A study of Integers Using Software Tools – I
Cătălin Angelo Ioan1, Alin Cristian Ioan2
Abstract. The paper reviews the Sophie German primes and then it introduces two new types related to them. Using software there will be determined the first sequences of such numbers.
Keywords: prime; Sophie Germain
1 Introduction
The prime number theory dates back to ancient times (see the Rhind papyrus or Euclid's Elements).
A number pN, p2 is called prime if its only positive divisors are 1 and p. The remarkable property of primes is that any nonzero natural number other than 1 can be written as a unique product (up to a permutation of factors) of prime numbers to various powers.
All over in this paper, the software presented was written in Wolfram Mathematica 9.0.
2 Sophie Germain Primes
A prime number p is called a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 is called safe prime.
A prime number p5 is of the form 6k-1 or 6k+1, k1. If p=6k-1 then 2p+1=12k-1 and if p=6k+1 then 2p+1=12k+3=3(4k+1) which is not prime. Therefore, Sophie Germain primes numbers p5 are necessarily of the form p=6k-1.
Let note that p=2 and p=3 are Sophie Germain primes.
The software for determining the Sophie Germain primes and the related safe primes is:
Clear[“Global`*”];
(*Sophie Germain primes*)
limit=100;
For[k=1,k<limit,k++,If[PrimeQ[6*k-1]&& PrimeQ[12*k-1],Print[6*k-1,” “,12*k-1]]]
and we find (with the limit 599 for Sophie Germain primes ):
5,11 |
53,107 |
173,347 |
251,503 |
431,863 |
11,23 |
83,167 |
179,359 |
281,563 |
443,887 |
23,47 |
89,179 |
191,383 |
293,587 |
491,983 |
29,59 |
113,227 |
233,467 |
359,719 |
509,1019 |
41,83 |
131,263 |
239,479 |
419,839 |
593,1187 |
3 A New Type of Numbers: ,-primes
Based on
the idea of
Sophie Germain
prime numbers
we define a
number p to be ,-prime
if:
p, p+1,
2p+1,
..., p+1
are all primes.
Obvious if p2, must be an even number, otherwise sp+1=even s= .
If p5, p=6k-1 that is p5 (mod 6) then p+15+1 (mod 6), 2p+152+1 (mod 6),..., p+15+1 (mod 6).
If =2 we have therefore: p+14+1 (mod 6), 2p+122+1 (mod 6),..., p+152+1 (mod 6).
If 0 (mod 6) we have: p+11 (mod 6), 2p+11 (mod 6), p+11 (mod 6).
If 2 (mod 6) we have: p+15 (mod 6), 2p+13 (mod 6) therefore we cannot have 12+2,-primes if 2 and p=6k-1, k1.
If 4 (mod 6) we have: p+13 (mod 6) ) therefore we cannot have 12+4,-primes if 1 and p=6k-1, k1.
If now p7, p=6k+1 that is p1 (mod 6) then p+1+1 (mod 6), 2p+12+1 (mod 6),..., p+1+1 (mod 6).
If =2 we have therefore: p+12+1 (mod 6), 2p+142+1 (mod 6),..., p+12+1 (mod 6).
If 0 (mod 6) we have: p+11 (mod 6), 2p+11 (mod 6),...,p+11 (mod 6).
If 2 (mod 6) we have: p+13 (mod 6) therefore we cannot have 12+2,-primes if 1and p=6k+1, k1.
If 4 (mod 6) we have: p+15 (mod 6) ), 2p+15 (mod 6),..., p+14+15 (mod 6).
Finally, we have that ,-primes for p5, 3 can exist only in the cases:
p5, p=6k-1, =6r, r1;
p7, p=6k+1, =6r, r1;
p7, p=6k+1, =6r+4, r0.
The software for determining the ,-primes with =maximum (and limited to primes less than 100000 and 1000) is:
Clear[“Global`*”];
(*,-primes*)
limit=100000;
basepower=1000;
number=2;
maximumnumber=0;
maximumtermsformaximumnumber=0;
maximumpower=0;
For[k=1,klimit,k++,maximumterms=0;
For[=2,basepower,++,
valuetrue=PrimeQ[k];
r=1;
While[valuetrue,valuetrue=valuetrue&&PrimeQ[^r*k+1];r++];
If[maximumterms<r-2,maximumterms=r-2;number=k];
If[maximumtermsformaximumnumber<maximumterms,maximumtermsformaximumnumber=maximumterms;maximumnumber=number;maximumpower=];
];
]
If[maximumtermsformaximumnumber0,Print[“Number=“,maximumnumber];Print[“Base power=“,maximumpower];Print[“Maximum terms=“, maximumtermsformaximumnumber];
For[r=1,r maximumtermsformaximumnumber,r++, Print[maximumpower^r*maximumnumber+1]]]
and we find:
Number=9319
Base power=100
Maximum terms=6
931901
93190001
9319000001
931900000001
93190000000001
9319000000000001
Therefore, the numbers: 9319, 1009319+1, 10029319+1, 10039319+1, 10049319+1, 10059319+1, 10069319+1 are all primes.
4 p,-Sophie Germain Sequences
Another type of prime numbers, based also on the idea of Sophie Germain is the following: a sequence will be called a p,-Sophie Germain sequence if p1=p, p2=p1+1=p+1, p3=p2+1=2p+ ,..., pn=pn-1+1=np+ are all primes.
Obvious if p2, must be an even number, otherwise p2=p1+1=even.
If p5, p=6k-1 that is p1=p5 (mod 6) then p25+11- (mod 6), p352++11+-2 (mod 6) etc.
If =2 then:
If 0 (mod 6) we have: pk1 (mod 6) k= .
If 2 (mod 6) we have: pk5 (mod 6) k= .
If 4 (mod 6) we have: p23 (mod 6) that is it cannot be prime.
If p7, p=6k+1 that is p1=p1 (mod 6) then p2+1 (mod 6), p32++1 (mod 6) etc.
If =2 then:
If 0 (mod 6) we have: pk1 (mod 6) k= .
If 2 (mod 6) we have: p23 (mod 6) that is it cannot be prime.
If 4 (mod 6) we have: p25 (mod 6), p33 (mod 6) that is it cannot be prime.
Finally, we have that p,-primes for p5 can exist only in the cases:
p5, p=6k-1, =6r, r1;
p5, p=6k-1, =6r+2, r1;
p7, p=6k+1, =6r, r1.
The software for determining the p,-Sophie Germain sequence with maximum length (n=maximum) and limited to p10000, 100 is:
Clear[“Global`*”];
(*p,-Sophie Germain sequences*)
limit=10000;
basepower=100;
number=2;
maximumnumber=0;
maximumtermsformaximumnumber=0;
maximumpower=0;
For[k=1,klimit,k++,maximumterms=0;
For[i=2,ibasepower,i++,
valuetrue=PrimeQ[k];
p=1;
While[valuetrue,valuetrue=If[p>1,valuetrue&&PrimeQ[i^p*k+(i^p-1)/(i-1)], valuetrue&&PrimeQ[i*k+1]];p++];
If[maximumterms<p-2,maximumterms=p-2;number=k];
If[maximumtermsformaximumnumber<maximumterms,maximumtermsformaximumnumber=maximumterms;maximumnumber=number;maximumpower=i];
]
]
If[maximumtermsformaximumnumber0,Print[“Number=“,maximumnumber];Print[“Base power=“,maximumpower];Print[“Maximum terms=“,maximumtermsformaximumnumber];For[p=1,pmaximumtermsformaximumnumber, p++,Print[If[p>1,maximumpower^p*maximumnumber+(maximumpower^p-1)/(maximumpower-1),maximumpower*maximumnumber+1]]]]
We find:
Number=37
Base power=48
Maximum terms=5
1777
85297
4094257
196524337
9433168177
that is: p1=37, p2=48p1+1=1777, p3=48p2+1=85297, p4=48p3+1=4094257,
p5=48p4+1=196524337, p6=48p5+1=9433168177 are all primes.
5 References
Adler, A. & Coury, J.E. (1995). The Theory of Numbers. London, UK: Jones and Bartlett Publishers International,
Baker, A. (1984). A Concise Introduction to the Theory of Numbers”, Cambridge University Press
Coman, M. (2013). Mathematical Encyclopedia of Integer Classes. Educational Publishers.
Guy, R.K. (1994). Unsolved Problems in Number Theory. 2nd Edition. New York: Springer Verlag.
Hardy, G.H. & Wright, E.M. (1975). Introduction to the Theory of Numbers. 4th Edition. Oxford: Oxford University Press.
Krantz, S.G. (2001). Dictionary of Algebra, Arithmetic and Trigonometry. CRC Press.
Niven, I.; Zuckerman, H.S. & Montgomery, H.L. (1991). An Introduction to the Theory of Numbers. 5th Edition. New York: John Wiley & Sons, Inc.
Sierpinski, W. (1995). Elementary theory of numbers. 2nd Edition. Elsevier.
1 Associate Professor, PhD, Danubius University of Galati, Faculty of Economic Sciences, Romania, Address: 3 Galati Blvd, Galati, Romania, Tel.: +40372 361 102, Fax: +40372 361 290, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.
2 Nicolae Oncescu College, Braila, Address: 1-3 ŞOS. Brăilei, City: Ianca, Brăila County, Tel.: +40239-668 494, E-mail: alincristianioan@yahoo.com.AUDŒ, Vol. 11, no. 3, pp. 200-205