ACTA UNIVERSITATIS DANUBIUS Vol 7, No. 4/2011

Analysis of GARCH Modeling in Financial Markets: An Approach
Based on Technical Analysis Strategies
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Abstract: In this paper we performed an analysis in ordemtiake an evidence of GARCH modeling
on the performances of trading rules applied fstoek market index. Our study relays on the overlap
between econometrical modeling, technical analsia simulation computing technique. The non-
linear structures presented in the daily returnthefanalyzed index and also in other financialkser
together with the phenomenon of volatility clusteriare premises for applying a GARCH model. In
our approach the standardized GARCH innovationsesampled using the bootstrap method. On the
simulated data are then applied technical analyadging strategies. For all the simulated paths the
“p-values” are computed in order to verify that thgdthesis concerning the goodness of fit for
GARCH model on the BET index is accepted. The psed data with trading rules are showing
evidence that GARCH model is a good choice for eomtrical modeling of financial time series
including the romanian exchange trade index.
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1 Introduction

In finance and especially in financial markets, ofdiggest challenge is to find a
best trade-off between the return and the riskGatsa to a certain traded asset.
There are several approaches for measuring the wisk implications to
transaction’s profit, but none of them is workirlgthe time. Thus, a non linear
model is much closer to the real phenomena encmghia the financial markets.
One good measure for the risk of an asset is tlagihty. Volatility itself is a very
complex measure and it is often hard to measwvihthigh precision. This is why
a lot of investors and financial institution aréngscomplex approaches, in order to
model the volatility. Modeling and forecasting ity or, in other words, the
covariance structure of asset returns, is theregfop@rtant. The fact that volatility

YUniversity of Orléans, Faculty of Law, Economic &uies, France, Address: Chateau de La Source,
Avenue du Parc Floral, BP 6749, 45067 Orléans cetlekrance, Tel.: + 33(0)2.38.41.71.71,
Corresponding author: mircea-cristian.gherman@ onlieans.fr.

AUDG, Vol 7, no 4, pp. 158-171

15¢



ECONOMICA

in returns fluctuates over time has been known dotong time. Since the
distributions of the return series were found tddggokurtic and the returns were
modeled as independent and identically distribotegt time, the idea of modeling
the variable volatility over time was not fully ioiporated in models. As a matter
of fact, in a classic work, (Mandelbrot & Taylor9d7) applied the so-called
stables Paretian distributions to characterize dimribution of returns. An
informative discussion of stabparetiandistributions and their use in finance and
econometrics is presented in (Rachev & Mittnik, @00

The daily and intraday observations from a retwmnes of financial assets are in
fact not independent. While observations in thesees are uncorrelated or nearly
uncorrelated, the series contain higher order digpere. Thus, models having the
form of the Autoregressive Conditional heteroscediag (ARCH) are some of the
most popular way to parameterize this dependenescé] GARCH stands for
Generalized Autoregressive Conditional Heterosdegiysand it can be seen as a
modified ARCHmodel. Generally speaking, one can think of losiegdasticity as
time-varying variance (i.e. volatility). Conditionanplies a dependence on the
observations of the immediate past, and autorageesgescribes a feedback
mechanism that incorporates past observationstivetg@resentGARCHthen is a
mechanism that includes past variances in the papta of future variances.

In the financial, statistical and econometrica¢riitture, several procedures were
developed for the characterization of financialadasingGARCH The critics of
GARCHare saying that the Brock-Dechert-Scheinkman(&#3S can be used as
general test for nonlinearities in financial seriedéthout using too many
specifications (Brocks & Heravi, 1999). Since BBS test have a strong power
againstGARCH models, they were widely used like a diagnostichoe for the
back testing ofGARCH In case of non-linear structures when using aljused”
GARCH model the innovation processes are tested BINS If the BDS tests
cannot reject the null hypothesis by using the @uie values from driven
simulation, then the adjust&ARCHmodel is fitted well on the data.

The main reason of using the other testshigieroscedasticity is due to the easy
access to a large numbers of software and comput#itges which implement
them. On the other hand tBARCHsoftware has been intensively used only in the
last decade. Using other classical tesia raise a multiple of issues since their
asymptotical distribution cannot do an accurater@amation of the applied
statistics by those tests in respectA@CH GARCH and Exponential GARCH
residuals (Hsieh, 1991).

The GARCH model can be simulated for every resampled datd3iferent

statistics can be then computed on the standarmvations of the model, the
results showing that the unspecified filter effeElGARCHis more present when
the resampling process of the data is non-linearrlfid & Koopman, 2000).
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Therefore, we used as a statistic for GARCH modé¢he- ‘p-value” indicator
related to technical analysis trading rules appbedthe resampled data. In the
following sections of this paper will be presentds completed methodology
which performs these tests, but first a brief pneson of the characteristics of
GARCHmodel will be made.

2 Model Specifications
2.1 Modeling Financial Time Series with GARCH Model

The GARCH models are based at the same time on the predgigsegressive
models (theARMAX/ARIMAmodels) and on the conditional heteroskedasticty
models (the ARCH models). Bollerslev in his worko(lBrslev, 1986) developed
the GARCHIike a more general model of the origidlRCHmodel (Engle, 1982).
Both of them are modeling the volatility but t8ARCHmodel is using a reduced
number of parameters which also decrease the caiqmal effort time.

Hence, in order to express some of the charagtaribtat are commonly associated
with statistical characteristics of financial tirseries likefat tails and volatility
clustering a good choice for modeling is the to use@®#fRCHspecifications.

Probability distributions for the asset returnseofexhibit fatter tails than in the
case of standard normal, distribution. The fat phifnomenon is known as excess
kurtosis. Time series that exhibit a fat tail dsition are often referred to as
leptokurtic. A part of the fat tail effect can alsssult from the presence of non-
Gaussian asset return distributions that just happe have fat tails.
Heteroscedasticity explains some of the fat tailawéor, but typically not all of it.
Fat tail distributions, such &tudent-t have been applied IBARCH modeling
with good results, but often the choice of disttibo is a matter of trial and error.

GARCH models are parametric specifications that opepatst under relatively
stable market conditions (Gourieroux, 1997). Thetable conditions could not be
present on every market and in practice it is vkelbwn that errors made in
predicting markets are not of a constant magnituieere are periods when
unpredictable market fluctuations are larger andopge when they are smaller.
This behavior, known as heteroscedasticity, rdfethe fact that the size of market
volatility tends to cluster in periods of high vility and periods of low volatility.
This phenomenon is called volatility clustering,igthmeans that the large changes
tend to follow large changes, and small changed terfollow small changes. In
either case, the changes from one period to thé wék typically have an
unpredictable sign. Volatility clustering, or petsince, suggests a time series
model in which successive disturbances, althougtomelated, are nonetheless
serially dependent
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2.2 Correlation in Financial Time Series

If a financial time series are treated as a seque&fiadandom observations, this
random sequence, or stochastic process, may exabie degree of correlation
from one observation to the next. This correlastmicture can be used to predict
future values of the process based on the pastrhisf observations. Exploiting

the correlation structure, if any, allows the deposition of the time series into a
deterministic component (i.e., the forecast), anchradom component (i.e., the
error, or uncertainty, associated with the forecadthere are used these

components in order to represent a univariate maoiceh observed time serigg :
y, = f(t-1,X)+¢&, where:

- f(t—-1 X) represents the deterministic component of thesotinreturn
as a function of any information known at tirbe-1, including past innovations
(residuals) £,{&,,,&,_,,...}, past observationgy, ;,Y,.,,...}, and any other
relevant explanatory time series dafa,

- &, is the random component. It represents the relsidnghe mean of

Y, . These can be also an interpretation of the randisturbance, or shockeg, ,
as the single-period-ahead forecast error.

Usually the returns at timeare less correlated with return at titae That means
the close past observations cannot be used tocpriedire returns. If on a market
the financial assets are less correlated themthiket is characterized by a weak
informational efficiency — one cannot use the gagbrmation to make future
profits.

2.3. Conditional Variances

The key insight of GARCH lies in the distinction tiveen conditional and
unconditional variances of the innovations procgésg . The term conditional

implies explicit dependence on a past sequence bskergations. The term
unconditional is more concerned with long-term bédraof a time series and
assumes no explicit knowledge of the past.

If the values for returns have random values thdaily distribution can be used.
The unconditioned distribution refers to asymptetpartition — the repartition to
which the daily return tends. Thus, the uncond@tnmean is the simple
mathematic moving average of the returns. It idedaunconditioned because
supposing that all the possible value can be m@liand an infinite number of data
is available then a single return distribution f@riods of time can be computed.
This distribution assumes that return process id.dnprocess.
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GARCHmodels characterize the conditional distributiénep by imposing serial

dependence on the conditional variance of the iations. Specifically, the
variance model imposed I§ARCH conditional on the past, is given by

Equation 1Conditional Variance of a time series
Vartgl(yt) = Et—l (gtz) = atz

Equation 2Variance of a time series described bARCH (P,Q) parameters

P Q
ol =K+> Gol, +> A&, K>0,G 20 A 20
i=1 j=1

The o? is the forecast of the next period's variancesmithe past sequence of
variance forecastsaf_i , and past realizations of the variance itsg?_fj .

When P =0, theGARCHO0,Q) the model becomes the origi®edRCHQ) model
(Engle, 1982).

Equation 3variance of a time series described by ARCH paranters
Q
ol =K+> A&,
j=1

When P =Q =0, the variance of the process is simply white as@oith
varianceK.

Since in practice, is needed a large @gor ARCHmodeling, and estimation for a

large number of parameters. Bollerslev (BollerslE886) extended Engle’ARCH
model by including past conditional variances. Teisults in a more parsimonious
representation of the conditional variance process.

Large disturbances, positive or negative, becomiegbahe information set used to
construct the variance forecast of the next pegigiturbance. In this manner,
large shocks of either sign are allowed to persistl can influence the volatility
forecasts for several periods. The lag len@@lend Q, as well the magnitudes of

the coefficientsG; and A, , determine the degree of persistence.

2.4 Serial Dependence in Innovations

A common assumption when modeling financial timgeseis that the forecast
errors (i.e., the innovations) are zero-mean randmturbances uncorrelated from
one period to the next. In fact, an explicit getiagp mechanism for a
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GARCHP,Q) innovations proces$£,}, is:&, =0,z , whered, is the conditional
standard deviation, ang, is a standardized, independent, identically diatad (i.

e., i.i.d.) random draw from some specified proligbdistribution. TheGARCH
literature (Nelson, 1998; Bollerslev, 1986) usesesa distributions to model
GARCH processes, but the vast majority of reseassgumes the standard normal

density such thats, ~ N (0,07) . The GARCH innovations proces§&,} simply
rescales an i.i.d. procesfz} such that the conditional standard deviation
incorporates the serial dependence.

The GARCH models are consistent with various foahsfficient market theory,
which state that asset returns observed in thegeestot improve the forecasts of
asset returns in the future. Sin@®ARCH innovations {&} are serially
uncorrelatedGARCHmModeling does not violate efficient market theory.

2.4 Homoskedasticity of the Unconditional Variance

The GARCH model is strictly related to the conditib variance as a standard
process with Gaussian innovations. It can be usgdneral GARCHP,Q) form
with Gaussian innovations for the conditional vace The model conditional
variance is described by the Equation 2 preseriiedea

To have a stationary process are imposed the fiipwarameter constraints on
the conditional variance parameters.

Equation 4Constraint inequality for the GARCH parameters parameters

P Q

2.Gi+D> A <1 G20 A 20

i=1 j=1
The first constraint, a stationarity constraint,niscessary and sufficient for the
existence of a finite, time-independent variancehef innovations processt,} .
The remaining constraints are sufficient to endinag the conditional variance
{o,} is strictly positive.

The GARCH model used in this study is the simpleditional mean model with
GARCH(1,1)normal innovations. It is completely describedtivwp equations, the
first one called the mean equation and the secoedalled the variance

Equation 5The GARCH model equations
Y =C+é,
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2 _ 2 2
at =K +Glat—l + A1£t—1

In the conditional mean equation, the retugns consist of a simple drift, plus an
uncorrelated, white noise disturbaneg,. In the conditional variance equation, the

variance forecastg?, consists of a constant plus a weighted averagasif

period's forecast,g,, and last period's squared disturbangg,. Although

financial return series, typically exhibit littlewelation, the squared returns often
indicate significant correlation and persistencisTimplies correlation in the
variance process and it could be an indication thatdata is a candidate for
GARCH modeling. Although simplistic, the default modeh which the current
study is focused on, has the benefit of represgndirparsimonious model that
requires you to estimate only four paramet&@sK, G,and A). According to

(Box & Jenkins, 1994) the fewer parameters to estmthe less that can go
wrong. Some researchers are stating that elaboratiels often fail to offer real
benefits when forecasting (Hamilton, 1994).

The simpleGARCH1,1) model captures most of the variability in mosturn
series. Small lags fdP and Q are common in empirical applications. Typically,
GARCH1,1), GARCH2,1), or GARCHZ1,2) models are adequate for modeling
volatilities of different assets even over long pérperiods (Bollerslev & Chou,
1992).

3 Methodology

The objective of determining the parameters foruhderlying process applied to
the index price evolution is to allow the developtnef better stock pricing (index)
models. In this study, the parameters of the madelall calculated on data basis
before performing the simulations. In order to $ke effects of applying the
GARCH model on the data, the bootstrap simulation tepiiis used. It is
straightforward to apply the bootstrap to derivenscestimates of standard errors
and confidence intervals for the complex estimatdrthe distribution parameters.
One standard choice for an approximating distrdyuts the empirical distribution
of the observed data. In the case of a datasethwisicassumed to be an
independent and an identically distributed procéss, bootstrapped distribution
can be simulated by constructing a number of sasmipten the observed dataset
(and of equal size to those related to originabhddEach of them is obtained by
random sampling with replacement from the origitethset.

Hence, for testing the benefits of using BARCH model, we used two of the
technical analysis strategies: the filter strategg the moving average strategy.
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The filter strategy takes implies the usage of getage value (called filter), which
is then compared with the change in the currergksfasset) price. If the increase
in the stock’ price is bigger than the filter, therbuy signal is generated. Usually
this kind of behavior is associated by the investoith the bullish market. If the
decrease in the stock’ price is bigger than tterfithen a sell signal is generated.
The decreasing price in a stock market is assaciaith the concept of bearish
market.

The second strategy is using two moving averagesitars called the Moving
Average strategy. One of those moving averagesllisacthe short moving average
(SMA) and it uses a small number of past obsermafgog. from 1 to 10) and the
other is called the long moving average (LMA) ahdses a bigger number of past
observations (e.g. from 20 to 200). When the simanting average line is crossing
from the downside the long moving average then g &ignal is generated,
otherwise when the short moving average line isstng from the upside the long
moving average then a sell signal is generated.

The main fact of the described strategies (filtad anoving average strategy
without using bootstrap) is that they don’t assuhee hypothesis which state that
the returns are not normally distributed. Someéhefresults could suggest that even
the average return of these strategies is stailsticigger than a result for a simple
buy-hold strategy. From some points of view thespnted strategies could be
considered similar. One of these aspects is reldtie fact that the excess of
return obtained when using these trading stratdgassclose values in both cases.
In order to have the certitude that the partictitsiof the return series doesn’t
modify the distribution of statistical tests we dghe bootstrap methodology. The
main idea of this is to simulate the empirical wigttion and calculate the
associated pg-values” for both applied strategies. In order thiave this we
considered the next steps:

1) First we estimated the GARCH parameters relatdmbth equations.

2) In the second step we performed the simulation émpirical
distributions of returns.

3) In the final step we computed thp-Values” associated with each
trading strategy.

All of these steps and also the analysis of the BiEx were performed in an
econometrical computer program. The third steeicdbed in more details in the
results sections since it is involving some considens about the number of buy
or hold signals and their statistical distribution.
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4 The Data

For the simulation and analysis usi@ARCH model the used data is the BET
index between years 1997 and 2010 (end of Decent®Ef) (Bucharest Exchange
Trading) is the official index for the Bucharesb&t Exchange. It is a compounded
weighted index which includes the 10 most liquidcks from the market (the

.blue chips”). The BET index is a price index whidbes not contains dividends,
meaning that it s not a performance index. Sineediliidends in Romania are in
many years equals to zero, this index is considévede representative for the
purpose of th6&ARCHanalysis.

Before proceeding with forward data processing,uikg statistical analysis is
performed on the BET index in order to highlightt jiroperties. These properties
are taking into account when the GARCH model idiedp

In the next figure is represented the empiricalritigtion of the daily returns. As

already stated it has not a gaussian distributih ipresents fat tails, being an
asymptotic distribution with a mean with a valuiglsily greater than zero and with
a daily standard deviation close to 2%.
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Figure 1 Distribution of daily returns for BET inde x

The next table presents some of the principalssieai characteristics of the BET
return series, which are relevant for our studgriter to apply th6&6ARCHmodel.
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Table 1 The principal statistical parameters of BETreturns

Statistical characteristic Value
Mean 0.000484
Median 0
Maximum 0.105645
Minimum -0.13117
Std. Dev. 0.018848
Skewness -0.3166
Kurtosis 9.083299

The Table 1 can be considered on of the startiigt pb our analysis and its reflect
the described characteristics of financial timdeseron which a heteroskedastic
model can be applied. Therefore, the data presdrdsslis used for estimation of
GARCH1,1) model.

5 Empirical Results

In the financial markets the investors are apphdiféerent rules when they make
trades. Probably, one of the simplest and at theeséme not the worst strategy
from the performance point of view is the buy-amddhstrategy. This strategy
implies that the investors buy a stock and it Selg a different time in the future.
There no special assumptions made on what thetorgaske these actions. In the
technical analysis field, the next level is to gpph the asset time series some
rules, regarding the buy and the sell moments.

Using the described methodology BARCHmModel was applied to the BET index
data. The empirical distribution of the paramet@éte daily average return) is
simulated in order to generate of the returns mac&heGARCH null model is
estimated starting from the initial return seriBlse model parameters are estimated
by minimizing the error terms and by applyingStudent-tlaw for testing the
parameter significance. In the next table are pitesethe estimation results for the
GARCH1,1) model:

167



ACTA UNIVERSITATIS DANUBIUS Vol 7, No. 4/2011

Table 2 The estimated GARCH parameters

Parameter Name  Value Standard Erorr T- Statistic
C 0.0011904 0.00025809 4.6124
K 1.387 1.402 9.8978
Gl 0.75757 0.0097676 77.5600
Al 0.21814 0.012456 17.5135

Hence, for the analyzed data set the model equsasion

Equation 6The estimated parameters for the GARCH model appéd for BET
returns

Y, =0.0011%+ ¢,
o’ =1387010° +0.75757w7, +0.2181487,

Then, the residuals from the first equation areamgded (randomly with
replacement) for the purpose of obtaining the neturns and then the new price
series. The empirical results are grouped in tadses can be seen in the following
sections. The first one is presenting the resoitdhe filter strategy and the other
the results related to moving average strategy.

The technical analysis strategies are applied ésethresampled series and are
calculated values for average daily returns forlitag sub periods and for the sell
sub periods. Also the average return for the erdtirategy is being computed.
These steps are repeated fbrtimes (number of resampling times) in order to
obtain the empirical distribution of the averageélydeeturns. Theses returns are
then compared with the initial returns of the BE@éx in order to compute the-*
values”. The p-values” are presented in the next section and thpyesent the
average percentage of the simulated index valuéshvere greater than the initial
values of the BET index. A value close to one fos tp-values” means that the
null hypothesis which consists in the existencéhefGARCH effect in the BET
series is accepted. Otherwise, ffValues” are close to zero the null hypothesis is
rejected. When we performed this simulation we masige of more parameters.

Thus, the useARCHmModel is the “default” or the “basic” on6ARCH1,1) and
the number of bootstrapped sample paths is 1000béib strategies we modified
the parameters in order to show also the performaricstrategy according for
various values of the parameters. The results erepgd in two mail tables and
depending on the investor position — long or skothe mean and the standard
deviation of each simulated strategy are comput¥®tien both positions are
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combined together, there is possible to have arrafiveesult. Thus, this is
presented in last two columns of each table.

In the next table are shown results for the sinmdatsingGARCH1,1) and the

described parameters when a moving average straeged. The first column is
by definition theMoving Averagehaving the values on the short tern$and the

value for the long term L.

Table 3 Empirical results for the bootstrap analyss using the moving average strategy

MA(S,L) n(bu p(strateg o(strateg
o(buy) p(sell) o(sell)
parameters y) y) y)

(1, 10) 0.09 0.188 0.965 0.095 0.024 0.145
(1, 20) 0.08 0.173 0.941 0.106 0.021 0.140
(1, 50) 0.04 0.173 0928 0.119 0.086 0.126
(2, 50) 0.07 0.183 0910 0.115 0.142 0.123
(1, 150) 0.11 0.165 0.960 0.121 0.075 0.124
(2, 150) 0.12 0.188 0.959 0.115 0.087 0.119
(1, 200) 0.11 0.169 0.930 0.112 0.231 0.120

From the above table it can be seen that bothahg &nd short values have an
impact on the strategy profitability. The influenoé long and short values is
specially shown in daily average returns for thevimg average strategy.

Table 4 Empirical results for the bootstrap analyss using the filter strategy

Filter value  p(bu  g(buy) n(sell) p(strateg of(strateg
1% 0087 0131 0001 0.134 0.045  0.131
2% 0.092 0.141 0.927 0.123 0.033 0.139
5% 0.117 0.203 0.943 0.082 0.055 0.134

8% 0.155 0.183 0.930 0.089 0.094 0.128
12% 0.200 0.127 0.775 0.193 0.424 0.136
20% 0.132 0.172 0.937 0.160 0.082 0.132
25% 0.199 0.168 0.932 0.155 0.106 0.123

In the above table, the “Filter value” column reqmet the percentage value on
based it is taken the decision of generating a @uy sell signal ang(buy),
u(sell), u(strategy) are the percentages for number of stedil@BARCH data on
which the strategy return is bigger than for tHgdhindex values.

The “p-values” computed for both strategies, using d#ifer parameters are
showing which one is more proper to be used togetlith GARCHmodel. The
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results fromu columns are the daily returns, and thosesfoblumns represent the
result for standard deviations

6 Conclusions

In this his paper was examined the original GARCHdel contribution to our
understanding of the stochastic process underlyimugx stock markets. Our
approach tried to determinate if the movement séaech in th6& ARCHmodeling
field is warranted.

Overall, our results demonstrate that, althoughvipts research indicates that
volatility clustering plays a role in determiningpek price changes, it is not the
primary factor generating these changes. He@#&&RCH models with normality
assumptions provide a description of stock pricesmachics. The returns
distributions show independence in the data aenoving theGARCH effects.
Over these returns (often called residuals), tlvhrtieal analysis strategies, are
powerful tools used to find out if the model igifig well or not on the datdhe
results are showing that for some parameters of ttheéing strategies, their
profitability combined together with tHteARCHmodeling is higher that a classical
buy-and-hold strategy.

Although GARCH is explicitly designed to model time-varying cataial
variancesGARCHmMmodels can capture sometimes the highly irrequit@nomena,
including wild market fluctuations (e.g., crashexl ssubsequent rebounds), and
other highly unanticipated events that can leagldoificant structural changes.

Future research can examine if other forms ofGB&RCHprocess might be used
for testing the serial independences of residuaks, EGARCH FIGARCH
MGARCH. These models should also be tested to deterifnihey are superior to
mean variance standardization approach. Sinceratis of theGARCHprocess are
similar in form, focusing on volatility clusteringt, would be interesting to see if
they are important improvements.
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