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Abstract. The paper treats various aspects concerning the Cobb-Douglas production function. On the 

one hand were highlighted conditions for the existence of the Cobb-Douglas function. Also were 

calculated the main indicators of it and short and long-term costs. It has also been studied the 

dependence of long-term cost of the parameters of the production function. The determination of 

profit was made both for perfect competition market and maximizes its conditions. Also we have 

studied the effects of Hicks and Slutsky and the production efficiency problem. 
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1. Introduction 

To conduct any economic activity is absolutely indispensable the existence of 

inputs, in other words of any number of resources required for a good deployment 

of the production process. We will assume that all resources are indefinitely 

divisible. 

We define on R
n
 the production space for n fixed resources as SP=(x1,...,xn)xi0, 

i= n,1  where xSP, x=(x1,...,xn) is an ordered set of resources and, because inside 

a production process, depending on the nature of applied technology, not any 

amount of resources is possible, we will restrict production space to a convex 

subset DpSP – called the domain of production. 

We will call a production function an application: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

which satisfies the following axioms: 
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A1. Q(0,...,0)=0; 

A2. The production function is of class C
2
 on Dp that is it admits partial derivatives 

of order 2 and they are continuous on Dp; 

A3. The production function is monotonically increasing in each variable, that is: 

ix

Q




0, i= n,1 ; 

A4. The production function is quasi-concave (see Appendix). 

Considering a production function Q:DpR+ and 0Q R+ - fixed, the set of inputs 

which generate the production 0Q  called isoquant. An isoquant is therefore 

characterized by: {(x1,...,xn)DpQ(x1,...,xn)= 0Q } or, in other words, it is the 

inverse image  0
1 QQ . 

We will say that a production function Q:DpR+ is constant return to scale if 

Q(x1,...,xn)=Q(x1,...,xn), with increasing return to scale if 

Q(x1,...,xn)>Q(x1,...,xn) and decreasing return to scale if 

Q(x1,...,xn)Q(x1,...,xn) (1,) (x1,...,xn)Dp. 

 

2. The Cobb-Douglas Production Function 

The Cobb-Douglas function has the following expression: 

Q:D n
R -{0}R+, (x1,...,xn)Q(x1,...,xn)= n1

n1 x...Ax

R+ (x1,...,xn)D, 

A *
R , 1,...,nR

*
 

Computing the partial derivatives of first and second order, we get: 

i

i
n

1
i1ix

x

Q
x...x...Ax'Q ni1

i




  i= n,1  

ji

ji

n

1

j
1

i1jixx
xx

Q
x...x...x...Ax"Q nji1

ji





 ij= n,1  

 
 

2
i

ii
n

2
i1iixx

x

Q1
x...x...Ax1"Q ni1

ii




  i= n,1  

Let the bordered Hessian matrix: 
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We find (not so easy): B
k =  

2
k

1i
i

k

1i
i

k

1i
i

1kk

x

Q1




















 , k= n,1 . 

Because (-1)
k B

k =
2

k

1i
i

k

1i
i

k

1i
i

1k

x

Q


















 , if 



k

1i
i

k

1i
i 0, k= n,1  it follows that the 

function is strictly quasi-concave. Also, if the function is quasi-concave we have 

that 



k

1i
i

k

1i
i 0. 

But from the axiom A3 we must have that 
i

i
x

x

Q
'Q

i


 0 that is i0. After these 

considerations we have that if i0, i= n,1  the Cobb-Douglas function is strictly 

quasi-concave. 

We have now:  1n1,...,q  =  1,,...,Q 1n1  = 1n1

1n1 ...A 



  and r=




n

1k
k .

 

The main indicators are: 

 
ix = ni1

n
1

i1i x...x...xA


 =
i

i

x

Q
, i= n,1  

 
ixw = ni1

n
1

i1 x...x...Ax


=
ix

Q
, i= n,1  
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 RMS(i,j)=
ij

ji

x

x




, i,j= n,1  

 RMS(i)=











1n

ij
1j

2
j

2
j

i

i

x
x

, i= n,1  

 
ix = i , i= n,1  

 ij=-1, i,j= n,1  

Reciprocally, if for a homogenous production function of degree r: 
ix = i , i= n,1  

we have that: i

i

i

q

q









, i= 1n,1   and n

1n

1i
i

i

q

q
rq












. 

But now, we have: 

i

i

i

i

i

iln
q

qq














  
i

ii
iln

q

q











  
i

i

i

ilnqln











  0

q
ln

i

i
i









 

i

i

q
ln




=  1ni1i ,...,ˆ,...,F   (where ^ means that the variable is missing). 

We have now: 
 1ni1ii ,...,ˆ,...,F

i eq 
 . For ji we obtain now: 

j

i
jj

F




  therefore: 

j

j

j

iF









. Integrating with respect to j : 

 1nji1ijji ,...,ˆ,...ˆ,...,glnF   therefore: 
 1nji1iji

,...,ˆ,...ˆ,...,g

ji eq 
 . 

Analogously, by recurrence: 1n1

1n1 ...Aq 



  with A=constant with respect to 

1n1,...,  . But: 


















1n

1i
i

1n

1i
i

i
n r

q

q
rq

 



n

1i
ir . After these 

considerations it follows that if it is homogenous of degree r, r must be 



n

1i
i . 
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Finally: 1n1

1n1 ...Aq 



  implies that: 

Q(x1,...,xn)=  1n1
r
n ,...,qx  =

1n

1n

1

1

n

1n

n

1r
n

x

x
...

x

x
Ax














= 1n1

1n

1k

k

1n1

r

n x...xAx 



 





=

n1n1

n1n1 xx...Ax



   - the Cobb-Douglas production function. 

Considering now again the Cobb-Douglas production: 

Q(x1,...,xn)= n1

n1 x...Ax


 let search the dependence of the parameters 1,...,n. 

We have: 
i

Q




= in1 xlnx...Ax n1 

= ixlnQ 0 xi1, i= n,1 . From this relation we 

have that at an increasing of a parameter i the production Q will increase also. 

In particular, for the Cobb-Douglas function related to capital K and labor L: 

Q=AK

L

 we have that the main indicators are: 

 K =  LKA 1  

 L = 1LKA   

 Kw =  LAK 1  

 Lw = 1LAK   

 RMS(K,L)=RMS(K)=
K

L




 

 RMS(L,K)= RMS(L)=
L

K




 

 K = 

 L = 

 =KL=-1 

 

3. The Costs of the Cobb-Douglas Production Function 

Considering now the problem of minimizing costs for a given production Q0, 

where the prices of inputs are pi, i= n,1 , we have: 
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 and from the second equation: 
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. Noting r=




n

1k
k  we finally obtain: 

kx =
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k
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, k= n,1  

The total cost is: 

TC=


n

1k
kkxp =

r/1

r/1
0

r/1
n

1i
i

r/1
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A

rQ
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. 
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At a price change of one factor, i.e. xk, from the value pk to kp  we have: 

TC =
r/1

r/1
0

r/1
n
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i

r/
k
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n

ki
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pp

i
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where the relative variation of the total cost is: 1
p

p
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TCTC
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TC
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k

k
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. 

Let us now consider the behavior of the total cost of production function at a 

parameters variation. We have: 
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0 we obtain that: 
k

TC




0






e

M
e k

k . 

Considering now the function f:(0,)R, f(x)= xex  we have 

   xex)x('f x1
0 therefore f is strictly increasing. Because 0exlim x

0x
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and 



x

x
exlim  the equation: 



 
e

M
ex x  has a unique solution 0

k  called cost 

threshold with respect to the k-th parameter. After these considerations we have 

that for k
0
k  the total cost will increase at an increasing of k and after it will 

decrease. 

The situation may seem paradoxical that at the growth of the elasticity of one input, 

total cost increases. Fortunately, due to the sharp rise of f, the values of 0
k  are 

very small so it does not significantly affect processes. 

Like an example, considering the production function Q(K,L)=K

L

, ,0 we 

have that the behavior of 
0
 related to  is (for Q=5): 

0.2 0.4 0.6 0.8 1.0
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Figure 1 

The long-term total cost for =0.7 and variable  is shown in figure 2: 
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Figure 2 

where the maximum value is reached for =0.025. 

If we consider for a given output Q0, the inputs x1,...,xn such that: 0n1 Qx...Ax n1 


 

let 

k

n

k

1

k

k

nk1

1

1

0
k

x...x̂...xA

Q
x













  where ^ means that the term is missing. 

We have STCk=


n

1i
iixp =

k

n

k

1

k

k

nk1

1

1

0
k

n

ki
1i

ii

x...x̂...xA

Q
pxp
















  representing the short-

term total cost when factors nk1 x,...,x̂,...,x  remain constant. 

We put now the question of determining the envelope of the family of 

hypersurfaces: 

 nk10 x,...,x̂,...,x,Qf =

k

n

k

1

k

k

nk1

1

1

0
k

n

ki
1i

ii

x...x̂...xA

Q
pxp
















  

Conditions to be met are: 
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After the elimination of parameters nk1 x,...,x̂,...,x  we have either the locus of 

singular points of hypersurfaces (which is not the case for the present issue) or 

envelope sought. 

We have therefore: 
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 it follows: 
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TC=
r/1

r/1
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r/1
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We obtained so that the envelope of the family of hypersurfaces of the short-term 

total cost when all inputs are constant except one is just the long-term cost obtained 

from nonlinear optimization problem with respect to the minimizing of the cost for 

a given production. 

Calculating the costs derived from the (long-term or short-term) total cost now, we 

have: 
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0Q
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1r/1
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 (average long-term total cost) 
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 (marginal long-term total cost) 
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 are given 

by: 
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If k1 it follows that  0k Q'ASTC 0 therefore the average short-term total cost 

will decrease. 

Finally we have: 

r

p

CT

p

CT

k

k

k
pk








  - the coefficient of elasticity of long-term total cost with respect 

to the price factor i 

r

1

Q
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Q

CT

0

0
Q 





  - the coefficient of elasticity of long-term total cost with respect to 

the production Q0 

r

p

ATC

p

ATC

k

k

k
p,av k








  - the coefficient of elasticity of average long-term total cost 

with respect to the price factor i 

r

p

MTC

p

MTC

k

k

k
parg,m k








  - the coefficient of elasticity of marginal long-term total 

cost with respect to the price factor i 

In particular, for the Cobb-Douglas function related to capital K and labor 

L: Q=AK
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On the short-term, we have for constancy of K: STCL=
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The extreme of the function: ASTCL(Q0) is given by: 
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4. The Profit 

Now consider a sale price of output Q0: p(Q0). The profit is therefore: 

(Q0)= p(Q0)Q0-TC(Q0) 

It is known that in a market with perfect competition, the price is given and equals 

marginal cost. The profit on long-term becomes: 

(Q0)=p(Q0)Q0-TC(Q0)=MTC(Q0)Q0-

TC(Q0)=
2
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In particular, for the Cobb-Douglas function related to capital K and labor L: 
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 we have: (Q0)= 
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. 

On short-term, when factors nk1 x,...,x̂,...,x  remain constant, we have: 

(Q0)=p(Q0)Q0-STCk(Q0)=MTC(Q0)Q0-STCk(Q0)=   k
2
00k FTCQQ'AVTC   

therefore: 
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Like a conclusion, the company will make a profit in the short-term if, under 
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 if k1. If k=1 then the firm will 

incur losses. 

For Q=AK
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short-term in the case 1 if L
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The condition of profit maximization for an arbitrarily price p, depending on the 
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App

p

x













































, i= n,1 . 
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The maximum profit is:  n1 x,...,x =  

1r

1

n

1k
k

r

n

1k
k

k

k

Ap

p

rp





































. 

If r=1 the necessary condition for profit maximization is: 


 
n

1k
k

n

1k
k

kk App  or p 

must be: p=














n

1k
k

n

1k
k

k

k

A

p

 therefore the amount of factors are not independent, that is, 

for a fixed factor, let say xs: sn

1k
ks

n

1k
ks

x

p

Ap

Q
k

k

















  and: s

is

si
i x

p

p
x




 , i= n,1 , is. The 

profit is:  n1 x,...,x =0 for any amount of xs. 

For Q=AK

L

 we have that, if +1: 

1

1

r

LK

Ap

pp
Q






















 , 

1

1

1
K

L
1

App

p
K
























 , 

1

1

L

K
1

1App

p
L




























, 

   
1

1

LK

Ap

pp
pL,K






















  

and if +=1 the necessary condition for profit maximization is: 

  






1
L

1
K

1A

pp
p , 

 
K

p1

p
L

L

K




 , 

 
K

p1

pA
Q

L

K








 ,   0L,K  . 

At a variable price p(Q) we have now: (Q)=p(Q)Q-CT(Q) therefore the 

necessary condition for profit maximization is )Q(' =0 therefore: 

0)Q(MTC)Q(pQ)Q('p  . 
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Substituting the expression of MTC we obtain: 0Q)Q(pQ)Q('p 1r/1    where 

we noted: =
r/1

n

1i
i

r/1

r/1
n

1i
i

i

i

A

p
































. But this differential equation gives us: 

Q

C
Qr)Q(p 1r/1   , CR+ and the profit (Q)=p(Q)Q-CT(Q)=C. Therefore, for 

the maximum of the profit (Q)=C we must have the price 
Q

C
Qr)Q(p 1r/1   , 

CR+. Because: 
 

2

r/1

Q

CQr1
)Q('p


  we have that if r1, the price will 

decrease with production and if r1 for 
 

r

r1

C
Q 










  the price will decrease and 

for 
 

r

r1

C
Q 










  the price will increase. If r=1 we have that 

Q

C
)Q(p   and 

the price will decrease with production. 

For Q=AK

L

 we have 

 






















/1

LK

A

pp
 and for the profit (Q)=C we must 

have the price    

Q

C
Q)Q(p 1/1   . If +1, the price will decrease 

with production and if +1 for 
 















1

C
Q  the price will decrease and 

for 
 















1

C
Q  the price will increase. If +=1 we have that 

Q

C
)Q(p   and the price will decrease with production. 
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5. The Hicks and Slutsky Effects for the Cobb-Douglas Production 

Function 

Now consider the production function Q(x1,...,xn)= n1

n1 x...Ax


 and factor prices 

 
n,1iip


. The non-linear programming problem relative to maximize production at 

a given total cost (CT0) is: 



















0x,...,x

CTxp

x...Axmax

n1

0

n

1k
kk

n1
n1

 

Because the objective function is quasi-concave and also the restriction (being 

affine) and the partial derivatives are all positive we find that the Karush-Kuhn-

Tucker conditions are also sufficient. Therefore, we have: 

   



























0

n

1k
kk

n

n1

n

1

n1

1

CTxp

p

x,...,x
x

Q

...
p

x,...,x
x

Q

 

From the first equations we obtain: 




















0

n

1k
kk

nn

n

11

1

CTxp

xp
...

xp
 

therefore: 





















0

n

1k
kk

n

kn

nk
k

CTxp

1-n1,k ,x
p

p
x
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Substituting the first n-1 relations into the last we finally find that: 

n1,k ,
rp

CT
x

k

0k
k,0 


  and the appropriate production: 

Q0(x1,...,xn)=
r
0n

1i
i

r

n

1i
i

CT

pr

A
i

i














. 

Suppose now that some of the prices of factors of production (possibly after 

renumbering, we may assume that they are: x1,...,xs) is modified to values s1 p,.,,p , 

the rest remain constant. 

From the above, it results: 





















































r
0n

1sj
j

s

1i
i

r

n

1i
i

f

k

0k
k,f

k

0k
k,f

CT

ppr

AQ

n1,sk ,
rp

CT
x

s1,k ,
pr

CT
x

ji

i

 

We will apply in the following, the method of Hicks. To an input price change, let 

consider that it remains unchanged, leading thus to a change of the total cost. We 

therefore have: 

r
0n

1j
j

r

n

1i
i

r

0n

1sj
j

s

1i
i

r

n

1i
i

CT

pr

ACT

ppr

A
j

i

ji

i


































 

from where: 
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r
0s

1j
j

s

1i
i

r

0 CT

p

p

CT
j

i













  

With the new total cost, the optimal amounts of inputs become: 



































































































n1,sd ,

prp

CTp

x

s1,k ,

ppr

CTp

x

r/1
s

1j
jd

0

r/1
s

1i
id

dint,

r/1
s

1j
jk

0

r/1
s

1i
ik

kint,

j

i

j

i

 

The Hicks substitution effect which preserves the production is therefore: 
















































































n1,sd ,
rp

CT
1

p

p
xxx

s1,k ,
rp

CT
1

p

p

p

p
xxx

d

0d
s

1i

r/

i

i
d,0dint,dH1

k

0k
s

1i

r/

i

i

k

k
k,0kint,kH1

i

i

 

The difference caused by the old cost instead the new total cost one is therefore: 
















































































n1,sd ,
rp

CT

p

p
1xxx

s1,k ,
pr

CT

p

p
1xxx

d

0d
s

1i

r/

i

i
dint,d,fdH2

k

0k
s

1i

r/

i

i
kint,k,fkH2

i

i

 

Let now calculate the new prices influence to the effects of substitution and of new 

cost in the Hicks effect. 

We have: 
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s1,k ,
pr

CT

p

p

p

p

p

x n

ki
1i

i

k
2

0k
s

1i

r/

i

i
2
k

k

k

kH1

i























 

s1,k ,r
p

p

pr

CT

p

x s

1i

n

kj
1j

j

r/

i

i
2
k

2
0k

k

kH2

i
































 







 

k t,s1, t,s1,k ,
ppr

CT

p

p

p

x

tk
2

0tk
s

1i

r/

i

i

t

kH1

i






















 

k t,s1, t,s1,k ,
ppr

CT

p

p

p

x

tk
2

0tk
s

1i

r/

i

i

t

kH2
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s1,k ,n1,sd ,
ppr

CT

p

p

p

x

kd
2

0dk
s

1i

r/

i

i

k

dH1
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s1,k ,n1,sd ,
ppr

CT

p

p

p

x

kd
2

0kd
s

1i

r/

i

i

k

dH2

i






















 

After these relations, it follows that the effect of substitution at the increase of the 

price xk, k= s,1  is reduced, while the effect of new cost is reduced if 

0r
p

ps

1i

n

kj
1j

j

r/

i

i

i



























 







 or it increase if 0r
p

ps

1i

n

kj
1j

j

r/

i

i

i



























 







. 

We shall apply now the Slutsky method for our analysis. 

At the modify of the price of the factors x1,...,xs, the total cost for the same optimal 

combination of factors is: 














 



s

1i i

i
i

n

1sj
j

0
int

p

p

r

CT
CT  

therefore: 
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x

s

1i i

i
i

n

1sj
j

d
2

0d
dint,

s

1i i

i
i

n

1sj
j

k
2

0k
kint,

 

The appropriate production is: 

 nint,1int,int x,...,xQ =

r
s

1i i

i
i

n

1sj
jn

1sd
d

s

1k
k

r2

r
0

n

1i
i
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p

ppr

CT

A
dk

i





































 

The Slutsky substitution effect which not preserves the production is therefore: 
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p
r
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i
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0k
k,0kint,kS1

 

and the difference caused by the old production instead the new production one is 

therefore: 
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p

p
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p
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i
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d
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0d
dint,d,fdS2
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1i i
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k
2

0k
kint,k,fkS2

 

Let us now calculate the influence of the new prices on the effects of substitution 

and new cost in Slutsky effect. 

We have: 

s1,k ,
p

p

pr

CT

p

x s

ki
1i i

i
i

n

1sj
j2

k
2
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k
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k t,s1, t,s1,k ,
ppr

CT

p

x
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2

0tk

t

kS1 






 

k t,s1, t,s1,k ,
ppr

CT

p

x

tk
2

0tk

t

kS2 






 

s1,k ,n1,sd ,
ppr

CT

p

x

kd
2

0kd

k

dS1 






 

s1,k ,n1,sd ,
ppr

CT

p

x

kd
2

0kd

k

dS2 






 

Therefore the effect of substitution at a price increase of the factor xk, k= s,1  is 

reduced, while the effect due to production decrease in case 















s

ki
1i i

i
ik

p

p
1 0 

or it increase if 















s

ki
1i i

i
ik

p

p
1 0. 

 

6. Production Efficiency of Cobb-Douglas Production Function 

Let now two Cobb-Douglas production functions for two goods  ,   and a 

number of n inputs F1,...,Fn available in quantities n1 x,.,,x . The production 

functions of   or   are: 

  n1

n1n1 x...Axx,...,xQ


  ,   n1

n1n1 x...Bxx,...,xQ


   

appropriate to the consumption of xk units of factor Fk, k= n,1 . 

We have seen that: ni1

i n
1

i1ix, x...x...xA


  , ni1

i n
1

i1ix, x...x...xB


  , i= n,1 . 

The production contract curve satisfies:   

     


















ni1

ni1

i

i

nn

1

ii11i

n
1

i1i

x,

x,

xx...xx...xxB

x...x...xA
, i= n,1  
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Dividing for ij: 
  ijiijiij

ijij

j
xx

xx
x




  and for i=1: 

  1j11j11j

1j1j

j
xx

xx
x




 , j= n,2 . Finally, for xi= we have the equation of 

production contract curve: 

 
R
















 ,

x

x
x

x

1j1j11j

j1j

j

1

 

If we consider now the input prices: p1,...,pn we have that for the production 

contract curve: x1=g1(),...,xn=gn(), R: 
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 ,

x

x
gx

gx

1j1j11j

j1j

jj

11

 

and: 
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1j1j11j

j1

1j

n2
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1

j1j

n1x,

n1x,

j
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)(g

)(g

)(g)...(g)(gA

)(g)...(g)...(gA

))(g),...,(g(

))(g),...,(g(
p

n21

nj1

1

j

, j= n,1 . 

For =1 we then obtain: p1=1, 
 

j11

1j1j11j

j
x

x
p




 , j= n,2 . 

If the initial allocation of factors of production was  n1 a,...,ax   we have that 

0)xa(p
n

1j
jjj 



 therefore: 
















n

2j j
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n

2j j
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a
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 where r1=



n

1k
k . 

For this value we find now the final allocation: 
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If now the two production functions are:   21 LAKL,KQ


  , 

  21 LAKL,KQ


   we have that for limited quantities of capital  K  and labor 

 L  the equation of production contract curve is: 

 
R















 ,

K

L
L

K

212112

12  

and the final allocation for an initial one:  11 L,Kx  : 

 














K

L
L

K

212112

*
12

*

 where 
   21121121

211111*

LL

LKLK




 . 

 

7. The Concrete Determination of the Cobb-Douglas Production 

Function 

Considering an affine function: f:R
n
R, f(x1,...,xn)=1x1+...+nxn+n+1 and a set of 

m>n+1 data:  kk
n

k
1 f,x,...,x , k= m,1  the problem of determining i, i= 1n,1   using 

the least square method is to minimize the expression: 

 


 
m
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k
nn

k
11 fx...x  that is to solve the system: 
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Considering the matrix: 
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and ij  the cofactor of the (i,j)-element in   we will obtain: 

1n1,i ,
det

fxf...xf
m

1k

k
i,1n
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1k

k
n

k
ni

m

1k

k
1

k
i1

i 










  

Considering now a production function Q(x1,...,xn)= n1

n1 x...Ax


 we put the problem 

of concrete determination of the parameters A, i, i= n,1 . 

Let therefore a set of m>n+1 data:  kk
n

k
1 Q,x,...,x , k= m,1 . 

Considering the logarithm of Q, we have: Alnxln...xlnQln nn11   

therefore we will modify the data set to the new one:  kk
n

k
1 Qln,xln,...,xln , 

k= m,1 . 

From above: 
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For the Cobb-Douglas Q=Q(K,L)=AK

L

 we have therefore, for the set: 

 
m,1iiii Q,L,K

 : 



ŒCONOMICA 

 

 101 

mLlnKln

LlnLlnLlnKln
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8. Conclusions 

The above analysis reveals several aspects. On the one hand were highlighted 

conditions for the existence of the Cobb-Douglas function. Also were calculated 

the main indicators of its and short and long-term costs. It has also been studied the 

dependence of long-term cost of the parameters of the production function. The 

determination of profit was made both for perfect competition market and 

maximize its conditions. Also we have studied the effects of Hicks and Slutsky and 

the production efficiency problem. 

 

9. Appendix 

A.1. Mathematical concepts 

A function Q:DR
n
R, D – convex set, is quasi-concave if: 

Q(x+(1-)y)min(Q(x),Q(y)) [0,1] x,yD 

and is strictly quasi-concave if: 

Q(x+(1-)y)min(Q(x),Q(y)) (0,1) x,yD 

A function Q:DR
n
R, D – convex set, is quasi-convex if: 

Q(x+(1-)y)max(Q(x),Q(y)) [0,1] x,yD 

and is strictly quasi-convex if: 

Q(x+(1-)y)max(Q(x),Q(y)) (0,1) x,yD 
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Geometrically speaking, a quasi-concave function has the property to be above the 

lowest values recorded at the ends of some segment. This property is equivalent 

with the convexity of the set Q
-1

[a,)={xDQ(x)a} aR. 

Note also that if f and g are arbitrary functions: 

 f – quasi-concave (quasi-convex) implies that -f is quasi-convex (quasi-

concave); 

 f – strictly quasi-concave (quasi-convex) implies that f is quasi-concave (quasi-

convex); 

 f - quasi-concave (quasi-convex) implies that f is quasi-concave (quasi-

convex) for any 0; 

 f,g - quasi-concave (quasi-convex) imply that min(f,g) (max(f,g)) is 

quasi-concave (quasi-convex) for any ,0; 

 f - quasi-concave (quasi-convex) and g:RR is increasing imply that 

gf:DR is quasi-concave (quasi-convex); 

 fC
1
(D) is (strictly) quasi-concave if and only if: f(x)f(y) 

   0)(yx)y(
x

fn

1i
ii

i








 x,yD; 

 fC
1
(D) is (strictly) quasi-convex if and only if: f(x)f(y) 

   0)(yx)x(
x

fn

1i
ii

i








 x,yD; 

 A monotonically function f:DRR is quasi-concave and quasi-convex; 

 Any affine function is quasi-concave and quasi-convex. 

Considering now the bordered hessian matrix: 

)f(HB
=























nnn2n1n

n222212

n121111

n21

xxxxxxx

xxxxxxx

xxxxxxx

xxx

"f..."f"f'f

...............

"f..."f"f'f

"f..."f"f'f

'f...'f'f0

 

and the bordered principal diagonal determinants: 
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B
k =

kkk2k1k

k222212

k121111

k21

xxxxxxx

xxxxxxx

xxxxxxx

xxx

"f..."f"f'f

...............

"f..."f"f'f

"f..."f"f'f

'f...'f'f0

, k= n,1  

we have the following theorems: 

Theorem If the function f:D n
R R, D – convex, fC

2
(D) is quasi-concave then 

  B
k

k
1  0, k= n,1 . 

Theorem In order that the function f:D n
R R, D – convex, fC

2
(D) be quasi-

concave is sufficient that   B
k

k
1  0, k= n,1 . 

A.2. The main indicators of production functions 

Let a production function: 

Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ (x1,...,xn)Dp 

We will call the marginal productivity relative to a production factor xi: 
ix =

ix

Q




 

representing the trend of variation of production at the variation of the factor xi. In 

particular, for a production function of the form: Q=Q(K,L) we have K=
K

Q




 - 

called the marginal productivity of capital and L=
L

Q




 - called the marginal 

productivity of labor. 

We call the average productivity relative to a production factor xi: 
ixw =

ix

Q
 

representing the value of production at the consumption of a unit of factor xi. In 

particular, for a production function of the form: Q=Q(K,L) we have: wK=
K

Q
 - 

called the productivity of capital, and wL=
L

Q
 - the productivity of labor. 

Considering the factors i and j with ij, we define the restriction of production 

area: Pij=(x1,...,xn)xk=ak=const, k= n,1 , ki,j, xi,xjDp relative to the two factors 



ŒCONOMICA 

 

 105 

when the others have fixed values. Also, let: Dij=(xi,xj)(x1,...,xn)Pij - the 

domain of production relative to factors i and j. 

We define: Qij:DijR+ - the restriction of the production function to the factors i 

and j, i.e.: Qij(xi,xj)=Q(a1,...,ai-1,xi,ai+1,...,aj-1,xj,aj+1,...,an). The functions Qij define a 

surface in R
3
 for every pair of factors (i,j). 

We will call partial marginal rate of technical substitution of the factors i and j, 

relative to Dij (caeteris paribus), the opposite change in the amount of factor j to 

substitute a variation of the quantity of factor i in the situation of conservation 

production level. 

We will note: RMS(i,j)=
i

j

dx

dx
  and we have, since Qij(xi,xj)=Q0=constant: 

RMS(i,j)=

ijj

iji

Dx

Dx




. Obviously  

 i,jRMS

1
j,iRMS  . We also define the global 

marginal rate of substitution between the i-th factor and the others: 

RMS(i)=









n

ij
1j

2
x

x

j

i . The global marginal rate of technical substitution is the 

minimum (in the meaning of norm) of changes in consumption of factors so that 

the total production remain unchanged. 

In particular, for a production function of the form: Q=Q(K,L) we have: 

RMS(K,L)= RMS(K)=
L

K




, RMS(L,K)=RMS(L)=

K

L




. 

It is called elasticity of production in relation to a production factor xi: 

ix =

i

i

x

Q

x

Q





=

i

i

x

x

w


 - the relative variation of production at the relative variation of 

factor xi. 
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In particular, for a production function of the form: Q=Q(K,L) we have K=
K

K

w


 - 

called the elasticity of production in relation to the capital and L=
L

L

w


 - the 

elasticity factor of production in relation to the labor. 

Let note now for arbitrary factors xi, xj: ij=
j

i

x

x
, i,j= n,1 , ij and we call the factor 

endowment ratio with the factor i relative to factor j. 

It is called the elasticity of marginal rate of technical substitution for a production 

function relative to inputs i and j: ij=

ij

ij

)j,i(RMS

)j,i(RMS







, i,j= n,1 , ij and represents the 

relative variation of marginal rate of technical substitution relative to factors i and j 

at the relative variation of the factor endowment ratio with factor i relative to factor 

j. 

We have therefore: ij=
)j,i(RMS

x

)j,i(RMS
x

i

i




=
i

i
x

)j,i(RMSln
x




. 

Considering now a production function Q:DpR+, (x1,...,xn)Q(x1,...,xn)R+ 

(x1,...,xn)Dp, homogenous of degree r, let note for an arbitrary factor (for 

example xn): i=
n

i

x

x
, i= 1n,1  . Of course: ij=

j

i




. 

We obviously have: 

Q(x1,...,xn)= 











n

n

n

1n

n

1r
n

x

x
,

x

x
,...,

x

x
Qx =  1,,...,Qx 1n1

r
n   

Considering the restriction of the production function at Dp  11n 
R : 

 1n1,...,q  =  1,,...,Q 1n1   we can write: 

Q(x1,...,xn)=  1n1
r
n ,...,qx   

With the new function introduced, the above indicators are: 
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ix =

i

1r
n

q
x



 , i= 1n,1   

 
nx = 






















1n

1i
i

i

1r
n

q
rqx  

 
ixw =

i

1r
n

q
x



 , i= 1n,1   

 
nxw = qx 1r

n
  

 RMS(i,j)=

j

i

q

q









, i,j= 1n,1   

 RMS(i,n)=
















1n

1i
i

i

i

q
rq

q

, i= 1n,1   

 RMS(i)=





















































1n

ij
1j

2

j

2
1n

1j
j

j

i

qq
rq

q

, i= 1n,1   

 RMS(n)= 





































1n

1j

2

j

1n

1j
j

j

q

q
rq

  

 
ix =

i

i

q

q







, i= 1n,1   

 
nx =

q

q
rq

1n

1i
i

i
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 ij=

ji

ji

2

ij
2
i

2

i qq

qqqq


























  

 in=

 












































































1n

1k
k

ki

1n

ik
1k

k

k
2
i

21n

ik
1k

k

ik

2

i

2

i
2
i

2

i
q

rq
q

qqqqq
r1

q
rq

 

For a production function of the form: Q=Q(K,L), 
L

K
 ,    1,Qq  : 

 K =


 q
L 1r  

 L = 












 q

rqL 1r  

 Kw =


 q
L 1r  

 Lw = qL 1r  

 RMS(K,L)=RMS(K)=











q
rq

q

 

 K =







q

q

 

 L =
q

q
rq 






 



ŒCONOMICA 

 

 109 

 =KL=

 







































q

rq
q

q
r1

q
rq

2

2

2

 

A.3. Necessary and sufficient conditions for nonlinear optimization 

Considering now the non-linear programming problem: 













0x,...,x

p1,i ,0)x,...,x(g

)x,...,x(f max(min)

n1

n1i

n1

 

where f,gC
2
(Dp) and a solution x =  

n1
x,...,x  the Karush-Kuhn-Tucker 

conditions occur: iR+, i= p,1  so that: 

   

 
 


















 


p1,i ,0x,...,xg

p1,i ,0x,...,xg

0x,...,xgx,...,xf

n1ii

n1i

p

1i
n1iin1

 

where F is the gradient of F defined by: F= 


















n1 x

F
,...,

x

F
 and =1 for the case 

of maximizing and =-1 in the case of minimizing. 

If f,gi, i= p,1  are of class C
2
, from [1] follows, for the maximizing case, the 

sufficiency of Karush-Kuhn-Tucker conditions takes place in the broader 

framework of quasi-concavity of functions f and g and, moreover, if for a solution 

x =  n1 x,...,x  one of the conditions occurs: 

 k= n,1  such that  x
x

f

k


0; 

 k= n,1  such that  x
x

f

k


0 and kx 0; 

 f 0; 

 f is concave. 
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For the problem: 












0x,...,x

p1,i ,0)x,...,x(g

)x,...,x(fmin

n1

n1i

n1

 

replacing f with –f and taking into account that 

)x,...,x(fmin n1 =  )x,...,x(fmax n1  follows that Karush-Kuhn-Tucker 

conditions becomes: 

   

 
 


















 


p1,i ,0x,...,xg

p1,i ,0x,...,xg

0x,...,xgx,...,xf

n1ii

n1i

p

1i
n1iin1

, iR+, i= p,1  

and sufficiency reduces to one of the cases: 

 k= n,1  such that  x
x

f

k


0; 

 k= n,1  such that  x
x

f

k


0 and kx 0; 

 f 0; 

 f is convex. 

In the particular case of the problem of minimizing the total cost (TC) relative to a 

production function Q=Q(x1,...,xn) and pi, i= n,1  - the prices of inputs: 

 




















0x,...,x

0Qx,...,xQ

xpmin

n1

0n1

n

1k
kk

 the Karush-Kuhn-Tucker conditions are: 

 

 
  























0Qx,...,xQ

Qx,...,xQ

n1,k ,0x,...,x
x

Q
p

0n1

0n1

n1

k

k

. Because =0 implies pk=0 – which is absurd 
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in economic terms, results: 0 then: 
 

 














0n1

kn1

k

Qx,...,xQ

n1,k ,px,...,x
x

Q

 or, with 

another expression: 

   

 





















0n1

n

n1

n

1

n1

1

Qx,...,xQ

p

x,...,x
x

Q

...
p

x,...,x
x

Q

. Because the objective 

function   



n

1k
kkn1 xpx,...,xf  is affine, Q is quasi-concave and, in addition 

 x
x

f

k


=pk0 follows, from the foregoing, that these conditions are sufficient. 

A.4. Production efficiency 

Let us consider in the following two goods  ,   and a number of n inputs 

F1,...,Fn available in quantities n1 x,.,,x , and the production functions of   or   

as follows: 

 n1 x,...,xQQ  ,  n1 x,...,xQQ   

appropriate to the consumption of xk units of factor Fk, k= n,1 . We will assume that 

the production functions are of class C
2
 inside space production SP. 

We will build the Edgeworth’s box consisting in a n-dimensional parallelepiped: 

   n1 x,0...x,0   the quantities of   being relative to  0,...,0O  and those of   

relative to  n1 x,.,,xF  on the parallelepiped sides. Let consider an initial allocation 

of inputs for   and  : 

 n1 a,...,ax  ,  n1 b,...,bx   

where ai+bi= ix , i= n,1 . The productions appropriate to the initial allocation are: 

 n10, a,...,aQ ,  n10, b,...,bQ  relative to O and F, respectively. Because bi= ix -ai, 

i= n,1  we have:  n10, b,...,bQ =  nn11 ax,...,axQ  . The production function 

of   is therefore:  nn11 xx,...,xxQQ̂    and means the production of   

relative to the origin of axes. We have now: 
ii x

Q

x

Q̂








  , 
ji

2

ji

2

xx

Q

xx

Q̂








  , 

i,j= n,1  therefore Q̂  is also quasi-concave but with negative partial derivatives of 
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order 1. Considering the isoproduction hypersurfaces, it follows that (relative to O) 

those of   is convex, while that of ̂  is concave. 

Let     0,n1n10, Qx,...,xQSPx,...,xPZ    - the production zone of   

superior to 0,Q  and     0,n1n10, Qx,...,xQSPx,...,xPZ    - the 

production zone of   superior to 0,Q . 

Suppose now that int  0,0, PZPZ    (int means the interior of the set, i.e. 

those points for which there is a n-dimensional cube centered in them sufficiently 

small side and included in the given set). 

Let now a point  n1 c,...,cC  int  0,0, PZPZ    and also let the straight line that 

passes through the origin and C. Let note  n1 d,...,dD  the intersection with the 

isoproduction hypersurface   0,n1 Qx,...,xQ    and  n1 e,...,eE  the intersection 

with the isoproduction hypersurface   0,n1 Q̂x,...,xQ̂   . We have now 

  0,n1 Qd,...,dQ    and   0,n1 Q̂e,...,eQ̂   . Because   is convex we obtain 

that:    n1n1 c,...,cQd,...,dQ    and Q̂  - concave implies that 

   n1n1 c,...,cQ̂e,...,eQ̂    or    nn11nn11 cx,...,cxQex,...,exQ   . 

After these inequalities follows that the production of each good can increase, so 

the initial allocation is not optimal. 

We call Pareto’s efficiency the situation where new production can not improve 

without affecting the other’s production. From the foregoing, it follows that the 

Pareto’s efficiency is obtained if the isoproduction hypersurfaces are tangent. 

The condition of tangency for Q=  n1 x,...,xQ  and Q=  n1 x,...,xQ̂ = 

 nn11 xx,...,xxQ   is reduced to the determination of those points  n1 x,...,x  

where 
ii x

Q̂

x

Q








  , i= n,1 , R i.e. those points where hypersurfaces intersect 

and have the same tangent hyperplane (directors parameters are proportional). 

Taking into account that  n1 x,...,xQ̂ =  nn11 xx,...,xxQ   we have that: 

ii x

Q

x

Q








  , i= n,1 , =-R. 

In marginal notation, we have:    nn11i,n1i, xx,...,xxx,...,x   , i= n,1 , 

R. 
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For two inputs (K and L) the above relations are equivalent with: 
L,

K,

L,

K,

















. 

On the other hand: 










dK

dL

L,

K,
=  L,KRMS  - marginal rate of technical 

substitution of capital for   and 










dK

dL

L,

K,
=  L,KRMS  - marginal rate of 

technical substitution of capital for  . The upper equality becomes: 

 L,KRMS =  L,KRMS . 

All of the points where the allocation is Pareto’s efficient generates the production 

contract curve. 

Contract curve represents all combinations of goods for which no party can 

maximize its production without diminishing the other’s production. On the other 

hand, any point on the curve represents a possible allocation contracts. The 

problem is this: if one good will be produced in order to reach the maximum level, 

what will do the other? 

Considering now the prices of n inputs as p1,...,pn the total cost is: TC=


n

1i
iixp  and 

it maximize the production if it is tangent to the isoproduction hypersurface. But 

each good want to be produced in maximum quantity therefore: 

n

n1n,

1

n11,

p

)x,...,x(
...

p

)x,...,x(  



, 

n

nn11n,

1

nn111,

p

)xx,...,xx(
...

p

)xx,...,xx( 


 
 

or, in other words, the cost hyperplane will be tangent to both isoproduction 

hypersurfaces, that is it will coincide with the common tangent hyperplane. 

Considering the production contract curve of the form: 

x1=g1(),...,xn=gn(), R 

follows: 

n

n1n,

1

n11,

p

))(g),...,(g(
...

p

))(g),...,(g( 


 
 

from where: 
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pk= 








))(g),...,(g(

))(g),...,(g(

n11,

n1k,
, 0, k= n,1  

We note that prices are determined up to a multiplicative factor, which does not 

affect the result of the problem and can therefore consider =1. If the initial 

allocation of factors of production was  n1 a,...,ax  ,  n1 b,...,bx   the total 

cost of production of   is TC =


n

1k
kkap . The new amounts of factors (which 

also satisfy the same total cost) involves: 0)xa(p
n

1k
kkk 



. Replacing the values 

of pk into this equation: 

  0)(ga
))(g),...,(g(

))(g),...,(g(n

1k
kk

n11,

n1k,






 


 

hence we will find R. Substituting in the appropriate expressions, will result pk 

and xk, k= n,1 . 
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