budget for acquisition V. The 

utility function is U: 2
+R →R, (x,y)→U(x,y) where x and y are the quantities of A 

and B respectively. The classical conditions for maximizing the utility are: 
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It is shown that, if the goods are perfectly divisible, the extreme of U is reached on 
the straight line: pAx+pBy=V. 

The question which arises is those related to the indivisibility of A and B. Before to 
formulate the new problem, let suppose that the prices pA, pB and the budget V are 
integers. This is not a forced assumption because after a multiply with a convenient 
factor this supposition becomes true. 
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The problem is therefore: 
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For example, let consider the problem of acquision where pA=11, pB=10, V=184 
and the utility function is one of Cobb-Douglas type: U(x,y)=x0,37y0,63. The 
classical solution is: x=6.189 and y=11.592 with the maximal utility Ut=9.190. At a 
first sight, we can take the round values: x1=6 and y1=12 with Ut1=8,243. But the 
necessary budget is V1=11⋅6+10⋅12= 186>V therefore the combination is not good. 
Another allocation is find on integer values of x and y, that is: x2=6 and y2=11 with 
Ut2=8,790 and V2=11⋅6+10⋅11=176<V. 

In what follows, we shall see that neither this solution is acceptable. 

 

2. The Allocation of an Integer Number of Goods in order to Maximize 
the Total Utility 

Let R={(x,y)x,y≥0,pAx+pBy≤V} the budget region and RN=R∩N×N the 
restriction of R to all pairs of positive integer coordinates. 

Because pAx+pBy≤V we have: x≤
Ap

V
 and y≤

Bp
V

 therefore (x,y)∈RN implies that: 

x∈
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,0 ∩N (where [a] is the greatest integer less than a) and y∈
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For a value k∈N such that 0≤k≤ 
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, we find that y≤ 
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Let now y≤ 
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. Because the utility is an 

increasing function with respect to x and y we shall have U(x,y+1)>U(x,y) 
therefore (x,y+1) will be preferred to (x,y). 

After these considerations we have the answer for the problem. We must compute 

all the values 
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 and choose the greatest. 
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Example For the problem presented in introduction, we shall obtain the best 
solution: x=4, y=14, Ut=8,807 and V=184 which differ essentially from the above. 

3. The Simplex Algorithm for the Allocation of an Integer Number of 
Goods 

Let a consumer which has a budget V of acquisition of two goods A and B. The 
corresponding prices of A and B are pA and pB respectively. The utility function is 

U: 2
+R →R, (x,y)→U(x,y) where x and y are the quantities of A and B respectively. 

Let also the marginal utilities UmA=
x
U

∂
∂

 and UmB=
y

U

∂
∂

 which generate for each 

integer value k of x and p of y the corresponding values uAk= )k(
x

U

∂
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 and uBp=

)p(
y
U

∂
∂

 respectively. Let note also a – the number of goods A and b – the number 

of goods B taking into account in a consumer’s plan. 

Because the total utility is the sum of the marginal utilities, we shall search the 

maximum of the function: Ut=∑
=

a

1i
Aiu +∑

=

b

1j
Bju . 

Let note:
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and also for B: 
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Because the impossibility of using the (i-1)-th dose involved the existence’s 
impossibility of the i-th dose, we shall put the condition that: xAi,xBi∈N, 0≤xAi≤xAi-

1, 0≤xBi≤xBi-1 for i>1. 

We have also: ∑
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The problem consists in the determination of xAi,xBi such that 
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The problem is therefore: 

(1) 





















≥≥
≤≤
≤≤

≤+



















+

−−










=










=










=










=

∑∑

∑∑

0x,0x

1x ,1x

xx ,xx

Vxpxp

xuxumax

BjAi

BjAi

1BjBj1AiAi

p

V

1j
BjB

p

V

1i
AiA

p

V

1j
BjBj

p

V

1i
AiAi

BA

BA

 

Finally we shall have: a=∑
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V
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Aix  and b=∑
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1j
Bjx . 

Because the problem (1) is in integer numbers, we shall apply the algorithm of 
Gomory. 

After the solving of (1), using the Simplex algorithm, we shall have two cases: 

Case 1 

If Aix , Bjx ∈N, i= 








Ap

V
,1 , j= 









Bp
V

,1  the problem is completely solved. 

Case 2 

For the simplicity, let note the good A with the index 1 and B with 2. 

If ∃ kpx ∉N, the variable kpx  is obvious in the basis. 

In this case, let note ykpts the element of the Simplex table at the intersection of xkp-
row with xts-column. In order to simplify the notations, let: vkpts={ykpts}∈[0,1), 

vkp={ kpx }∈[0,1) the fractional part of these quantities, B={(g,h)xgh is a basis 
variable} and S={(t,s)xts is not a basis variable}. 

We have now, from: ∑
∈
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We can write (2) also in the form: 

(3) [ ] [ ] ∑∑
∈∈
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In order that the problem has integer solution it therefore necessary and sufficient 

that: [ ] [ ]∑
∈

+−
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tskpkp xxx kptsy ∈Z or, in other words: ∑
∈

−
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Let now: 

(4) v= ∑
∈
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from where: 

(5) ∑
∈S)s,t(

tsxkptsv =vkp-v, v∈Z 

From the hypothesis, vkpts, vkp∈[0,1) and ∑
∈S)s,t(

tsxkptsv ≥0 from the positive character 

of variables. 

We have now three cases: 

Case 2.1. 

If v>0 we have v∈N* therefore 0≤ ∑
∈S)s,t(

tsxkptsv =vkp-v. From this: vkp≥v≥1 – 

contradiction with the choice of vkp. 

Case 2.2. 

If v=0 we have that ∑
∈S)s,t(

tsxkptsv =vkp≥vkp. 

Case 2.3. 

If v<0 we have from the condition that v is integer: v≤-1 which implies: -v≥1. 
Finally: ∑

∈S)s,t(
tsxkptsv =vkp-v≥vkp+1>vkp>0. 

From these cases, we have that the condition to be integer for xkp is: ∑
∈S)s,t(

tsxkptsv

≥vkp. 

After all these considerations, making the notation: y= ∑
∈S)s,t(

tsxkptsv -vkp we shall 

obtain the new problem: 
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(6) 
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If the problem (6) will has at finally an integer solution the problem will be 
completely solved. If not, we shall resume the upper steps. 
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