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Microeconomics

The Complete Theory of Cobb-Douglas Production Function
Citilin Angelo loan', Gina loan?

Abstract. The paper treats various aspects concerning the Cobb-Douglas production function. On the
one hand were highlighted conditions for the existence of the Cobb-Douglas function. Also were
calculated the main indicators of it and short and long-term costs. It has also been studied the
dependence of long-term cost of the parameters of the production function. The determination of
profit was made both for perfect competition market and maximizes its conditions. Also we have
studied the effects of Hicks and Slutsky and the production efficiency problem.
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1. Introduction

To conduct any economic activity is absolutely indispensable the existence of
inputs, in other words of any number of resources required for a good deployment
of the production process. We will assume that all resources are indefinitely
divisible.

We define on R" the production space for n fixed resources as SP={(Xy,...,Xs) | x>0,

i=1,n } where xeSP, x=(Xy,...,Xn) is an ordered set of resources and, because inside

a production process, depending on the nature of applied technology, not any
amount of resources is possible, we will restrict production space to a convex
subset D,cSP — called the domain of production.

We will call a production function an application:
Q:Dy—>Ry, (X1, Xn) >Q(X1,.... Xn) €Ry V(X1,...,Xn) €Dy

which satisfies the following axioms:
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Al. Q(0,...,0)=0;

A2. The production function is of class C* on D, that is it admits partial derivatives
of order 2 and they are continuous on Dy;

A3. The production function is monotonically increasing in each variable, that is:

@ >0, |:1,_n X
X,

A4. The production function is quasi-concave (see Appendix).

Considering a production function Q:D,—R. and Q, €R. - fixed, the set of inputs
which generate the production Q, called isoquant. An isoquant is therefore
characterized by: {(xl,...,xn)er|Q(xl,...,xn)zQO} or, in other words, it is the
inverse image Q(Q,).

We will say that a production function Q:D,—R. is constant return to scale if
Q(AX1ye e AXn)=AQ(X1,..., %),  With increasing  return  to  scale  if

Q(AX1ye. e AXn)>AQ (X1, Xn) and decreasing return to scale if
Q(AX1y.e, AXn)<AQ(X4,...,Xn) YA €E(L,00) V(X1,...,Xn) €Dp.

2. The Cobb-Douglas Production Function
The Cobb-Douglas function has the following expression:

Q:DcR! -{0}—>R., (X1,...,Xn)—=>Q (X1, Xn)= AXJ1.. X" €Ry V(Xy,...,Xn) €D,
1 n

AeR,, oy,...,0neR

Computing the partial derivatives of first and second order, we get:

Q' = AT XTI = Q vi=1n

n
X;

" Lo o Q o —
Q" x, = 0o AXP X XL X = ——= Vigj=1,n

Q'yx, = oci((xi —l)Axf‘l...x?‘i’z...x;Xn =M vi=1n

Let the bordered Hessian matrix:
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0 OLlQ OLZQ OLnQ
X1 X, Xn
a,Q al(al _1)Q a,0,Q o,0,Q
> —-nx
5 Xy X1 X1X, X1 Xy
H™(Q) =| 2,Q 0,0,Q ap(, ~1)Q 2,0,Q
Xy X1X, X§ XX
Ay OLlOLnQ OLZOLnQ oy (an _1)Q
Xn Xlxn X2Xn Xﬁ
K K
H%Zai

We find (not so easy): A% =(-1)Q¥*iL < __ k=1n.

|

k [
H“izai Kk _
Because (-1)"AE,‘(=Q“+1':1K—'=12, if [Joud >0, k=1,n it follows that the
i=1 i=1
(1)

function is strictly quasi-concave. Also, if the function is quasi-concave we have
k k

that [ o, > a; >0.
i=1 =l

But from the axiom A3 we must have that Q', :ﬂzo that is a;>0. After these
1 X

considerations we have that if a;>0, i=1,n the Cobb-Douglas function is strictly
guasi-concave.

n
We have now: gy, %n-1)= QUtaseeos X aol) = Axs - xent and 1= o, -
k=1

The main indicators are:

;-1

o My =AYXX

o w, =AXfLX]T
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Reciprocally, if for a homogenous production function of degree r: &, =ay, i=1,n

a n-1 o
ai -, aiXi

we have that: i=oci ,i=l,n-1and %Xizan.
%

But now, we have:

aiq ami
6_q=aii= alnxi'C>6Xi:alnxi'<:>6Inqzalnxi'<:> Lo
o, Xi 0, q o, o, o, o,

In ia = F()gsees XX s ) (Where A means that the variable is missing).

i
. i o R (i na) i ; . ok .
We have now: g = y;"e ™ *¥%+/ For j=i we obtain now: o =Xja— therefore:
Xj
- (o . .
H_% . Integrating with respect to y;
aXj Xj

Fo=a;n g+ 0 L tns) therefore: g :x?iX}‘jeg‘(’“"“*‘"""""“X“*).

Analogously, by recurrence: q=Ay"..x,"¢+ with A=constant with respect to

n—1a
rq_Zaiq_Xi n-1 n
Yot BUL o, =— 2y S or=Yq,. After these
q i=1 i=1

n
considerations it follows that if it is homogenous of degree r, r must be > ;.
i=1
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Finally: q=Ax" et implies that:
X(xl Xa“’l rfi(xk N u
QXtyereXn)= X 0(Hgees Aoy ) = AXG X—ilxg—*ll = AX, XX =

n

AX;.Xprixy" - the Cobb-Douglas production function.

n

Considering now again the Cobb-Douglas production:
Q(Xy,.--,Xn)= AX;*..X" let search the dependence of the parameters ay,...,0.

We have: g—QzAxfl...xﬁ" In x;=QIn x;>0 Vx>1, i=1,n. From this relation we
oL:

I

have that at an increasing of a parameter o, the production Q will increase also.

In particular, for the Cobb-Douglas function related to capital K and labor L:
Q=AK"L" we have that the main indicators are:

o n=AaK“'?

o n =ABK*LT

o W =AK*'

o w =AKL

e RMS(K,L)=RMS(K)= g—t

e RMS(LK)= RMS(L)=%
o

* g =a

° €L :B
e o=ok =1

3. The Costs of the Cobb-Douglas Production Function

Considering now the problem of minimizing costs for a given production Qo,
where the prices of inputs are p;, i=1,n, we have:
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n
min > p,X,
k=1
AXJH X" > Qg
Xy X, 20
QG Oy
From the obvious relations: < p,x, ~ p,x, We obtain:
AXTE X" = Qg
o N
xk:"—p"xn,kzl,n-l )
o, Py and from the second equation:
AXJL X = Qg
n-1
Zak n-1

] Tk . _ . .
A———x&t " =Q,. Noting r=> a, we finally obtain:
Doy n-1 k=1

The total cost is:
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At a price change of one factor, i.e. X, from the value p, to p, we have:
1/r

[Ief | P’
i=1

— _ =k rQy’

TC= n 1/r Al/r
[Toi"
i=1

where the relative variation of the total cost is:

TC Py

Let us now consider the behavior of the total cost of production function at a
parameters variation. We have:

ATC _TC-TC _(@]“*” .

n o r .
illpl % j%aj n
O I I O
otc iz ' | ik
= > n - —r
Oak Zn:a Elocj \
a Qoar" gp?i
ik
A é:lj - il
S, P igai
oTC Loy o n
Therefore: 6—20<:>e':1 apt <—————. If we note: T'=3 a;>0 and
ol o i=
k Qoigpi }j(
i=k
i“i
i n o
Api* _l_{ai'
i=
i . T M
M=———"K__ -0 we obtain that: L1 >0 e% oy <—.
Qoﬁpqi do €
b 1
ik

Considering now the function f(0,0)>R, f(x)=x"e* we have
f'(x) = x""e*(x +T') >0 therefore f is strictly increasing. Because IimoxreX =0
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. . M . .
and lim x"e* = the equation: x'e* =— has a unique solution ay called cost
e

X—>0

threshold with respect to the k-th parameter. After these considerations we have
that for o< ocﬁ the total cost will increase at an increasing of oy and after it will
decrease.

The situation may seem paradoxical that at the growth of the elasticity of one input,
total cost increases. Fortunately, due to the sharp rise of f, the values of ocﬁ are
very small so it does not significantly affect processes.

Like an example, considering the production function Q(K,L)=K“L?, o,p>0 we
have that the behavior of B° related to o is (for Q=5):

0

006 |
006 |
004 |
00 |
o |

001

o
o®
oo™
e0e000®®™

02 04 06 08 10

Figure 1
The long-term total cost for a=0.7 and variable 3 is shown in figure 2:
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TotalCost

00 02 04 06 08

Figure 2

where the maximum value is reached for $=0.025.

If we consider for a given output Qo, the inputs Xj,...,x, such that: Axj*..x;" =Q,
1

ay
let x, = 0 where ~ means that the term is missing.

1 o o,

Gy Ok g O
ATEXLK XK

1

n n a
We have STC=> piX; =2 piX; + Py — — representing the short-
i=1 =

i-1 —+

ik Aaxf‘k...kk...xr‘fk
term total cost when factors x,...,X,,...,X, remain constant.

n

We put now the question of determining the envelope of the family of
hypersurfaces:

1

n Ay

& — 0
Qo Xpyevos Kigyeen X )= 2 PiX; + P — - -
i-1 = =
izk ATRX LR XK

Conditions to be met are:
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TC f(Q01X11 K 'Xn)

=0,i nl;tk
ax

After the elimination of parameters x,,...,X,,...,X, We have either the locus of

singular points of hypersurfaces (which is not the case for the present issue) or
envelope sought.

We have therefore:

1

Oy
TC= Zp P
ik ALK XK
1
. Oy .
ot P _—0i=Tnizk
M oo o g
AT XX
1
s
Noting: ¥ = T %0 it follows:
ALK Xy
n
TC= Zpixi +pY
ok
p - PY o Tk
Oy X

J— 1/r
from where: xi:ﬁpk\y,'—l,n,i;tk. Finally: ‘{'—a"(p Py’ )1 QU ang
o, P AM'p ( ol )1

n 1/r
ai(np?-j u
i=1 - PR

X; = i=1n,izk

n 1/r?
Al/rpi(Ha?'j
i=1

replacing:
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n 1/r
Py :
e )
n 1/r Al/r
i=1

We obtained so that the envelope of the family of hypersurfaces of the short-term
total cost when all inputs are constant except one is just the long-term cost obtained
from nonlinear optimization problem with respect to the minimizing of the cost for
a given production.

Calculating the costs derived from the (long-term or short-term) total cost now, we
have:

n 1/r
Hp?‘ij -
TC (i— r %/ !

ATC=—= (average long-term total cost)

n 1/r Al/r
(i)

( n 1/r

H p;xi J 1/r-1

MTC= ZTC SN o _ATC (marginal long-term total cost)
r

— (average short-term total cost)

— (marginal short-term total cost)

1 u
Lk 3y Ok Ay
O ATEX L XX

1

Ay

VTC=p 0 (variable short-term total cost)
K o

R

o (17 e’ o
ATX LKL X
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1
—1
AVICk=V K =p, 0

— (average variable short-term total cost)

Y

0(7 a <& o
ATEXOLX XK

n
FTC=> p;x; (fixed short-term total cost)
i=1

ik
n
Z PiX;
_FTC, _ix .
AFTC =—= =" (average fixed short-term total cost)
0 0
n
2 PiXi 1,
i=1 Oy
The extreme of the function ASTCi(Qo)=2—+p, — =0 — are given
’ AKX LK X
by:
1 1 oy [
1 =
pk 7_1 gk —Aakak...Xk...XnkzpiXi
Oy =
' — 1# — .
ASTC,'(Q,)= " - =0 from where:
QIAM XM K XK
Ok
R n
AXTLL KXo DX
i=1
Qogroot = '#kak when oy<1 and the minimum value is:
w1
Ay
o, -1
ol 1 ‘
(Y
— k
ASTC k (QO—d—root ) -

85



ACTA UNIVERSITATIS DANUBIUS Vol 11, no 1, 2015

If ou>1 it follows that ASTC,'(Q,)<0 therefore the average short-term total cost
will decrease.

Finally we have:

oCT
€p, =(Z:LT" — % _ the coefficient of elasticity of long-term total cost with respect
r
Pk
to the price factor i
oCT
0Q, 1 - - .
=1 =1 the coefficient of elasticity of long-term total cost with respect to
r
Qo
the production Q,
OATC
€avp, = Aa\_ﬁ)_'é = % _ the coefficient of elasticity of average long-term total cost
' r
Pk
with respect to the price factor i
OMTC
_ 0P oy - . . i
Emanp. = MTC ~ the coefficient of elasticity of marginal long-term total
' r
Pk

cost with respect to the price factor i
In particular, for the Cobb-Douglas function related to capital K and labor
L: Q=AK"L" we have:
o I(o+B) o
ol o Qe

L @
(aaBB)ll(quB) pK Al/((x+[3)

ol 0 g
aQBB o+ pL A o+

86



(ECONOMICA

o /(a+B) ot
oo pept [ (@ oy
(oc“ B )1/(cx+B) PNUCED)

1

Qb
1

On the short-term, we have for constancy of K: STC =p, K +p,_ — and
APKP
( ﬁ)l B)Q1/(a+g) -1
— L
ATC= ( B)t/(a+ﬁ) AL(+p)
p J/(at+B) l/((x+[3) -1
wrce pirt)

( BB )1/(oc+[3) Al/(a+B)

asTC,=PxK Qo
Q Ll
1

p
MCL: pL?O —

BAPKSP
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B otB
The extreme of the function: ASTC(Qo) is given by: Qg 4 o0 = ApK—KB when
of 1
5
pt-p)y”

B<1 and the minimum value is: ASTC, (Qq 4 00t ) AP

e = x e, = B En = 1 & __OL e _—B

Pk OL+B, PL ) 1 %av,pg 0('+B, av,p. OL+B,
o

gmargp =—Q & :L

K a4+

4. The Profit

Now consider a sale price of output Qo: p(Qo). The profit is therefore:

I1(Qo)= P(Q0)-Qo-TC(Qo)

It is known that in a market with perfect competition, the price is given and equals
marginal cost. The profit on long-term becomes:

H(Qo)zp(Qo)‘QO'TC(Qo)zMTC(/Qo)'QO'
o Ur
(g Pi '] rQ%)/Hl
n 1/r Al/r
]
=

In particular, for the Cobb-Douglas function related to capital K and labor L:

TC(Qu)=ATC'(Qg)Qp =

a p W (etB) 1r+l
Q=AK“L" we have: I1(Qo)= ES;EE ))1,(0#5) (a +£1),? .

remain constant, we have:

On short-term, when factors x,,...,X,...,X

n

I1(Q0)=p(Q0)-Qo-STCI(Q0)=MTC(Qy)-Qe-STCk(Qu)=AVTC, '(Q, )Q5 — FTC,
therefore:
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1

o n 1 n

I1(Qo)= [__1jpk T— . - pr _[__1jpkxk _Zpixi
Otk —_— —_— i=1 ak i=1
A% x k Xk X izk izk

Like a conclusion, the company will make a profit in the short-term if, under
constancy factors Xx,...,X,,...,X,, the amount of factor x, will be higher than

D> PiX; D> PiX;

Ik if au<1 and less than —=X

1 1
(—1jpk (—1jpk
Oy Oy

incur losses.

if au>1. If ou=1 then the firm will

For Q=AK“L" we have that if K=constant, the company will make a profit in the
BpcK BpcK

e ————If

-Blp. (L-Bp.

short-term in the case p<1 if L> and in the case B>1 if L<

=1 the firm will incur losses.

The condition of profit maximization for an arbitrarily price p, depending on the

n
factors of production, is: maxH(xl,...,xn)zmax(pQ(xl,...,xn)—ZpixiJ from
i=1

Q _P ,i=1,n or otherwise: o 2_ s and finally: X; _m
ox; p Xi P oF
Q is quasi-concave the solution of the characteristic system is the unique point of

maximum. How Q=Ax;"..x;" we obtain that the appropriate production is:

where . Because

n n r-1
Ap[Tou _ | Ik
Q=Axp.Xpr=—2ML _Q therefore, if r£l: Q=] —*——| and the
[ Tpix Ap' o
K1 k=1

n
r-1-oj ak
of " [Tk
k=1

ki

Appr —1-aj H(X‘Ek
k=1

ki

factors: X; = i=1n.
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1
n -1
[Tpi*
The maximum profit is: T1(X,,...,.X, )=(p—r) —*L——
Ap' [T ot
k=1

n
If r=1 the necessary condition for profit maximization is: Hp“k =Ap[Jogx orp

=1 k=1
n
[P
must be: p='<=r}— therefore the amount of factors are not independent, that is,
Al oy
k=1
n
AR o op _
for a fixed factor, let say X;: Q =—*=L—X, and: X; =—"=X,, i=1,n, i=s. The
o[ I pi %sP
k=1

profit is: TI(X,,...,X, )=0 for any amount of x.

For Q=AK“L" we have that, if o+p=1:
1

1 1
9= ( peph jmﬁ—l = { o pf ja+ﬁ—l T [ p*ips jmﬁ—l
Ap"a’pP Appl B Appita®

1

ik, ) oo L PAPE

Ap(x+Ba0LBﬁ
and if ot+p=1 the necessary condition for profit maximization is:

PPL T BPe = 5o ABPk
pP=—"—"+55 L= K, Q= —K H(K L) 0.
AlL-B) e (B, (L-pPrt
At a variable price p(Q) we have now: TI(Q)=p(Q)-Q-CT(Q) therefore the
necessary condition for profit maximization is TI'(Q)=0 therefore:

P (Q)QR+p(Q)-MTC(Q)=0.
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Substituting the expression of MTC we obtain: p'(Q)Q+p(Q)-I'QY"* =0 where

n

1r
we noted: I'=—'= 7 __ But this differential equation gives us:

n 1/r
Al/r(l—[ Otiai j

i=1
p(Q)=rrQY¥* +%, CeR, and the profit T1(Q)=p(Q)-Q-CT(Q)=C. Therefore, for

the maximum of the profit IT(Q)=C we must have the price p(Q)=rr'Q" rl+%,

@-rrQ* -c
2

CeR.. Because: p'(Q)= we have that if r>1, the price will

r
decrease with production and if r<1 for Q < (ﬁ} the price will decrease and
—-r

r
for Qz[ﬁj the price will increase. If r=1 we have that p(Q)=F+% and
—r

the price will decrease with production.

@b 1/(a+B)
For Q=AK"L" we have F:('EK—%B] and for the profit I1(Q)=C we must
(04

have the price p(Q)=(0,+B)FQ1/(°‘+B)_1+%. If o+p>1, the price will decrease

with production and if a+p<1 for Q<| ————
(L-o-p

o+p
¢ )Fj the price will decrease and
C a+p
for QZ(WJ the price will increase. If at+pf=1 we have that
_(x_

p(Q) =T +% and the price will decrease with production.
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5. The Hicks and Slutsky Effects for the Cobb-Douglas Production
Function

Now consider the production function Q(Xy,...,Xn)=AX;*..x;" and factor prices

(pi)i=ﬁ- The non-linear programming problem relative to maximize production at
a given total cost (CT)) is:

max AXy*.. X"

n

n
2.PX =CT,
k=1
Xy Xy 20
Because the objective function is quasi-concave and also the restriction (being

affine) and the partial derivatives are all positive we find that the Karush-Kuhn-
Tucker conditions are also sufficient. Therefore, we have:

oQ ,_ _ oQ ,_ _
aXl(xl,...,xn)_ :axn(xl,...,xn)

pl . pn
2. PpX=CT,
k=1

From the first equations we obtain:

1 N

P1Xy PnX,

2. pX=CT,
k=1
therefore:

X, :ak—p“xn,kzl,n—l
O'“npk

2. PX, =CT,
k=1
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Substituting the first n-1 relations into the last we finally find that:

Xok = a';sTO Kk :1,_n and the appropriate production:
k
[Te"
QO(Xlr"'rxn):A I:];] CT(; .
r'TIp
i=1

Suppose now that some of the prices of factors of production (possibly after
renumbering, we may assume that they are: x,,...,Xs) is modified to values p,,,,.p;

the rest remain constant.
From the above, it results:

Xek = akE:TO k=15
oy
fk =akCT°,k=s+1,n
oy
n
[To
Q =A———cCT
r'IIp” l_ijJ
i=1 j=s+1

We will apply in the following, the method of Hicks. To an input price change, let
consider that it remains unchanged, leading thus to a change of the total cost. We
therefore have:

n n
[Tes® ]
A—>F—— =1 - CTo=A '=1n CT,
rTIee ey r'[p;’
i=l  j=s+l j=1
from where:
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Hp

CTo=1L—CT;

[}
j=1

With the new total cost, the optimal amounts of inputs become:

The Hicks substitution effect which preserves the production is therefore:

r a;lr
A Xy = Xinek —Xox = %H(E_J 1] P, 0, k=Ls

B o;lr
s (P 04CT, —
AyXg = Xintg —Xog = H[_ -11=4=2L d=s+1,n
i=1\ Pj My

The difference caused by the old cost instead the new total cost one is therefore:

ailr]
s (p )" | CT, | —
AgpXi = Xg k = Xintk = 1_H(_ ——0 k=1
i=1\ P Py

o;lr
S D.
i1\ Pj rpd

Let now calculate the new prices influence to the effects of substitution and of new
cost in the Hicks effect.

We have:
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_N\o/r
+ I’zpk i=1 v ,

ik

a;lr

OAyX,  a,CTy H(ﬁj 5 —

2t - ~ Ll o: —r ,k=1,S
0Py I’Zpi i=1\ P =

o;lr
OApXe S Pi) T o, CT, .
LK=H(3J B0 k=15t=15t=k
P, =1\ i M PiPy

_oN\oi/r
OApp Xy :_ﬁ(&J o CTy k=1st=1stxk
op; =1\ P; rzﬁkﬁt

_N\o/r
A%y :ﬁ(ﬂj akadCTO ,d=s+1,n,k=1,s
aﬁk =1 pi rpdpk

N/t
aAZ—HXd:_ﬁ(&J ada"CTO ,d=s+1,n,k=1,s
OP i1\ P r? PaPx

After these relations, it follows that the effect of substitution at the increase of the
price Xy, k=15 is reduced, while the effect of new cost is reduced if

s F_) a;lr n o - S ﬁ o/t n

[1|=| >o;-r|>0oritincreaseif | [T| = | > a;-r|<0.

i=1\ Mi j=1 i=1\ Pj j=1
J=k J=k

We shall apply now the Slutsky method for our analysis.

At the modify of the price of the factors xi,...,Xs, the total cost for the same optimal
combination of factors is:

CTint =ﬂ( Do+ a &j
J

r j=s+1 i= pi

therefore:
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U)

Xintk =

%CTo [Za +Sa __] k=15

k j=s+1 ,

d j=s+1 i

Xintg = ardCTO ( 2.9, +Za J d=s+1,n

The appropriate production is:

Qint (Xint,l""’xint,n )_

|
>
7\
™M
R
+
™
Q
|z
~——

The Slutsky substitution effect which not preserves the production is therefore:

o, CT, 5 _
AgXy = Xintk — Xok = k ZOL +ZOL k=1,
r’pe \ish i pk
A1sX g = Xing — X0 _ochT [20‘ +20‘ ——r] d=s+1,n
r pd j=s+1 i

and the difference caused by the old production instead the new production one is
therefore:

o, CT, —
ApeXy =Xs o — Xintk = rk Z [ D ) =15
i

a CT I
ApsXg =Xt g = Xing = —5 =s+1,n
2S5 d fd Int,d r pd ZJ_ ( plj

Let us now calculate the influence of the new prices on the effects of substitution
and new cost in Slutsky effect.

We have:

OAsX _ o4 CTy Zn o +ia_ p; k=15
— j i ’ )
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OAssX _ e CTo | 7o T5 14k

op, r*Pb;

OApsX __ 0 CTo | 15 t_Ts t=k
op, Py,

OAisXg _ a4, CTo d=s+1,n,k=1s
aﬁk r2pdpk

OAysXy _ _ 0q4CTy d=s+1,nk=1s
8F_)k r2pdpk

Therefore the effect of substitution at a price increase of the factor X, k=1s is
S D.
reduced, while the effect due to production decrease in case o, +Za{1—&] >0

i=1
izk

S _.
or it increase if o, +Zai( —&}0.
i=1 P;

i=k

6. Production Efficiency of Cobb-Douglas Production Function

Let now two Cobb-Douglas production functions for two goods ®, ¥ and a
number of n inputs Fi,...,F, available in quantities X,,,,X,. The production

functions of @ or ¥ are:
Qo Xy X, )= AXTL XY, Qu (X, X,y )= BxPr . xBo

appropriate to the consumption of x, units of factor Fy, k=1,n.

LXET, My =BRxPLxXP X =1,

;-1
i

We have seen that: n, , =Ao;X;*..X

The production contract curve satisfies:

i-1 n N
Mo _ Aoy X XX W i=in

Ny x, BBi(il_Xl)ﬁl'"(ii_Xi)ﬁl_l (in_xn)ﬁn )
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o BiX;X;

Dividing for i#: X = — and for i=1:
! (ajBi _aiBj)Xi +o,BX;
o3, XX —
X; = XX, — ., j=2,n. Finally, for x=r we have the equation of
(O('jﬁl — oy )Xl +oyBiX;

production contract curve:

X, =A

. = 01,'[31217L AeR

: (ajBl _alﬁjp"’_alﬁjil

If we consider now the input prices: pi,...,p, We have that for the production
contract curve: X;=g:(A),....Xn=0n(A), LeR:

X, = 91(7‘) =\

_ _ o By XA ,AeR
= gj(k)_ (Otjﬁl _alﬁj))\ +oyBX;
and:
I (0:0),-.9,00) _ Aag: (107 ()9 (00) o) (0B, - B, P+ 0B %, ,
D M (008, (V)  Aaggi (Mg (V)00 () oug;(R) oBiX;
Jj=1n.

(O‘jﬁl —oyP; ))V +0yBX;

oy, X i

For v=1 we then obtain: p,=1, p; = j=2,n.

If the initial allocation of factors of production was X, =(a,,...,a,) we have that

Zn:pj(aj —X;) =0 therefore:
j=1

n a.B. n a.B_
3 5 iPj
a0 +oyX, Yy a0y +oyX, > 2
X = 2 = =2 % wheren=3 o
naop —aop —opX n a-(oc-B —ocB-) — ke
Il ag'” I 17 JUHFL 1] k=1
SRS - ]
j=2 Xj j=2 Xj
X, =N
For this value we find now the final allocation: . ochlek*

j * -
(0‘131 - 0‘1[31')7L +0ouf3 X,
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If now the two production functions are: Qg (K,L)=AK“L",
Q\I,(K,L):AKﬁlL‘32 we have that for limited quantities of capital (R) and labor
(E) the equation of production contract curve is:

K=A

L= a,B,LA ,AeR

(azBl —ayB, )k +0,,K

and the final allocation for an initial one: x,, =(K;,L,):

K=x B B
o, B LA where X = KiLoyB, + oy KL,

- (0tBy — 0y, )+ B, K (0 + 1, Byl = Ly(oBy — )

7. The Concrete Determination of the Cobb-Douglas Production
Function

Considering an affine function: f:R" >R, f(X1,...,X)=B1X1+...+BX,*+PBn+1 and a set of
m>n+1 data: (x'l‘ xK f"), k=1,m the problem of determining B, i=1,n +1 using

L EAY ]

the  least square  method is to  minimize the  expression:

m
Z(le'l‘ B X B, —f")2 that is to solve the system:
k=1

m m m m —_
BlZX'fX!( +.. 4B, ZX&X!‘ +Bn+1ZXik =>f kx:(’ i=1n
k=L k=1 k=1 k=1
Gk &k LU
BiD Xy .t By Xg +MP g =D f
k=L k=1 k=1

Considering the matrix:

(kR s kyk &k
Z(Xl) D X1 X5 2%
k=1 k=1 k=1
O kyk (kP K
0= 2 X1 %3 Z(Xz) 2. X2
T k=l k=1 k=1
- e
YX Xy m
k=1 k=1
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and ©; the cofactor of the (i,j)-element in ® we will obtain:

m m m
O Y F X +.. 40, D F XS +0,,, Y "
k=L k=L =

Bi=

Ji=1,n+1
det®

Considering now a production function Q(X,...,X,)=AX;"...X;" we put the problem

n

of concrete determination of the parameters A, o, i=1,_n .
Let therefore a set of m>n+1 data: (x'l‘ xX ,Qk), k=1m.

Considering the logarithm of Q, we have: NQ=a,InXx, +...+a,Inx, +INA
therefore we will modify the data set to the new one: (In X£ e I XK, In Q"),
k=1,m.

From above:

m m m
O, > NQ“INXf +..+0,;YINQ N X% +0,,,;> InQ
k=1 k=1 k=1

a; = ,i=1,n
det®
o k k o k k il k
O 2INQ° INXy +...+ O >IhQ Inx; + O >InQ
InA = k=1 k=1 k=1
det®
4 k2 L K 1 ok U K
Z(In xl) dYinxiinx; ... YInx{
k=1 k=1 k=1
where © iln X< In x§ i(ln x'g)2 iln X5
| k=1 k=1 k=1 '
i k I k ..
> Inx; > Inx; m
k=1 k=L

For the Cobb-Douglas Q=Q(K,L)=AK“L" we have therefore, for the set:
(Ki'LiiQi)i:m:
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Zln Q;InK, Zln K,InL, Zln K,
|;il |:1m |;]1
QL Yh’L  XinL
i=1 n :nl1 i=1
>InQ; >inL, m
= i=1
a= m m m
In?K,  YIhK;hL, YK,
ml:l |:lm |:11
YihK;inL,  YIh’L, YL,
i=1 i=1 i=1
m m
> IhK; >l m
i=1 i=1
m m m
YIn’K,  YhQ,InK;, YK,
i=L i=1 i=1
m m m
YhhK;InL; >IhQiinL; >InL,
i=1 i=1 i=1
m m
> InK; > InQ; m
Bz i=1 i=1
m m m
YIn’K,  YIhK;lnL, YhK,
i=1 i=1l i=1
SnK;InL,  Yh’L, YL,
i=1 i=1 i=1
m m
> IhK;, InL; m
i=1 i=1
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m

m
N’K;, YhK,nL;, YIhQ,InK,
i=1 i=1

2

N

B m m
nK;InL, >In’L, >YIhQ;InL,
" =1 i=1
> InK,
i=1

m m m
Sin?K,  YhK;hL, YhK,
i=1 i=1 i=1

m m m
YihK;inL, Yh’L, YL,
i=1 i=1l

i=1

m m
> IhK, YL, m
= =L

N

'L

m

m
InL, > IhQ;
=1 i=1

InA=

8. Conclusions

The above analysis reveals several aspects. On the one hand were highlighted
conditions for the existence of the Cobb-Douglas function. Also were calculated
the main indicators of its and short and long-term costs. It has also been studied the
dependence of long-term cost of the parameters of the production function. The
determination of profit was made both for perfect competition market and
maximize its conditions. Also we have studied the effects of Hicks and Slutsky and
the production efficiency problem.

9. Appendix

A.1. Mathematical concepts

A function Q:DcR"—>R, D — convex set, is quasi-concave if:
Q(AX+(1-1)y)=min(Q(x),Q(y)) VAe[0,1] ¥vx,yeD
and is strictly quasi-concave if:
Q(AX+(1-1)y)>min(Q(x),Q(y)) VAe(0,1) Vx,yeD
A function Q:DcR"—>R, D — convex set, is quasi-convex if:

Q(Ax+(1-1)y)<max(Q(x),Q(y)) VAe[0,1] ¥x,yeD
and is strictly quasi-convex if:

Q(AXx+(1-A)y)<max(Q(x),Q(y)) VAe(0,1) Vx,yeD
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Geometrically speaking, a quasi-concave function has the property to be above the
lowest values recorded at the ends of some segment. This property is equivalent
with the convexity of the set Q[a,0)={xeD| Q(x)>a} VaecR.

Note also that if f and g are arbitrary functions:

f — quasi-concave (quasi-convex) implies that -f is quasi-convex (quasi-
concave);

f — strictly quasi-concave (quasi-convex) implies that f is quasi-concave (quasi-
convex);

f - quasi-concave (quasi-convex) implies that of is quasi-concave (quasi-
convex) for any a=0;

f,g - quasi-concave (quasi-convex) imply that min(af,fg) (max(af,$g)) is
quasi-concave (quasi-convex) for any o,3>0;

f - quasi-concave (quasi-convex) and g:R—R is increasing imply that
g-f:.D—R is quasi-concave (quasi-convex);

feCD) is (strictly) quasi-concave if and only if: f(X)>f(y)

n of
=2 — 00 —¥i)2 ()0 VxyeD;

i=1 i
feCD) is (strictly) quasi-convex if and only if:  f(x)>f(y)
=3 2000 -¥,)2 ()0 WxyeD:

i=1 Xi

A monotonically function f:DcR—R is quasi-concave and quasi-convex;
Any affine function is quasi-concave and quasi-convex.

Considering now the bordered hessian matrix:

0 f, . . f
foof . f f

X1 X1Xq XX, Ut X1Xp,

HB(f)= f‘x2 1:"xlxz 1:"xzxz f"xzxn

o " T

Xp X1Xp XXy XnXn

and the bordered principal diagonal determinants:
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1 1 1
0 f'y, 'y, 'y,
1 n n L1
X3 XXy X1X3 X1 X
B _|f n n n —a -
Ak =|f X, X1X XX, XoXy | 1 k—l, n
L} n mn n
ka f X1 X f XX f XXk

we have the following theorems:

Theorem If the function :DcR" —R, D — convex, feC*D) is quasi-concave then
(-1)A8 >0, k=1,n.

Theorem In order that the function f:DcR"” »R, D — convex, feC4D) be quasi-
concave is sufficient that (—1)* A >0, k=1,n .

A.2. The main indicators of production functions

Let a production function:

Q:Dp—=Ry, (X1,.0Xn) >Q(X1,..., Xn) Ry V(X1,...,Xn) €Dy

€Q
0X;

representing the trend of variation of production at the variation of the factor x;. In

aQ

particular, for a production function of the form: Q=Q(K,L) we have nK:R -

aQ

called the marginal productivity of capital and ana—L - called the marginal

We will call the marginal productivity relative to a production factor x;: n, =

productivity of labor.
-Q

representing the value of production at the consumption of a unit of factor x;. In

We call the average productivity relative to a production factor xi: w,

x

particular, for a production function of the form: Q=Q(K,L) we have: wKz% -

called the productivity of capital, and sz% - the productivity of labor.

Considering the factors i and j with ij, we define the restriction of production
area: Py={(Xu,....Xn) | X=a=const, k=1,n, k=i,j, xi,X;e Dy} relative to the two factors
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when the others have fixed values. Also, let: Dij={(xi,xj)|(xl,...,xn)ePij} - the
domain of production relative to factors i and j.

We define: Q;;:Dj—R. - the restriction of the production function to the factors i
andj, i.e. Qy(xi,x,-)=Q(a1,...,ai_l,xi,am,...,a,-_l,xj,aj+1,...,an). The functions Q; define a
surface in R” for every pair of factors (i,j).

We will call partial marginal rate of technical substitution of the factors i and j,
relative to Dy (caeteris paribus), the opposite change in the amount of factor j to
substitute a variation of the quantity of factor i in the situation of conservation
production level.

dx;
We will note: RMS(i,j)=—d—’ and we have, since Qj(x;X;)=Qo=constant:
X

Nx. | b,
RMS(i j)= al iy Obviously RMS(i,j)=;__. We also define the global
My |o, RMS(j,i)
marginal rate of substitution between the i-th factor and the others:
RMS(i)= Ty The global marginal rate of technical substitution is the

L
2y,
V2
J#i

minimum (in the meaning of norm) of changes in consumption of factors so that
the total production remain unchanged.

In particular, for a production function of the form: Q=Q(K,L) we have:

RMS(K,L)= RMS(K)="% RMS(L,K)=RMS(L)= 1L

um Nk

It is called elasticity of production in relation to a production factor x;:

aQ

€, =% = the relative variation of production at the relative variation of
i Q Wxi
X
factor x;.
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In particular, for a production function of the form: Q=Q(K,L) we have sK:n—K -
w

K

called the elasticity of production in relation to the capital and stn—L - the

Wy
elasticity factor of production in relation to the labor.

Let note now for arbitrary factors Xx;, x;: Em:ﬁ , i,j=1,_n , i#] and we call the factor
X.
J
endowment ratio with the factor i relative to factor j.

It is called the elasticity of marginal rate of technical substitution for a production
ORMS(i, )
%,
RMS(, j) ’
iij
relative variation of marginal rate of technical substitution relative to factors i and j
at the relative variation of the factor endowment ratio with factor i relative to factor

J-

function relative to inputs i and j: o= i,j=1,_n, i=j and represents the

. ORMS(i,
We have therefore: o= ax_i — =X; 0lnRMS(i. j) .
RMS(i, j) oX;

Considering now a production function Q:Dy—R.:, (Xi,....Xn)—>Q(Xy,....Xn) €R:
V(X4,...,Xn) €Dy, homogenous of degree r, let note for an arbitrary factor (for

example X,): xi= X ,i=L,n-1. Of course: &= Li
X

n X
We obviously have:

X X X
Q(X1,.Xn)= X Q 1.0t -n
X X

n Xn

J:XLQ(Xll“"Xn—lil)

n

Considering the restriction of the production function at D,nR"™x{l}:
A0tz Xng)= Qxgseer X 1.1) We can write:

Q(Xli"'vxn): X:lq(XjL""' anl)

With the new function introduced, the above indicators are:
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— "_q_
n( P

,i=Ln-1

19
i
g
oq
RMS(I,])=8iq', ij=Ln-1
o
oq

RMS(i,n):na+‘8q, i=1L,n-1
-2 X

Son
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aXiz an o aXian

* O Xi

a9 oq
Oxi O
2
o° d aq 6 d’qnt o
rqczl+(1—r{ qJ LA q .= c21 g Y
oxi i i tzianaXi i tz@an
° Gln:XI #1 #1
aq =1 oq J
-y y
8xi[ kzzlﬁxk ‘
For a production function of the form: Q=Q(K,L), y = % a(x)=Q(x.1):
1 0q
= |_r 14
Mk oy
* M= I—rl(rq _a_qu
ox,
o W= Lr’lﬂ
X
o w = Lr‘lq
aq
_ - O
« RMS(K,L)=RMS(K)=—% —
r .
q 8XX
aq
0
° gKZEX
X
0
rq-— jX
__ ox
[ ] 8L—
q
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2 2
rqa—(j+ (- r)(aqj
oy,

_ ox,
O=0kL—=X aq ( o9 J

- r -
oy, q 6XX

A.3. Necessary and sufficient conditions for nonlinear optimization

Considering now the non-linear programming problem:

max(min) f(X,...,X,)
gi(xl,...,xn)zo,izl,_p
Xiseen Xy 20

where f,geC*(D,) and a solution X =(X,,...,X, ) the Karush-Kuhn-Tucker
conditions occur: IAeR;, i=1,_p so that:

where VF is the gradient of F defined by: VF= (% aiF j and =1 for the case
1 n

of maximizing and =-1 in the case of minimizing.

If fg;, i=Lp are of class C? from [1] follows, for the maximizing case, the

sufficiency of Karush-Kuhn-Tucker conditions takes place in the broader
framework of quasi-concavity of functions f and g and, moreover, if for a solution
X =(X,,-..,.X, ) one of the conditions occurs:

e 3k=1,n such that i(?)<0;
OX

e 3Jk=1,n such that i(i)>0 and X, >0;
OX

e VI =0;

e fisconcave.
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min f(X,,...,X,,)
For the problem: {g;(x,,...,X,)>0,i=1,p
X1y X, 20

replacing f with —f and taking into account that
min f(X,,...,X,) =—max(—f(x,,...x,)) follows that Karush-Kuhn-Tucker
conditions becomes:

— V(X X, )+ zx,Vg-(Yl,...,in)zo

0i(Xy,ronr Xy )

>0,i , LieR,, i=1,p
xg(xl, X, )=0,i=1

and sufficiency reduces to one of the cases:

e 3k=1,n such that i(i)>0;
OX
— of ,_ -
e 3k=1,n suchthat — (X)<0and X, >0;
OX
o VI =x0;
o fisconvex.
In the particular case of the problem of minimizing the total cost (TC) relative to a
production function Q=Q(Xy,...x,) and p, i=1L,n - the prices of inputs:
n
min >’ P, Xy
k=1
Q(Xy,een X, )= Qg =0 the Karush-Kuhn-Tucker conditions are:
Xy Xy 20

1\ \p =

0 _
-, HL@TQ(X” LX,)=0,k=1,

Q(xl,...,xn)z Q, . Because =0 implies p,=0 — which is absurd
MQ(g.e Xy )= Qq)=0
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Q

in economic terms, results: A=0 then: }LE(Xl""’X"):pk’kzl’n or, with
QX X )= Qg
Q. _ oQ .  _
LR ®y) S ReX,)
another expression: 1 =.=—2" . Because the objective
Py Pn
Q(Xl,..,Xn)—QO
n
function f(xl,...,xn)=2pkxk is affine, Q is quasi-concave and, in addition
k=1
aa—f(i) =p,>0 follows, from the foregoing, that these conditions are sufficient.
Xk

A.4. Production efficiency

Let us consider in the following two goods ®, ¥ and a number of n inputs
Fi,...,F, available in quantities X,,,,.X,,, and the production functions of ® or ¥
as follows:

Q=Qq¢ Xy X, )y Q=Qy (Xg,.r,X,,)
appropriate to the consumption of x, units of factor F, k=1,n. We will assume that
the production functions are of class C? inside space production SP.

We will build the Edgeworth’s box consisting in a n-dimensional parallelepiped:
[0,%,]x...x[0,%, ] the quantities of ® being relative to O(0,...,0) and those of ¥
relative to F(X,,,,X, ) on the parallelepiped sides. Let consider an initial allocation
of inputs for ® and ¥:

Xe = (8,8, ), Xy =(by,...,0,)
where ai+bi=X;, i=1n. The productions appropriate to the initial allocation are:
Qoo(@yay), Quolby,...,b,) relative to O and F, respectively. Because bi=X;-a;,
i=L,n we have: Qy (b,,....b,)= Qy (X, —a,...,X, —a, ). The production function
of W is therefore: Q. =Qy (X, —X;,..., X, =X, ) and means the production of ¥

~ 2A 2
relative to the origin of axes. We have now: Qy __NQy , 0Qy _ 0Qy ,
OX;  OX;0X; OX0X;

i,j=1,n therefore Q, is also quasi-concave but with negative partial derivatives of
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order 1. Considering the isoproduction hypersurfaces, it follows that (relative to O)
those of @ is convex, while that of ¥ is concave.

Let PZ,, :{(xl,...,xn)eSP|Qq,(xl,...,xn)2 QM} - the production zone of ®

superior to Q,, and PZ,, :{(xl,...,xn)eSP|Q\P(xl,...,xn)2 Q\U’O} - the
production zone of ¥ superior to Qy, ;.

Suppose now that int(PZQYOmPZ\PYO);ﬁ@ (int means the interior of the set, i.e.
those points for which there is a n-dimensional cube centered in them sufficiently
small side and included in the given set).

Let now a point C(c,,...,c, )€ int(PZ,, NPZ, ) and also let the straight line that
passes through the origin and C. Let note D(d,,...,d,) the intersection with the
isoproduction hypersurface Qg (X;,...,X,)=Qq, and E(g,,...,e,) the intersection

with the isoproduction hypersurface Qu(Xy,....x,)=Qy,. We have now
Qo(dy,,d,)=Qqp and Qu(e;,,€,)=Qy . Because @ is convex we obtain
that:  Qg(d,,...d,)<Qqy(C;nc,) and Q, - concave implies that

Qu(err€y)>Qu (i) 0OF QX —€p, X, —€,)>Qy (X, —Cppers X, —C,, )
After these inequalities follows that the production of each good can increase, so
the initial allocation is not optimal.

We call Pareto’s efficiency the situation where new production can not improve
without affecting the other’s production. From the foregoing, it follows that the
Pareto’s efficiency is obtained if the isoproduction hypersurfaces are tangent.

The condition of tangency for Q=Qu(X;,...X,) and Q=Qu(X;....x,)=
Qu (X, —Xy,.., X, —X,, ) is reduced to the determination of those points (x,,...,X, )

where aaQ—‘szaaQ—‘P, i=1,n, LeR i.e. those points where hypersurfaces intersect
X; X

and have the same tangent hyperplane (directors parameters are proportional).

Taking into account that Qu (X;,..., X,)= Qy (X, —Xy,...X, —X,) we have that:

0Q4 :anW

oX oX

i=1n, u=-reR.

i
In marginal notation, we have: Mg, (Xy,..., X, )= N (X, = Xg,e0, Xy =X, ), i=1,0,

peR.
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For two inputs (K and L) the above relations are equivalent with: Mok _Nwk .

Mo Mw.L
Nox _ dL

On the other hand: =gkl =RMS,,(K,L) - marginal rate of technical
Mo, L
substitution of capital for @ and "% =3—:2 » =RMS, (K, L) - marginal rate of
Mw,L

technical substitution of capital for W. The upper equality becomes:
RMS,,(K,L)=RMS,,(K,L).

All of the points where the allocation is Pareto’s efficient generates the production
contract curve.

Contract curve represents all combinations of goods for which no party can
maximize its production without diminishing the other’s production. On the other
hand, any point on the curve represents a possible allocation contracts. The
problem is this: if one good will be produced in order to reach the maximum level,
what will do the other?

n
Considering now the prices of n inputs as py,...,p, the total cost is: TC=)_p;x; and
i=1
it maximize the production if it is tangent to the isoproduction hypersurface. But
each good want to be produced in maximum quantity therefore:

Moa (X Xn) Mo (Xpen Xp)
o, - ,
n\pvl(il —Xqyeey Xy —Xpy) _ Ny n (X, =Xy X, — X))
Py . P,

or, in other words, the cost hyperplane will be tangent to both isoproduction
hypersurfaces, that is it will coincide with the common tangent hyperplane.

Considering the production contract curve of the form:
X1=01(A),.... Xn=0n(A), AeR
follows:

Mos@0)n 00 ) M (@09, 0,04)
Py Pn

from where:
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Mok (@A), (V)
nfb,l(gl(}\‘)!""gn(}\'))
We note that prices are determined up to a multiplicative factor, which does not

affect the result of the problem and can therefore consider v=1. If the initial
allocation of factors of production was X, =(a,,...,a, ), Xy =(b,,...,.b,) the total

v, v>0,k=1,n

n
cost of production of @ is TC,=> p,a, . The new amounts of factors (which
k=1

n
also satisfy the same total cost) involves: > p, (a, —X,)=0. Replacing the values
k=1

of py into this equation:

0 Nk (91 (A),-.9, (1))
k=1 nd),l(glo\')!'"vgn (7\'))

hence we will find AeR. Substituting in the appropriate expressions, will result py
and x, k=1,n.

(ak _gk(}")): 0
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