ACTA UNIVERSITATIS DANUBIUS Vol 7, No. 4/2011

The Analysis of the Evolution of the
Gross Domestic Product by Means of Fourier Developent
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Abstract. In this article, we will carry out an analysis dwetregularity of the Gross Domestic Product
of a country, in our case the United States. Théhatkof analysis is based on the consideration of
the development in the Fourier series of a functind testing in terms of the average absolute error
of the nearest polynomial Fourier of real datacmasidered. The obtained results show a cycle3or 1
years, the average absolute error being 3.69%.nTéthod described allows an prognosis on short-
term trends in GDP.
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1. Introduction

In the literature, the economic cycle designateflingtuations which accompany
the evolution of a nation or, sometimes, it simighassociated with the increasing
and decreasing of an economy. Throughout histognynstates were faced and
have experienced economic fluctuations, most tdstety the United States.

Given the complexity of economic phenomena, in ficachere are as many types
of economic cycles or economic fluctuations. We say that almost any segment
of the economic life is subject to the fluctuatichgt, sometimes, may include
periods of more than a year.

According to literature, the theoretical economjcle is linked on the one hand,
by changes in aggregate demand with all compor(potslic consumers, private
consumers, investors) or, on the other hand, ofcttenge in supply aggregates
(changes in production costs).

A more comprehensive approach to the problem ofettenomic cycle requires
knowledge of all aspects of the market economy.
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Regardless of the factors that have influencedfamdred economic cycles, their
approach involves different points of view.

The first analysis of the economic cycle through fiism of the phenomenon of
recurrence is due to the French economist Clemagiar] who has studied the
fluctuations of the interest rate and price andrenbasis of which was discovered
in 1860 an economic cycle with alternate periodprolsperity and depression for
8-11 years.

Economists who have a thorough analysis of Clendemflar's cycle and, in
particular Joseph Schumpeter, have concluded mhiatthere are four phases: the
expansion, the crisis, recession and the renascence

At the beginning of the 20th century, Joseph Kitchased on analyses of interest
rates and other variables (the analysis being padd on the economies of the
United States of America and United Kingdom) disrgva short economic cycle,

approximately 40 months.

The economists, after the Great Depression in daesy1929-1933, have focused
much more on macroeconomic phenomena that deterthénappearance of the
economic cycle, looking for patterns of prediction.

In the “The Major Economic Cycles”, which appearied 1925, the Russian
Economist Nikolai Kondratieff mark out an econonsigcle much longer, about
50-60 years. On the basis of statistical researdmesong-term fluctuations in
prices (the analysis being performed on the sameauies of the United States of
America and United Kingdom), Kondratieff observedripds of accelerated
growth of branches of Economics, alternate withwslogrowth. Within this cycle,
Kondratieff identified the expansion phase, thesghaf stagnation and recession
phase. Without finding a universally accepted exalin, he believes that the
basis of these cycles long stay technological msgyr confirmed later by
Schumpeter, which considers “the bunch of relatetbvations” that generates
each cycle.

Other analysis devoted to the economic cycle haenbmade by Wesley Clair

Mitchell in the work “Business Cycle” (1913) and &dsuring Business Cycles”

(1927) in which the author discusses some methbdgtermination and analysis

of economic cycle. Mitchell puts emphasis on tHéedknces between the capitalist
societies and the pre-capitalist, considering ghaburse of business would not be
possible in a society pre-capitalist, but can o@eume capitalist ([1]).

John Maynard Keynes - the economist of the Greapr&sion, lay the

groundwork for a new economic theory which reveatdose connection between
consumption and investment. According to the Kejametheory and its adherents,
any additional expenditure (consumption) generategicome a few times higher
than the expenditure itself. This relationship kegw consumption and investment,
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known as the investment multiplier, can not prodummsidered Keynes, cyclical
movements in the economy, but it can lead to anangrend.

Russian research economist Simon Kuznets, in 188thp bases of a cycle lasting
on average, over a period of 15-20 years, calledn@hraphic cycle” or “the cycle

of investment in infrastructure”. Kuznets considérat a factor that influence the
emergence and evolution of an economic cycle isdémaographic processes, in
particular the phenomenon of migration having dlsing effects in the buildings

sector.

The Austrian School sees the economic cycle thritsglepresentatives, notably to
Ludwig von Mises, as a natural consequence of thesive growth of bank credit,
an inappropriate monetary policy conducive to rigigthe conditions of crediting
and finally the accumulation of toxic assets. Glowf loans generates, in turn, a
rise in prices and a fall in interest rates beltw bptimum level, and the crisis
occurs when manufacturers can’t sell the producbenause of the very high
prices. In the same stream of thought, Friedriclieiaconsiders the phenomenon
of over-investment as a factor determining the br$ea new economic cycle,
while Joseph Schumpeter considers that the emergand the onset of the
economic cycle is based on the existence of invastsnwith high efficiency
carried out in a short period and a low demandé&w products.

After attempts at explanation of the economic cylttean the early 1970’'s of

Milton Friedman and Robert Lucas, the work of FEanKydland and Edward C.

Prescott “Time to Build And Aggregate Fluctuatiorff3]) launches real business
cycle theory, the economic cycles being determimgthe fluctuations in the rate
of growth of total productivity of factors of prodiion.

Over time, many economists have attempted, throaghlysis of available
statistical data, to develop specific models oé$ights of changes taking place in
the economy to come to the aid of the decision-msake act according to actual
economic conditions.

The objective of this paper is to determine a fdedhistorical influence on the
evolution of GDP in strictly numerical terms. Fbis, we will consider data sets of
given length, then determining the correspondinggraage polynomial
interpolation. Considering the function resultimgrh pasting the above functions,
we will build the Fourier development of the ditet values of periodicity and
having starting point an arbitrary value. The peérappropriate to the smallest
average absolute error between the values and &duger will give an indication
of a possible periodicity of the phenomenon.
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2. Mathematical Considerations on the Fourier Develpment

Let a function fR — R, with f and f' piecewise continous d& and periodic with
period T, therefore f(x+T)=f(x)IxOR.

Considering Fourier series associated with the tfonc f. F(X)=

) + i(ak cos—2knx +b, sin 2k
2 & T

] we have the following:
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The proof is analogous for the other claimE.D.

From Fourier series expression, it is observedRrat T)=F(x) Ox[R so its sum is
also a periodic function of period T.

The Dirichlet's theorem (Spiegel, 1974) states thathe conditions above, the

Fourier series converges punctually to f in thengoiof continuity and to

f(x+0)+f(x-0)
2

in the discontinuity points.

Considering the partial sum of order n correspagdinthe series of function F, the
n-th Fourier polynomials are:
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n(x)-; + Z(ak cosZk?nX +b, sin 2th>()

It is obvious also thatBx)=F,(x+T) OxOR.

The Fourier polynomials have the property of appnaking the function through
one periodical with the observation that the alisoturor tends to fall (due to the
convergence points) with the rise of n.

Due to the existence of an important number of icgtlphenomena in many
scientific fields, we intend, below, to approxim#teir development by means of
Fourier polynomials of degree conveniently chosen.

In the case of the discretized phenomenons, wehguproblem in the generation
of functions that will pass through a series odabints. A very useful tool is the
Lagrange interpolation polynomial. Therefore, cdesing a set of data i(x), i=

1k +1, the Lagrange interpolation polynomial has thenfor

Ln(x)= Z (X =Xg)---(X =X )(X = X4g)--- (X = X)

2 (6 = X0) (6 = XiZg) (X = Xip)eee (X = n)yi

and is the polynomial of minimum degree (k) passhrgugh the data points.
We will demonstrate, first, the following:
Lemma 2 Let f(x)=ax*+...+a0R[X]. Then:

=

2nT DT oy (20)?
J f(x)}cos——dx =2(-1) z [ ] z (_:I-)l @] +1)|C|+Jl+2j[_] Q1149
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k—i
2j+1

dx=2(—1)“__1§ (D Z (- 1)“1(21)'C.+21[2$n] 812
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[f(x)sin 2T

k ) Kk
Proof. Let first: [ > ax' cos@dx be cos@+2qx sin 2nmx.

i=0 i=0

If we derivating in both terms:
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from where: Z ax sin—— 2nm _
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From Lemma 2, we shall study a number of particcéeses, i.e. for any,fOR:
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therefore: f(x)=g
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3. The discrete data analysis using Fourier developent

Consider a discrete data set: Yz(y,\). Considering a fixed k,<k<n-1, we shall
consider sequential data sets;,.(Y,Yk+1), (Yi+2,---,¥ox+2) €tC. and we shall build the
corresponding Lagrange interpolation polynomialerehthe independent variable
would be the sequence number of the corresponditegWe build the partial sum
of order n (conveniently chosen) correspondinghto series of Fourier functions
determined above, where the intervals,f] will be of the form: [1,k+1],
[k+2,2k+2] etc. After Fourier polynomials determiioms, the different values of
n=1, we will select that polynomial such that the @dbte average error between
the data calculated by periodicity and the actgathe smallest. In the present
analysis, we consider the starting point of theadat any year, a period of
polynomial Fourier between 10 and 100 years anarder of between 1 and 9.
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4. The Analysis of GDP’s Cyclicity

In what follows, we intend to study a possible eyiti the evolution of the gross
domestic product of a country.

Considering a period of m consecutive years and GRBPLm the real value of
GDR, -GDP,_,
GDP_,

GDP, consider the real GDP growth ratgs . We then have:

GDR=(1+r)GDR, k=2,m.

Consider now, for analysis, gross domestic prodiithe U.S. in the period 1792-
2010:

Table 1

Year | GDP € Year | GDP s Year | GDP s Year GDP s
Y g

179; 456 1847 | 4521 | o0ossoze | 1902 | 46820| o0.0514260 195 260110  0.0201592
1793 4.95| 0.080786( 184 4678 0.03362p9 0% | 48180J 00200474 195 257790 6 0090346
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q
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4 3
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q
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3 q
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Y s
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4 9 -
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d E
184t 39.1¢ || 0.063280. 1900 422.80 0.0249697 195! 2500.30 0.0719869 2(4103038L70 0.0037259

1901 445.30 0.0532167 195 2549.10 0.01975176

1846 42.33 0.0812261
* PIB-US $ billion 2005
Source: http://www.usgovernmentrevenue.com

By analysing the data set (B,r corresponding to the period 1793-2010, the
minimum average absolute error 4.63% is obtainea @esult of applying Fourier
Analysis for T=13 years and k=1. The qualitativealgsis of the recalculated
graph, following the result model, does not alld® acceptance, in the sense of
Fourier analysis, the model being totally cohereitih real data only occasionally.
For this reason, we have chosen for analysis, ifferehces g=r-r.s which
signifies the rate of change of rate of growthedIrGDP. In this case, the results
are spectacular, gaining for the T = 13 years andkhe minimum mean absolute
error of 3.69%.

The recalculated values qf are:

Table 2
K S k & K &
1 | 0.0149028 6 0.0093186 11 -0.0026318
2 | -0.0000676 7 -0.0097969 12 -0.0048919
3 | -0.0143265 8 -0.0144272 13 0.0084500
4 | -0.0046977 9 -0.0007267
5 | 0.0129542 10 0.0059407

The comparative graphs of the development,aral the indicators recomputing
after the Fourier regression are:
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The Fourier analysis for the coefficients s(k) beteen 1794-1850
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Figure 1
The Fourier analysis for the coefficients s(k) beteen 1851-1900
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The Fourier analysis for the coefficients s(k) beteen 1901-1950
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Figure 3
The Fourier analysis for the coefficients s(k) beteen 1951-2010
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Conclusions

The graphical analysis of data resulting from aggtion of the method of Fourier
type, reveals a satisfactory correlation with actplaenomena, extreme points
being off, usually with no more than a year agathstreal phenomenon. Due to
the fact thaty= .1+, one obtains thatih=r+(Se1t...+%+13). On the other hand,
from the values recalculated qf it is observed easily that their sum is zero, so
r1=rc. Therefore, we can assert a tendency of perigdidithe rate of growth of
real GDP of 13 years.
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