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Abstract In the consumer’s theory, a crucial problem is to determine the substitution effect and the 
revenue effect in the case of one good price’s modifing. There exists two theories due to John Richard 
Hicks and Eugen Slutsky which allocates differents shares of the total change of the consumption to 
these effects. The paper makes an analysis between the two effects, considering the general case of a 
CES utility function and introduces three indicators which will characterize these shares. 
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1. Introduction 

In the consumer’s theory, a crucial problem is to determine the substitution effect 
and the revenue effect in the case of one good price’s modifing.  

The theory due to John Richard Hicks consider after a modifing of a price, first a 
new allocation of goods preserving the utility, but modifing the revenue and after 
taking into account that the revenue is the initial one the changing in allocation due 
to a different utility. 

The theory of Eugen Slutsky consider a combined displacement of the relative 
consuming obtained a share of the substitution effect or of revenue effect 
depending only from the parameters of the utility. 

The problem is to determine these shares for both methods and to inquire which 
effect is uppermost. 
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2. The Analysis 

Let two goods A and B with the initial prices Ap  and Bp  and an utility function of 

a CES type U= ( ) λ
−λ−λ− β+α

1

YXT , α,β>0, λ>0, where X and Y are the consumed 
quantities in order to obtain an utility U. Let also, at a given time, V – the 
consumer’s revenue. 

In order to have the maximum utility for the revenue V it is known that we must 
have: 
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the marginal utilities corresponding to the two goods A and B respectively. 

We have now: 
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We obtain now: 
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and the corresponding utility is: U1=
B
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STV λ
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Let suppose now that it is a change in the price of one of the goods, let say B, from 

Bp  to B'p , but the revenue V remains constant. Let note now: r2=
B

B

p

'p
 and, of 

course: 
B

A

'p

p
=

2

1

r

r
. 

Let note, also: R= 1

1

1
2

1
1 rr +λ

−
+λ
λ−

+λ
λ

ϕ+ , Q=
S

R
. 

We have, from the upper relations: 
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We shall apply now the Hicks method for our analysis. 

At the modify of the price of B, for the same utility: 
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therefore: 
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The substitution effect (which preserves the utility) gives us a difference: 
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The difference caused by the revenue V instead V’ is therefore: 
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named the revenue effect. 
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We shall apply now the Slutsky method for our analysis. 

At the modify of the price of B, the revenue for the same optimal combination of 
goods is: 
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The substitution effect after Slusky (which not preserves the utility) gives us a 
difference: 
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and the revenue effect (after Slutsky): 
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We shall define, in what follows, the ratio: 
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substitution effect; 

βY=
13

23

YY

YY

−
−

 - the share from the total consumption change for Y due to the 

revenue effect; 

rY=
Y

Y

α
β

=
12

23

YY

YY

−
−

 - the ratio between the revenue effect and the substitution effect. 
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In the case of Hicks, we have: 
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In the case of Slutsky, we have: 
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therefore: if r2<1 then 1-r2Q>0 and if r2>1 then 1-r2Q<0. 

Let analyse now the inequality: αYH>αYS. We have: 
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Let now the function: g(Q)= 1r)1r(QrrQ 1
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Lemma 1 
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Proof Let note h:(0,1)→R, h(u)=(1-u)uλ. Because )u('h = ( )u)1(u 1 +λ−λ−λ =0 has 

the root: u0=
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λ
 we obtain that: h has a maximum value in u0, therefore 
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λ<− . Q.E.D. 

From the upper relation, we obtain now that: g(Qroot)>0 for r2<1 and g(Qroot)<0 for 
r2>1. 
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We obtain then: 

• if r2<1: g is an increasing function on (0,Qroot) and decreasing on (Qroot,∞) and 
also has one single root, except 1, in (Qroot,∞)⊂(1,∞). 

• if r2>1: g is a decreasing function on (0,Qroot) and is increasing on (Qroot,∞) and 
also has one single root, except 1, in (0,Qroot)⊂(0,1) 

Let note Q  - the single root of g. The upper specified values of g concludes that: 

• if r2<1: g<0 for Q∈(0,1)∪( Q ,∞) and g>0 for Q∈(1,Q ). 

• if r2>1: g>0 for Q∈(0,Q )∪(1,∞) and g<0 for Q∈( Q ,1). 

In terms of our indicators, we have that αYH>αYS if r2<1 and Q∈(0,1)∪( Q ,∞) or 

r2>1 and Q∈( Q ,1) where Q  is the root of the equation: 



ŒCONOMICA 
 

 173

1r)1r(QrrQ 1

1

22
1

1

22

1

−+−−













− +λ+λλ

+λ

=0 

Also, αYH<αYS if r2<1 and Q∈(1,Q ) or r2>1 and Q∈(0,Q )∪(1,∞). 

For the determination now of the real root Q  of g, we shall apply the Newton 
method of approximation for functions of one variable. Because the starting point 
Q0 for a function g:[a,b]→R, who maintains the monotony and the concavity is 
those for which g(Q0) )Q("g 0 >0 and at us, if r2<1: "g <0, r2>1: "g >0, we must 
choose Q0, in the case r2<1 such that g(Q0)<0 and in the case r2>1 such that 
g(Q0)>0. 

On the other hand, if r2<1, we have: Q >1 and we shall choose the starting point Q0 

sufficiently large and if r2>1, we have: Q <1 and we shall choose the starting point 
Q0 sufficiently small. 

We have now, from the Newton’s method: 
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In the figure 1, we have on the horizontal axis the values of r2 and on vertical axis 

the value of Q  for which λ=2: 

 

Figure 1. The chart of the roots Q  for the case λλλλ=2 in the case of a CES-function 
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If λ→0 we know that the CES-function becomes Cobb-Douglas. 

In the figure 2, we have on the horizontal axis the values of r2 and on vertical axis 

the value of Q  for which λ=
2

1
: 

 

Figure 2. The chart of the roots Q  for the case λλλλ=
2

1
 in the case of a CES-function 

If λ→0 we know that the CES-function becomes Cobb-Douglas. 

 

3. Conclusion 

Considering the single real root Q  of the equation: 
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Q∈(0,1)∪( Q ,∞) or r2>1 and Q∈( Q ,1) that is the share from the total consumption 
change for Y due to the substitution effect is smaller in the case of Slutsky than in 
the hicksian case. Also, βYH<βYS that is the share from the total consumption 
change for Y due to the revenue effect is higher in the case of Slutsky than in the 
hicksian case. 

If r2<1 and Q∈(1,Q ) or r2>1 and Q∈(0,Q )∪(1,∞) we have that αYH<αYS that is 
the share from the total consumption change for Y due to the substitution effect is 
higher in the case of Slutsky than in the hicksian case and, of course βYH>βYS that 
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is the share from the total consumption change for Y due to the revenue effect is 
smaller in the case of Slutsky than in the hicksian case. 
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