Acta Universitatis Danubius. Œconomica, Vol 12, No 6 (2016)

The Relationship between Spatial Interdependencies in the European Union and the Trade-I



Cătălin Angelo Ioan1, Gina Ioan2



Abstract: The article treats the links between imports of EU countries and relative distances between them. Mostly there are linear regressions equations that modeling the import relative to the spatial relations between states.

Keywords: graph; European Union; Bellman; trade; export; import



1. The Development of Trade in the Context of Globalization

Although there is no universally accepted definition, the term globalization is often used in economic literature, the purpose of internationalization of trade in goods and services, capital and labor.

In conditions of globalization, of growing interdependence of the world's countries and the complexity of the global economy, we are seeing a diversification of increasingly sharp trade. Factors that influenced the development of trade relations, the global economic circuit are mainly economic, and we refer to scientific and technical progress, deepening international division of labor and, sometimes, these factors putting on a political form.

Economic flows occurring in the global economy reveals changes in the economic development of states, changes which stay at the underlying economic structure and dynamics of the circuit.

In this context, foreign trade (import and export) is an important component of analysis and assessment of an economic structure that aim for, among other components, macrostabilization and building an efficient economy.

With the advent in 1776 of the work of Adam Smith, The Wealth of Nations and waiver of mercantilist doctrine, free trade has become a way of enhancing mutual income of the countries that were involved in this kind of activity.

Following the Great Depression of 1929-1933, foreign trade experienced a sharp decrease due to the establishment and protectionism and trade barriers.

Between the end of the Second World War and the mid-1970s, trade has experienced significant growth when its volume recorded an annual growth rate of 5.8%, while production registered an annual growth rate 3.9%. After 1975 until the late 1980s, both production volumes and trade volumes have declined growth rates of around 4.1% per year, i.e. 3.3% per year ([1]).

An important role in the development of international trade theory have had after 1980 neoliberal theorists, Milton Friedman and Friedrich von Hayek August, who believed that the state should have a role traditionally supervisor of order.

Until the 1980s, the trend of openness to foreign markets was higher for industrial countries to emerging countries. After this period, however, there have been major changes in the structure of trade in terms of emerging countries.

The rapid growth of domestic production in the emerging countries, which led to the economic expansion of the early 2000s, increased the share of these countries in all international trade from 19% in the early 1970s to over 30% in 2002.

Progress in recent years is based on the competitiveness of the countries of the world which is due mainly financial and trade interdependence. As globalization is in full swing, international trade, the premise of sustainable development of all parts of the world economy, constitute the main vector of its manifestation.

The increase of the level and dynamics of trade flows, capital flows, information flows and the degree of labor mobility are influenced by globalization.



2. The Determination of Minimum Length of Roads Between EU Countries

In this section we shall determine the minimum lengths of the roads between EU countries for the purposes of considering only the existence arcs (actually the edges, since this is an undirected graph) between them, and not the actual distance.

First, let consider the graph of European Union in terms of links that is, if two countries have a common border we assign an edge of unitary length between them.

Figure 1

Source: (Ioan & Ioan, 2016)

where:

01 – Austria, 02 – Belgium, 03 – Bulgaria, 04 – Croatia, 05 – Cyprus, 06 - Czech Republic, 07 – Denmark, 08 – Estonia, 09 – Finland, 10 – France, 11 – Germany, 12 – Greece, 13 – Hungary, 14 – Ireland, 15 – Italy, 16 – Latvia, 17 – Lithuania, 18 – Luxembourg, 19 – Malta, 20 – Netherlands, 21 – Poland, 22 – Portugal, 23 – Romania, 24 – Slovakia, 25 – Slovenia, 26 – Spain, 27 – Sweden, 28 - United Kingdom.

Considering now the matrix of the graph D1=(dij)M28(R) where dij=1 when between xi and xj (the nodes appropriate to the countries) there exists an arc, dij= if there isn’t an arc between xi and xj and dii=0 i= .

The determination of minimum distances in the terms of minimal number of arcs between two nodes can be made with the Bellman-Kalaba algorithm which consists of several steps:

Step 0: Let fix a node xk for the determination of minimum lengths of roads from the other nodes to it.

Step 1: Noting v(i)R28 the vector containing the minimum lengths of roads from the nodes {x1,...,x28} to xk with most "i" arcs, we have that the column matrix “k” of D1 contains lengths of roads formed with a single arc from xi, i= to xk.

Step 2: Assume that were determined v(i), i= with s1 and the matrix Ds= M28(R) where , i,j= is the minimum length of the road with most (s+1) arches from the xi to xk, necessarily passing through xj. It is then determined, , i= which represents the minimum length of the roads with most than “s+1” arcs from xi the node reference xk, thus generating the vector v(s+1).

Step 3: The algorithm is repeated until for t1: v(t+1)=v(t) that is the minimum length of not more than “t” arcs may not decrease at the addition of an additional arc.

The Bellman-Kalaba algorithm, for the matrix of the graph (appendix A.1) gives the matrix of minimum distances between countries (appendix A.2) that is the minimum number of arcs necessary for the transition from one country to another.

Because this matrix has the great disadvantage that regions far from the reference country have greater values we shall act as follows.

We first make the hypothesis that if between two countries there exists a shorter road the trade exchanges are bigger. If a volume of goods must be carried from one country to another (situated at the distance “m” – in terms of edges) let note with t the necessary time. The necessary time for carry the same volume to a road of length 1 is therefore . After this analysis, the provider country take into consideration an export of a volume equal with . After these, we shall transform the matrix from table A.2, let say P= M28(R) in the matrix with elements = M28(R) where if ij and =0, i,j= (because a country cannot do exports or imports in itself). The elements of matrix mean the degree of strength of links between countries.

One correction we shall make at this matrix. Because we want to multiply with column vectors which give informations about various economic indicators, the sum of the products will not reflects the global link of the involved country to the others. For this reason, we shall normalize the elements of obtaining in the final, the matrix G= M28(R) where gij= if ij, gii=0, i,j= (appendix A.3). This will be the reference matrix which it be used in all our computations.



3. The Analysis of the Imports in EU Countries

In this section we shall analyze the relations between the export of EU countries and imports of each of them.

In Appendix A.4 and A.5 we have the tables of exports and imports of European Union countries during 2004-2015.

Multiplying the matrix G with the values from tables A.4 and A.5, we find the tables A.8-A.11 in Appendix A.6.

Because not all exports from one country will be transferred to the EU reference country, we shall search if there is a linear dependence between real imports and computed imports (after the results from tables A.8-A.11).

In the case of Austria, from Appendix A.7 we can see that is a strong link between the two groups of indicators (R2=0.9691), having finally:

IM_AT(t)=0.0203EX_BE(t)+0.0136EX_BG(t)+0.0203EX_HR(t)+0.0136EX_CY(t)+0.0406EX_CZ(t)+0.0203EX_DK(t)+0.0081EX_EE(t)+0.0102EX_FI(t)+0.0203EX_FR(t)+0.0406EX_DE(t)+ 0.0203EX_EL(t)+0.0406EX_HU(t)+0.0102EX_IE(t)+0.0406EX_IT(t)+0.0102EX_LV(t)+ 0.0136EX_LT(t)+0.0203EX_LU(t)+0.0203EX_MT(t)+0.0203EX_NL(t)+0.0203EX_PL(t)+ 0.0102EX_PT(t)+0.0203EX_RO(t)+0.0406EX_SK(t)+0.0406EX_SI(t)+0.0136EX_ES(t)+

0.0136EX_SE(t)+0.0136EX_UK(t)+18112.5424

where IM_ means real imports, EX_ means real exports, t – the reference time and the abbreviations for countries are the usual: Austria – AT, Belgium – BE, Bulgaria – BG, Croatia – HR, Cyprus – CY, Czech Republic – CZ, Denmark – DK, Estonia – EE, Finland – FI, France – FR, Germany – DE, Greece – EL, Hungary – HU, Ireland – IE, Italy – IT, Latvia – LV, Lithuania – LT, Luxembourg – LU, Malta – MT, Netherlands – NL, Poland – PL, Portugal – PT, Romania – RO, Slovakia – SK, Slovenia – SI, Spain – ES, Sweden – SE, United Kingdom – UK.

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 1) indicates that there are no large differences except Croatia, Slovakia and Slovenia (figure 3). Also, we can see that the real exports of EU-countries in Austria are below of those suggested by the regression equation which means that imports are below the potential offered by its geographic position.

The average distance between real data and those from the regression is: 1.36%.

Table 1. The correlation between the coefficients of regression and the real exports of EU-countries in Austria (in percent) in 2013

Country 

Regression

Real

Country 

Regression

Real

Austria

-

-

Italy

4.06%

2.10%

Belgium+Luxembourg

4.06%

0.85%

Latvia

1.02%

0.37%

Bulgaria

1.36%

1.80%

Lithuania

1.36%

0.43%

Croatia

2.03%

6.30%

Malta

2.03%

0.32%

Czech Republic

4.06%

4.50%

Netherlands

2.03%

0.91%

Denmark

2.03%

0.70%

Poland

2.03%

1.80%

Estonia

0.81%

0.32%

Portugal

2.03%

0.92%

Finland

1.02%

0.71%

Romania

1.02%

2.30%

France

2.03%

0.87%

Slovakia

2.03%

5.70%

Germany

4.06%

4.70%

Slovenia

4.06%

7.90%

Greece

2.03%

0.66%

Spain

4.06%

0.97%

Hungary

4.06%

5.00%

Sweden

1.36%

1.00%

Ireland

1.02%

1.10%

United Kingdom

1.36%

0.57%



Figure 2. The relationship between exports based on distances and the real exports in 2013 in Austria (in percent)

In the case of Belgium, from Appendix A.8 we can see that is a strong link between the two groups of indicators (R2=0.9536), having finally:

IM_BE(t)=0.047EX_AT(t)+0.0235EX_BG(t)+0.0235EX_HR(t)+0.0235EX_CY(t)+0.047EX_CZ(t)+0.047EX_DK(t)+0.0187EX_EE(t)+0.0235EX_FI(t)+0.094EX_FR(t)+0.094EX_DE(t)+
0.0313EX_EL(t)+0.0313EX_HU(t)+0.047EX_IE(t)+0.047EX_IT(t)+0.0235EX_LV(t)+
0.0313EX_LT(t)+0.094EX_LU(t)+0.0313EX_MT(t)+0.094EX_NL(t)+0.047EX_PL(t)+
0.0313EX_PT(t)+0.0235EX_RO(t)+0.0313EX_SK(t)+0.0313EX_SI(t)+0.047EX_ES(t)+
0.0313EX_SE(t)+0.094EX_UK(t)+35798.9745

Also, in the case of Luxembourg, from Appendix A.9 we can see that is a weak link between the two groups of indicators (R2=0.4959), having finally:

IM_LU(t)=0.0016EX_AT(t)+0.0031EX_BE(t)+0.0008EX_BG(t)+0.0008EX_HR(t)+
0.0008EX_CY(t)+0.0016EX_CZ(t)+0.0016EX_DK(t)+0.0006EX_EE(t)+0.0008EX_FI(t)+
0.0031EX_FR(t)+0.0031EX_DE(t)+0.001EX_EL(t)+0.001EX_HU(t)+0.001EX_IE(t)+
0.0016EX_IT(t)+0.0008EX_LV(t)+0.001EX_LT(t)+0.001EX_MT(t)+0.0016EX_NL(t)+
0.0016EX_PL(t)+0.001EX_PT(t)+0.0008EX_RO(t)+0.001EX_SK(t)+0.001EX_SI(t)+
0.0016EX_ES(t)+0.001EX_SE(t)+0.0016EX_UK(t)+11351.0435

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 2) indicates that there are no large differences except Germany (figure 3) for which the imports are much below the distance and on the other side Ireland and Netherlands which imports exceed much distances to both countries. Also, we can see that the real exports of EU-countries in Belgium and Luxembourg are below of those suggested by the regression equation which means that imports are below the potential offered by its geographic position.

The average distance between real data and those from the regression is: 2.46%.

Table 2. The correlation between the coefficients of regression and the real exports of EU-countries in Belgium+Luxembourg (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.70%

1.80%

Italy

4.70%

3.20%

Belgium+Luxembourg

-

-

Latvia

2.35%

1.80%

Bulgaria

2.35%

3.30%

Lithuania

3.13%

1.60%

Croatia

2.35%

1.80%

Malta

3.13%

0.83%

Czech Republic

4.70%

3.10%

Netherlands

9.40%

17.00%

Denmark

4.70%

1.60%

Poland

4.70%

2.70%

Estonia

1.87%

2.20%

Portugal

3.13%

3.40%

Finland

2.35%

3.60%

Romania

2.35%

1.80%

France

9.40%

9.10%

Slovakia

3.13%

1.80%

Germany

9.40%

4.90%

Slovenia

3.13%

1.10%

Greece

3.13%

1.20%

Spain

4.70%

3.20%

Hungary

3.13%

1.90%

Sweden

3.13%

5.80%

Ireland

4.70%

13.00%

United Kingdom

9.40%

5.50%



Figure 3. The relationship between exports based on distances and the real exports in 2013 in Belgium+Luxembourg (in percent)



In the case of Bulgaria, from Appendix A.10 we can see that is a strong link between the two groups of indicators (R2=0.8898), having finally:

IM_BG(t)=0.0099EX_AT(t)+0.0074EX_BE(t)+0.EX_BG(t)+0.0099EX_HR(t)+0.0149EX_CY(t)+
0.0074EX_CZ(t)+0.006EX_DK(t)+0.0042EX_EE(t)+0.0042EX_FI(t)+0.0099EX_FR(t)+
0.0074EX_DE(t)+0.0298EX_EL(t)+0.0149EX_HU(t)+0.006EX_IE(t)+0.0149EX_IT(t)+
0.005EX_LV(t)+0.006EX_LT(t)+0.0074EX_LU(t)+0.0099EX_MT(t)+0.006EX_NL(t)+
0.0074EX_PL(t)+0.006EX_PT(t)+0.0298EX_RO(t)+0.0099EX_SK(t)+0.0099EX_SI(t)+
0.0074EX_ES(t)+0.005EX_SE(t)+0.0074EX_UK(t)-13417.9939

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 3) indicates that there are no large differences except Greece (figure 4) for which the imports are much higher than the distance between them. Also, we can see that the real exports of EU-countries in Bulgaria are closer to those suggested by the regression equation which means that imports depend preferential from the potential offered by its geographic position.

The average distance between real data and those from the regression is: 0.54%.



Table 3. The correlation between the coefficients of regression and the real exports of EU-countries in Bulgaria (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.99%

0.57%

Italy

1.49%

0.48%

Belgium+Luxembourg

1.48%

0.18%

Latvia

0.50%

0.17%

Bulgaria

0.00%


Lithuania

0.60%

0.21%

Croatia

0.99%

0.42%

Malta

0.99%

0.11%

Czech Republic

0.74%

0.47%

Netherlands

0.60%

0.17%

Denmark

0.60%

0.12%

Poland

0.74%

0.52%

Estonia

0.42%

0.18%

Portugal

0.60%

0.12%

Finland

0.42%

0.08%

Romania

2.98%

3.40%

France

0.99%

0.18%

Slovakia

0.99%

0.59%

Germany

0.74%

0.25%

Slovenia

0.99%

0.76%

Greece

2.98%

5.10%

Spain

0.74%

0.61%

Hungary

1.49%

1.00%

Sweden

0.50%

0.13%

Ireland

0.60%

0.09%

United Kingdom

0.74%

0.11%



Figure 4. The relationship between exports based on distances and the real exports in 2013 in Bulgaria (in percent)

In the case of Croatia, from Appendix A.11 we can see that is a weak link between the two groups of indicators (R2=0.2881), having finally:

IM_HR(t)=0.0027EX_AT(t)+0.0013EX_BE(t)+0.0018EX_BG(t)+0.0013EX_CY(t)+
0.0018EX_CZ(t)+0.0013EX_DK(t)+0.0009EX_EE(t)+0.0009EX_FI(t)+0.0018EX_FR(t)+0.0018EX_DE(t)+0.0018EX_EL(t)+0.0053EX_HU(t)+0.0011EX_IE(t)+0.0027EX_IT(t)+0.0011EX_LV(t)+
0.0013EX_LT(t)+0.0013EX_LU(t)+0.0018EX_MT(t)+0.0013EX_NL(t)+0.0018EX_PL(t)+
0.0011EX_PT(t)+0.0027EX_RO(t)+0.0027EX_SK(t)+0.0053EX_SI(t)+0.0013EX_ES(t)+
0.0011EX_SE(t)+0.0013EX_UK(t)+9575.5559

A comparison of regression coefficients (even the regression isn’t very good because a small value of R2 or an existence of a weak autocorrelation) and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 4) indicates that there are no large differences except Slovenia (figure 5) which is absolutely normal because of their former membership to Yugoslavia. Also, we can see that the real exports of EU-countries in Croatia are closer to those suggested by the regression equation which means that imports depend preferential from the potential offered by its geographic position. The average distance between real data and those from the regression is: 0.38%.

Table 4. The correlation between the coefficients of regression and the real exports of EU-countries in Croatia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.27%

1.10%

Italy

0.27%

0.53%

Belgium+Luxembourg

0.26%

0.09%

Latvia

0.11%

0.05%

Bulgaria

0.18%

0.23%

Lithuania

0.13%

0.05%

Croatia

-

-

Malta

0.18%

0.29%

Czech Republic

0.18%

0.25%

Netherlands

0.13%

0.12%

Denmark

0.13%

0.25%

Poland

0.18%

0.24%

Estonia

0.09%

0.09%

Portugal

0.11%

0.03%

Finland

0.09%

0.06%

Romania

0.27%

0.22%

France

0.18%

0.08%

Slovakia

0.27%

0.43%

Germany

0.18%

0.21%

Slovenia

0.53%

7.20%

Greece

0.18%

0.24%

Spain

0.13%

0.11%

Hungary

0.53%

1.20%

Sweden

0.11%

0.09%

Ireland

0.11%

0.05%

United Kingdom

0.13%

0.04%



Figure 5

The case of Cyprus, from Appendix A.12 is not relevant because R2=0.0071, that is the linear regression analysis does not explain the phenomenon.

In the case of Czech Republic, from Appendix A.13 we can see that is a strong link between the two groups of indicators (R2=0.9451), having finally:

IM_CZ(t)=0.0599EX_AT(t)+0.0299EX_BE(t)+0.0149EX_BG(t)+0.0199EX_HR(t)+
0.0149EX_CY(t)+0.0299EX_DK(t)+0.0149EX_EE(t)+0.0149EX_FI(t)+0.0299EX_FR(t)+
0.0599EX_DE(t)+0.0199EX_EL(t)+0.0299EX_HU(t)+0.0149EX_IE(t)+0.0299EX_IT(t)+
0.0199EX_LV(t)+0.0299EX_LT(t)+0.0299EX_LU(t)+0.0199EX_MT(t)+0.0299EX_NL(t)+
0.0599EX_PL(t)+0.0149EX_PT(t)+0.0199EX_RO(t)+0.0599EX_SK(t)+0.0299EX_SI(t)+
0.0199EX_ES(t)+0.0199EX_SE(t)+0.0199EX_UK(t)-51129.2017

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 5) indicates that there are no large differences (real vs. predicted imports) except Slovakia (figure 6) which is absolutely normal because of their former membership to Czechoslovakia. In a contrary direction, we can see that real imports from Belgium+Luxembourg are very small (0.76%) in comparison with the distance (5.98%) and surprising the position of Germany with 2.70% in total imports of Czech Republic related to its proximity.

Also, we can see that the other real exports of EU-countries in Croatia are closer to those suggested by the regression equation which means that imports depend from the potential offered by its geographic position.

The average distance between real data and those from the regression is: 1.57%.

Table 5. The correlation between the coefficients of regression and the real exports of EU-countries in Czech Republic (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

5.99%

2.70%

Italy

2.99%

1.10%

Belgium+Luxembourg

5.98%

0.76%

Latvia

1.99%

1.10%

Bulgaria

1.49%

1.10%

Lithuania

2.99%

0.91%

Croatia

1.99%

1.10%

Malta

1.99%

0.92%

Czech Republic

-

-

Netherlands

2.99%

0.94%

Denmark

2.99%

0.84%

Poland

5.99%

5.50%

Estonia

1.49%

0.42%

Portugal

1.49%

0.73%

Finland

1.49%

0.49%

Romania

1.99%

2.10%

France

2.99%

0.82%

Slovakia

5.99%

11.00%

Germany

5.99%

2.70%

Slovenia

2.99%

2.40%

Greece

1.99%

0.63%

Spain

1.99%

0.81%

Hungary

2.99%

3.50%

Sweden

1.99%

0.83%

Ireland

1.49%

0.64%

United Kingdom

1.99%

0.60%



Figure 6. The relationship between exports based on distances and the real exports in 2013 in Czech Republic (in percent)

In the case of Denmark, from Appendix A.14 we can see that is a link between the two groups of indicators (R2=0.7983), having:

IM_DK(t)=0.0092EX_AT(t)+0.0092EX_BE(t)+0.0037EX_BG(t)+0.0046EX_HR(t)+
0.0037EX_CY(t)+0.0092EX_CZ(t)+0.0062EX_EE(t)+0.0092EX_FI(t)+0.0092EX_FR(t)+
0.0185EX_DE(t)+0.0046EX_EL(t)+0.0062EX_HU(t)+0.0046EX_IE(t)+0.0062EX_IT(t)+
0.0046EX_LV(t)+0.0062EX_LT(t)+0.0092EX_LU(t)+0.0046EX_MT(t)+0.0092EX_NL(t)+
0.0092EX_PL(t)+0.0046EX_PT(t)+0.0046EX_RO(t)+0.0062EX_SK(t)+0.0062EX_SI(t)+
0.0062EX_ES(t)+0.0185EX_SE(t)+0.0062EX_UK(t)+25877.4632

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.8125 for the limits of autocorrelation: (0,0.97)). However we will analyze the differences between the regression coefficients and the actual data, due to temporal delay which will appear later (when eliminating autoregression).

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 6) indicates that there are no large differences (real vs. predicted imports) except Latvia (figure 7) and Sweden which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Unlike the other countries analyzed so far, one can see that in general, real imports were above those provided by regression analysis, which shows a strong trade policy, lying over one somewhat conjectural than one dependent on proximity.

The average distance between real data and those from the regression is: 0.75%.

Table 6. The correlation between the coefficients of regression and the real exports of EU-countries in Denmark (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.92%

0.59%

Italy

0.62%

0.69%

Belgium+Luxembourg

1.84%

0.82%

Latvia

0.46%

4.30%

Bulgaria

0.37%

0.44%

Lithuania

0.62%

2.30%

Croatia

0.46%

0.33%

Malta

0.46%

0.52%

Czech Republic

0.92%

0.91%

Netherlands

0.92%

1.30%

Denmark

-

-

Poland

0.92%

1.70%

Estonia

0.62%

2.40%

Portugal

0.46%

0.69%

Finland

0.92%

2.00%

Romania

0.46%

0.43%

France

0.92%

0.55%

Slovakia

0.62%

1.00%

Germany

1.85%

1.40%

Slovenia

0.62%

1.00%

Greece

0.46%

0.50%

Spain

0.62%

0.51%

Hungary

0.62%

0.81%

Sweden

1.85%

7.10%

Ireland

0.46%

0.90%

United Kingdom

0.62%

1.10%



Figure 7. The relationship between exports based on distances and the real exports in 2013 in Denmark (in percent)



Because in the upper analysis we have - the autocorrelation coefficient of errors having value =0.579706184 we shall make another regression analysis for the set of data:

Imports-computed-new(t)=Imports-computed(t)-Imports-computed(t-1) and Exports-real-new(t)= Exports-real(t)-Exports-real(t-1) (table A.20). Finally, we obtain the equation of regression:

IM_DK(t)=0.5797IM_DK(t-1)+0.0108EX_AT(t)-0.0063EX_AT(t-1)+0.0108EX_BE(t)-0.0063EX_BE(t-1)+0.0043EX_BG(t)-0.0025EX_BG(t-1)+0.0054EX_HR(t)-0.0031EX_HR(t-1)+ 0.0043EX_CY(t)-0.0025EX_CY(t-1)+0.0108EX_CZ(t)-0.0063EX_CZ(t-1)+0.0072EX_EE(t)-0.0042EX_EE(t-1)+0.0108EX_FI(t)-0.0063EX_FI(t-1)+0.0108EX_FR(t)-0.0063EX_FR(t-1)+ 0.0216EX_DE(t)-0.0125EX_DE(t-1)+0.0054EX_EL(t)-0.0031EX_EL(t-1)+0.0072EX_HU(t)-0.0042EX_HU(t-1)+0.0054EX_IE(t)-0.0031EX_IE(t-1)+0.0072EX_IT(t)-0.0042EX_IT(t-1)+ 0.0054EX_LV(t)-0.0031EX_LV(t-1)+0.0072EX_LT(t)-0.0042EX_LT(t-1)+0.0108EX_LU(t)-0.0063EX_LU(t-1)+0.0054EX_MT(t)-0.0031EX_MT(t-1)+0.0108EX_NL(t)-0.0063EX_NL(t-1)+ 0.0108EX_PL(t)-0.0063EX_PL(t-1)+0.0054EX_PT(t)-0.0031EX_PT(t-1)+0.0054EX_RO(t)-0.0031EX_RO(t-1)+0.0072EX_SK(t)-0.0042EX_SK(t-1)+0.0072EX_SI(t)-0.0042EX_SI(t-1)+ 0.0072EX_ES(t)-0.0042EX_ES(t-1)+0.0216EX_SE(t)-0.0125EX_SE(t-1)+0.0072EX_UK(t)-0.0042EX_UK(t-1)+7957.1418

In the case of Estonia, from Appendix A.15 we can see that is a strong link between the two groups of indicators (R2=0.9028), having:

IM_EE(t)=0.0036EX_AT(t)+0.0036EX_BE(t)+0.0026EX_BG(t)+0.003EX_HR(t)+0.0023EX_CY(t)+0.0045EX_CZ(t)+0.006EX_DK(t)+0.0181EX_FI(t)+0.0036EX_FR(t)+0.0045EX_DE(t)+
0.0026EX_EL(t)+0.0036EX_HU(t)+0.0026EX_IE(t)+0.003EX_IT(t)+0.0181EX_LV(t)+
0.009EX_LT(t)+0.0036EX_LU(t)+0.0026EX_MT(t)+0.0036EX_NL(t)+0.006EX_PL(t)+
0.0026EX_PT(t)+0.003EX_RO(t)+0.0045EX_SK(t)+0.003EX_SI(t)+0.003EX_ES(t)+
0.009EX_SE(t)+0.003EX_UK(t)-5844.2952

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 7) indicates that there are no large differences (real vs. predicted imports) except former Soviet Union countries – Latvia and Lithuania (figure 8) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Let note that in general, real imports were close, but under to those provided by regression analysis, which shows a trade policy, which depends on proximity of the EU-countries but not exploring all the possibilities of the minimal distances recovery.

The average distance between real data and those from the regression is: 0.59%.

Table 7. The correlation between the coefficients of regression and the real exports of EU-countries in Estonia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.36%

0.09%

Italy

0.30%

0.09%

Belgium+Luxembourg

0.72%

0.08%

Latvia

1.81%

7.80%

Bulgaria

0.26%

0.10%

Lithuania

0.90%

4.60%

Croatia

0.30%

0.38%

Malta

0.26%

0.03%

Czech Republic

0.45%

0.15%

Netherlands

0.36%

0.09%

Denmark

0.60%

0.24%

Poland

0.60%

0.61%

Estonia

-

-

Portugal

0.26%

0.06%

Finland

1.81%

2.60%

Romania

0.30%

0.11%

France

0.36%

0.08%

Slovakia

0.45%

0.12%

Germany

0.45%

0.14%

Slovenia

0.30%

0.14%

Greece

0.26%

0.06%

Spain

0.30%

0.06%

Hungary

0.36%

0.24%

Sweden

0.90%

0.83%

Ireland

0.26%

0.05%

United Kingdom

0.30%

0.17%

Figure 8. The relationship between exports based on distances and the real exports in 2013 in Estonia (in percent)

In the case of Finland, from Appendix A.16 we can see that is a weak link between the two groups of indicators (R2=0.5906), having:

IM_FI(t)=0,0081EX_AT(t)+0,0081EX_BE(t)+0,0046EX_BG(t)+0,0054EX_HR(t)+
0,0046EX_CY(t)+0,0081EX_CZ(t)+0,0162EX_DK(t)+0,0324EX_EE(t)+0,0081EX_FR(t)+
0,0108EX_DE(t)+0,0054EX_EL(t)+0,0065EX_HU(t)+0,0054EX_IE(t)+0,0065EX_IT(t)+
0,0162EX_LV(t)+0,0108EX_LT(t)+0,0081EX_LU(t)+0,0054EX_MT(t)+0,0081EX_NL(t)+
0,0081EX_PL(t)+0,0054EX_PT(t)+0,0054EX_RO(t)+0,0065EX_SK(t)+0,0065EX_SI(t)+
0,0065EX_ES(t)+0,0324EX_SE(t)+0,0065EX_UK(t)+18173,0758

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 8) indicates that there are no large differences (real vs. predicted imports) except Estonia (figure 9) with 12% real imports vs. 3.24% given by the actual theory.

In general, real imports were close, but under to those provided by regression analysis, which shows a trade policy, which depends on proximity of the EU-countries.

The average distance between real data and those from the regression is: 0.71%.



Table 8. The correlation between the coefficients of regression and the real exports of EU-countries in Finland (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.81%

0.40%

Italy

0.65%

0.39%

Belgium+Luxembourg

1.62%

0.52%

Latvia

1.62%

2.60%

Bulgaria

0.46%

0.26%

Lithuania

1.08%

1.60%

Croatia

0.54%

0.23%

Malta

0.54%

0.04%

Czech Republic

0.81%

0.53%

Netherlands

0.81%

0.78%

Denmark

1.62%

2.30%

Poland

0.81%

0.85%

Estonia

3.24%

12.00%

Portugal

0.54%

0.53%

Finland

-

-

Romania

0.54%

0.32%

France

0.81%

0.43%

Slovakia

0.65%

0.38%

Germany

1.08%

0.70%

Slovenia

0.65%

0.33%

Greece

0.54%

0.24%

Spain

0.65%

0.34%

Hungary

0.65%

0.30%

Sweden

3.24%

4.90%

Ireland

0.54%

0.43%

United Kingdom

0.65%

0.51%

Figure 9. The relationship between exports based on distances and the real exports in 2013 in Finland (in percent)

In the case of France, from Appendix A.17 we can see that is a strong link between the two groups of indicators (R2=0.9367), having:

IM_FR(t)=0.059EX_AT(t)+0.1181EX_BE(t)+0.0393EX_BG(t)+0.0393EX_HR(t)+0.0393EX_CY(t)+0.059EX_CZ(t)+0.059EX_DK(t)+0.0236EX_EE(t)+0.0295EX_FI(t)+0.1181EX_DE(t)
+0.059EX_EL(t)+0.0393EX_HU(t)+0.059EX_IE(t)+0.1181EX_IT(t)+0.0295EX_LV(t)+
0.0393EX_LT(t)+0.1181EX_LU(t)+0.059EX_MT(t)+0.059EX_NL(t)+0.059EX_PL(t)+
0.059EX_PT(t)+0.0295EX_RO(t)+0.0393EX_SK(t)+0.059EX_SI(t)+0.1181EX_ES(t)+
0.0393EX_SE(t)+0.1181EX_UK(t)+133956.0736

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 9) indicates that there are no large differences (real vs. predicted imports) except Belgium+Luxembourg – under the distance between them and, on the other side, Romania and Portugal (figure 10) over the coefficients of regression, under traditional trade relations.

Let note that in general, real imports were close to those provided by regression analysis.

The average distance between real data and those from the regression is: 2.05%.

Table 9. The correlation between the coefficients of regression and the real exports of EU-countries in France (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

5.90%

4.40%

Italy

11.81%

10.00%

Belgium+Luxembourg

23.62%

14.00%

Latvia

2.95%

1.80%

Bulgaria

3.93%

4.50%

Lithuania

3.93%

3.30%

Croatia

3.93%

1.70%

Malta

5.90%

4.50%

Czech Republic

5.90%

5.10%

Netherlands

5.90%

6.20%

Denmark

5.90%

3.30%

Poland

5.90%

5.60%

Estonia

2.36%

1.80%

Portugal

5.90%

11.00%

Finland

2.95%

3.40%

Romania

2.95%

8.30%

France

-

-

Slovakia

3.93%

5.30%

Germany

11.81%

8.70%

Slovenia

5.90%

5.50%

Greece

5.90%

2.40%

Spain

11.81%

15.00%

Hungary

3.93%

4.40%

Sweden

3.93%

4.70%

Ireland

5.90%

6.60%

United Kingdom

11.81%

6.30%



Figure 10. The relationship between exports based on distances and the real exports in 2013 in France (in percent)

In the case of Germany, from Appendix A.18 we can see that is a strong link between the two groups of indicators (R2=0.9816). The P-Value Analysis reveals for Intercept a great value (0.4096) which indicates a weak evidence against the null hypothesis. In fact, assuming the threshold of 59% we obtain the regression in the table A.24. Also, we have a weak autocorrelation (d=0.8592 for the maximum 0.97) but we shall keep the initial conclusions because in the process of eliminating this phenomenon we shall obtain an increase of P-Value at 0.92 which is absurd. Therefore, finally, we have:

IM_DE(t)=0.3644EX_AT(t)+0.3644EX_BE(t)+0.091EX_BG(t)+0.1213EX_HR(t)+0.091EX_CY(t)+0.3644EX_CZ(t)+0.3644EX_DK(t)+0.091EX_EE(t)+0.1213EX_FI(t)+0.3644EX_FR(t)+
0.1213EX_EL(t)+0.1819EX_HU(t)+0.1213EX_IE(t)+0.1819EX_IT(t)+0.1213EX_LV(t)+
0.1819EX_LT(t)+0.3644EX_LU(t)+0.1213EX_MT(t)+0.3644EX_NL(t)+0.3644EX_PL(t)+
0.1213EX_PT(t)+0.1213EX_RO(t)+0.1819EX_SK(t)+0.1819EX_SI(t)+0.1819EX_ES(t)+
0.1819EX_SE(t)+0.1819EX_UK(t)-30938.8646

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 10) indicates that there are many differences (real vs. predicted imports) between countries - Belgium+Luxembourg with a real percent of imports of 15% instead 72.88% (after regression), Denmark with 14% vs. 36.44%, France – 15% vs. 36.44%, Netherlands – 21% vs. 36.44%, Poland – 23% vs. 36.44%. We can easily see that these difference, maybe except Poland, are encountered in the case of he very developed countries from the European Union, which have themselves a strong export. Let us note that in general, real imports were strong under to those provided by regression analysis, Germany being known the main engine of UE. The average distance between real data and those from the regression is very high: 9.25%.

Table 10. The correlation between the coefficients of regression and the real exports of EU-countries in Germany (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

36.44%

27.00%

Italy

18.19%

12.00%

Belgium+Luxembourg

72.88%

15.00%

Latvia

12.13%

6.40%

Bulgaria

9.10%

12.00%

Lithuania

18.19%

7.70%

Croatia

12.13%

10.00%

Malta

12.13%

8.10%

Czech Republic

36.44%

29.00%

Netherlands

36.44%

21.00%

Denmark

36.44%

14.00%

Poland

36.44%

23.00%

Estonia

9.10%

3.90%

Portugal

12.13%

10.00%

Finland

12.13%

9.40%

Romania

12.13%

17.00%

France

36.44%

15.00%

Slovakia

18.19%

21.00%

Germany

-

-

Slovenia

18.19%

20.00%

Greece

12.13%

6.30%

Spain

18.19%

10.00%

Hungary

18.19%

25.00%

Sweden

18.19%

10.00%

Ireland

12.13%

7.50%

United Kingdom

18.19%

10.00%

Figure 11. The relationship between exports based on distances and the real exports in 2013 in Germany (in percent)

The case of Greece, from Appendix A.19 is not relevant because R2=0.0105, that is the linear regression analysis does not explain the phenomenon. Also P-Value for the dominant factor of the regression is 0.7515 that is the null hypothesis can be rejected with a very small probability (24%). In the case of Hungary, from Appendix A.20 we can see that is a strong link between the two groups of indicators (R2=0.9526). The P-Value Analysis reveals for Intercept a great value (0.8302) which indicates a very weak evidence against the null hypothesis. In fact, assuming the threshold of 16% we obtain the regression in the table A.25. Therefore, finally, we have:

IM_HU(t)=0.0406EX_AT(t)+0.0135EX_BE(t)+0.0203EX_BG(t)+0.0406EX_HR(t)+
0.0102EX_CY(t)+0.0203EX_CZ(t)+0.0135EX_DK(t)+0.0081EX_EE(t)+0.0081EX_FI(t)+
0.0135EX_FR(t)+0.0203EX_DE(t)+0.0135EX_EL(t)+0.0081EX_IE(t)+0.0203EX_IT(t)+
0.0102EX_LV(t)+0.0135EX_LT(t)+0.0135EX_LU(t)+0.0135EX_MT(t)+0.0135EX_NL(t)+
0.0203EX_PL(t)+0.0081EX_PT(t)+0.0406EX_RO(t)+0.0406EX_SK(t)+0.0406EX_SI(t)+
0.0102EX_ES(t)+0.0102EX_SE(t)+0.0102EX_UK(t)+1051.9095

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 11) indicates that there are not great differences (real vs. predicted imports) between countries, therefore imports of Hungary are directed by territorial proximity criterion. The average distance between real data and those from the regression is: 0.75%.

Table 11. The correlation between the coefficients of regression and the real exports of EU-countries in Hungary (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.06%

3.50%

Italy

2.03%

0.84%

Belgium+Luxembourg

2.70%

0.57%

Latvia

1.02%

0.25%

Bulgaria

2.03%

1.20%

Lithuania

1.35%

0.64%

Croatia

4.06%

2.20%

Malta

1.35%

0.23%

Czech Republic

2.03%

2.50%

Netherlands

1.35%

0.66%

Denmark

1.35%

0.64%

Poland

2.03%

2.40%

Estonia

0.81%

0.19%

Portugal

0.81%

0.40%

Finland

0.81%

0.36%

Romania

4.06%

3.90%

France

1.35%

0.67%

Slovakia

4.06%

6.00%

Germany

2.03%

1.60%

Slovenia

4.06%

3.60%

Greece

1.35%

0.27%

Spain

1.02%

0.58%

Hungary

-

-

Sweden

1.02%

0.57%

Ireland

0.81%

0.36%

United Kingdom

1.02%

0.38%

Figure 12. The relationship between exports based on distances and the real exports in 2013 in Hungary (in percent)

The case of Ireland, from Appendix A.21 is not relevant because R2=0.1895, that is the linear regression analysis does not explain the phenomenon. Also P-Value for the dominant factor of the regression is 0.1572 that is the null hypothesis can be rejected with a significant probability (84%).

In the case of Italy, from Appendix A.22 we can see that is a weak link between the two groups of indicators (R2=0.6116). On the other hand, P-Values Analysis reveals for both coefficients of the regression small values which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

IM_IT(t)=0.1026EX_AT(t)+0.0514EX_BE(t)+0.0514EX_BG(t)+0.0514EX_HR(t)+
0.0514EX_CY(t)+0.0514EX_CZ(t)+0.0341EX_DK(t)+0.0171EX_EE(t)+0.0205EX_FI(t)+
0.1026EX_FR(t)+0.0514EX_DE(t)+0.1026EX_EL(t)+0.0514EX_HU(t)+0.0341EX_IE(t)+
0.0205EX_LV(t)+0.0256EX_LT(t)+0.0514EX_LU(t)+0.1026EX_MT(t)+0.0341EX_NL(t)+
0.0341EX_PL(t)+0.0341EX_PT(t)+0.0341EX_RO(t)+0.0514EX_SK(t)+0.1026EX_SI(t)+
0.0514EX_ES(t)+0.0256EX_SE(t)+0.0514EX_UK(t)+155094.5257

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 12) indicates that there are not great differences (real vs. predicted imports) between countries except cases of Croatia (14% - real vs. 5.14% - regression), Malta (3.70% - real vs. 10.26% - regression) and Romania (10% - real vs. 3.41% - regression) therefore imports of Italy are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 2.10%.

Table 12. The correlation between the coefficients of regression and the real exports of EU-countries in Italy (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

10.26%

7.10%

Italy

-

-

Belgium+Luxembourg

10.28%

5.40%

Latvia

2.05%

1.10%

Bulgaria

5.14%

10.00%

Lithuania

2.56%

1.80%

Croatia

5.14%

14.00%

Malta

10.26%

3.70%

Czech Republic

5.14%

3.70%

Netherlands

3.41%

5.00%

Denmark

3.41%

2.60%

Poland

3.41%

4.50%

Estonia

1.71%

0.86%

Portugal

3.41%

3.30%

Finland

2.05%

2.30%

Romania

3.41%

10.00%

France

10.26%

6.80%

Slovakia

5.14%

4.90%

Germany

5.14%

4.90%

Slovenia

10.26%

11.00%

Greece

10.26%

8.40%

Spain

5.14%

7.10%

Hungary

5.14%

5.00%

Sweden

2.56%

2.50%

Ireland

3.41%

2.60%

United Kingdom

5.14%

2.70%

Figure 13. The relationship between exports based on distances and the real exports in 2013 in Italy (in percent)

In the case of Latvia, from Appendix A.23 we can see that is a strong link between the two groups of indicators (R2=0.9299). On the other hand, P-Values Analysis reveals for both coefficients of the regression small values which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

IM_LV(t)=0.0039EX_AT(t)+0.0039EX_BE(t)+0.0026EX_BG(t)+0.0031EX_HR(t)+
0.0022EX_CY(t)+0.0051EX_CZ(t)+0.0039EX_DK(t)+0.0155EX_EE(t)+0.0077EX_FI(t)+
0.0039EX_FR(t)+0.0051EX_DE(t)+0.0026EX_EL(t)+0.0039EX_HU(t)+0.0026EX_IE(t)+
0.0031EX_IT(t)+0.0155EX_LT(t)+0.0039EX_LU(t)+0.0026EX_MT(t)+0.0039EX_NL(t)+
0.0077EX_PL(t)+0.0026EX_PT(t)+0.0031EX_RO(t)+0.0051EX_SK(t)+0.0031EX_SI(t)+
0.0031EX_ES(t)+0.0051EX_SE(t)+0.0031EX_UK(t)-6674.8824

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 13) indicates that there are not great differences (real vs. predicted imports) between countries except cases of close neighborhoods: Estonia (6.70% - real vs. 1.55% - regression) and Lithuania (10% - real vs. 1.55% - regression) therefore imports of Latvia are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 0.74%.

Table 13. The correlation between the coefficients of regression and the real exports of EU-countries in Latvia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.39%

0.12%

Italy

0.31%

0.10%

Belgium+Luxembourg

0.78%

0.08%

Latvia

-

-

Bulgaria

0.26%

0.11%

Lithuania

1.55%

10.00%

Croatia

0.31%

0.05%

Malta

0.26%

0.01%

Czech Republic

0.51%

0.16%

Netherlands

0.39%

0.11%

Denmark

0.39%

0.34%

Poland

0.77%

0.76%

Estonia

1.55%

6.70%

Portugal

0.26%

0.04%

Finland

0.77%

0.92%

Romania

0.31%

0.04%

France

0.39%

0.05%

Slovakia

0.51%

0.23%

Germany

0.51%

0.12%

Slovenia

0.31%

0.17%

Greece

0.26%

0.05%

Spain

0.31%

0.07%

Hungary

0.39%

0.18%

Sweden

0.51%

0.33%

Ireland

0.26%

0.03%

United Kingdom

0.31%

0.09%

Figure 14. The relationship between exports based on distances and the real exports in 2013 in Latvia (in percent)

In the case of Lithuania, from Appendix A.24 we can see that is a strong link between the two groups of indicators (R2=0.9681). On the other hand, P-Values Analysis reveals for both coefficients of the regression small values which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

IM_LT(t)=0.0079EX_AT(t)+0.0079EX_BE(t)+0.0047EX_BG(t)+0.0059EX_HR(t)+
0.0039EX_CY(t)+0.0118EX_CZ(t)+0.0079EX_DK(t)+0.0118EX_EE(t)+0.0079EX_FI(t)+
0.0079EX_FR(t)+0.0118EX_DE(t)+0.0047EX_EL(t)+0.0079EX_HU(t)+0.0047EX_IE(t)+
0.0059EX_IT(t)+0.0236EX_LV(t)+0.0079EX_LU(t)+0.0047EX_MT(t)+0.0079EX_NL(t)+
0.0236EX_PL(t)+0.0047EX_PT(t)+0.0059EX_RO(t)+0.0118EX_SK(t)+0.0059EX_SI(t)+
0.0059EX_ES(t)+0.0059EX_SE(t)+0.0059EX_UK(t)-15820.9662

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 14) indicates that there are not great differences (real vs. predicted imports) between countries except cases of close neighborhoods: Estonia (5.10% - real vs. 1.18% - regression) and Latvia (16% - real vs. 2.36% - regression) therefore imports of Lithuania are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 1.11%.

Table 14. The correlation between the coefficients of regression and the real exports of EU-countries in Lithuania (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.79%

0.18%

Italy

0.59%

0.28%

Belgium+Luxembourg

1.58%

0.30%

Latvia

2.36%

16.00%

Bulgaria

0.47%

0.24%

Lithuania

-

-

Croatia

0.59%

0.09%

Malta

0.47%

0.05%

Czech Republic

1.18%

0.37%

Netherlands

0.79%

0.33%

Denmark

0.79%

0.57%

Poland

2.36%

1.60%

Estonia

1.18%

5.10%

Portugal

0.47%

0.09%

Finland

0.79%

0.82%

Romania

0.59%

0.10%

France

0.79%

0.16%

Slovakia

1.18%

0.23%

Germany

1.18%

0.25%

Slovenia

0.59%

0.36%

Greece

0.47%

0.11%

Spain

0.59%

0.20%

Hungary

0.79%

0.27%

Sweden

0.59%

0.67%

Ireland

0.47%

0.06%

United Kingdom

0.59%

0.17%

Figure 15. The relationship between exports based on distances and the real exports in 2013 in Lithuania (in percent)



In the case of Malta, from Appendix A.25 we can see that is a strong link between the two groups of indicators (R2=0.8998). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.02 which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

IM_MT(t)=0.0018EX_AT(t)+0.0012EX_BE(t)+0.0012EX_BG(t)+0.0012EX_HR(t)+
0.0012EX_CY(t)+0.0012EX_CZ(t)+0.0009EX_DK(t)+0.0005EX_EE(t)+0.0006EX_FI(t)+
0.0018EX_FR(t)+0.0012EX_DE(t)+0.0018EX_EL(t)+0.0012EX_HU(t)+0.0009EX_IE(t)+
0.0037EX_IT(t)+0.0006EX_LV(t)+0.0007EX_LT(t)+0.0012EX_LU(t)+0.0009EX_NL(t)+
0.0009EX_PL(t)+0.0009EX_PT(t)+0.0009EX_RO(t)+0.0012EX_SK(t)+0.0018EX_SI(t)+
0.0012EX_ES(t)+0.0007EX_SE(t)+0.0012EX_UK(t)-1786.1808

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 15) indicates that there are not great differences (real vs. predicted imports) between countries except cases of close neighborhoods: Croatia (0.93% - real vs. 0.12% - regression) and Greece (0.57% - real vs. 0.18% - regression) therefore imports of Malta are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 0.11%.

Table 15. The correlation between the coefficients of regression and the real exports of EU-countries in Malta (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.18%

0.04%

Italy

0.37%

0.40%

Belgium+Luxembourg

0.24%

0.04%

Latvia

0.06%

0.03%

Bulgaria

0.12%

0.07%

Lithuania

0.07%

0.01%

Croatia

0.12%

0.93%

Malta

-

-

Czech Republic

0.12%

0.02%

Netherlands

0.09%

0.05%

Denmark

0.09%

0.06%

Poland

0.09%

0.03%

Estonia

0.05%

0.04%

Portugal

0.09%

0.04%

Finland

0.06%

0.01%

Romania

0.09%

0.06%

France

0.18%

0.14%

Slovakia

0.12%

0.03%

Germany

0.12%

0.03%

Slovenia

0.18%

0.03%

Greece

0.18%

0.57%

Spain

0.12%

0.08%

Hungary

0.12%

0.01%

Sweden

0.07%

0.15%

Ireland

0.09%

0.02%

United Kingdom

0.12%

0.10%



Figure 16. The relationship between exports based on distances and the real exports in 2013 in Malta (in percent)

In the case of Netherlands, from Appendix A.26 we can see that is a strong link between the two groups of indicators (R2=0.9427). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.05 which indicates a strong evidence against the null hypothesis. Therefore, we have:

IM_NL(t)=0.0966EX_AT(t)+0.1931EX_BE(t)+0.0387EX_BG(t)+0.0484EX_HR(t)+
0.0387EX_CY(t)+0.0966EX_CZ(t)+0.0966EX_DK(t)+0.0387EX_EE(t)+0.0484EX_FI(t)+
0.0966EX_FR(t)+0.1931EX_DE(t)+0.0484EX_EL(t)+0.0644EX_HU(t)+0.0966EX_IE(t)+
0.0644EX_IT(t)+0.0484EX_LV(t)+0.0644EX_LT(t)+0.0966EX_LU(t)+0.0484EX_MT(t)+
0.0966EX_PL(t)+0.0484EX_PT(t)+0.0484EX_RO(t)+0.0644EX_SK(t)+0.0644EX_SI(t)+
0.0644EX_ES(t)+0.0644EX_SE(t)+0.1931EX_UK(t)-85890.2647

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.7106 for the limits of autocorrelation: (0,0.97)). However we will analyze the differences between the regression coefficients and the actual data, due to temporal delay which will appear later (when eliminating autoregression). In this case P-Value exceeds 0.90 therefore we shall left this regression.

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 16) indicates that there are many and large differences between real and predicted imports: Austria (1.60% vs. 9.66%), Belgium+Luxembourg (14% vs. 28.97%), Germany (2.80% vs. 19.31%), United Kingdom (7.9% vs. 19.31%) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Unlike the other countries analyzed so far, one can see that in general, real imports were under those provided by regression analysis, which shows a weak trade policy on dependence from proximity.

The average distance between real data and those from the regression is very large: 4.46%.

Table 16. The correlation between the coefficients of regression and the real exports of EU-countries in Netherlands (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

9.66%

1.60%

Italy

6.44%

2.30%

Belgium+Luxembourg

28.97%

14.00%

Latvia

4.84%

4.40%

Bulgaria

3.87%

2.40%

Lithuania

6.44%

3.40%

Croatia

4.84%

1.70%

Malta

4.84%

1.30%

Czech Republic

9.66%

3.60%

Netherlands

-

-

Denmark

9.66%

5.10%

Poland

9.66%

4.00%

Estonia

3.87%

2.30%

Portugal

4.84%

4.00%

Finland

4.84%

5.80%

Romania

4.84%

2.80%

France

9.66%

4.10%

Slovakia

6.44%

2.40%

Germany

19.31%

5.80%

Slovenia

6.44%

1.70%

Greece

4.84%

1.90%

Spain

6.44%

3.10%

Hungary

6.44%

2.80%

Sweden

6.44%

5.40%

Ireland

9.66%

4.50%

United Kingdom

19.31%

7.90%



Figure 17. The relationship between exports based on distances and the real exports in 2013 in Netherlands (in percent)

In the case of Poland, from Appendix A.27 we can see that is a link between the two groups of indicators (R2=0.9534), having:

IM_PL(t)=0.0473EX_AT(t)+0.0473EX_BE(t)+0.0237EX_BG(t)+0.0315EX_HR(t)+0.019EX_CY(t)+0.0947EX_CZ(t)+0.0473EX_DK(t)+0.0315EX_EE(t)+0.0237EX_FI(t)+0.0473EX_FR(t)+
0.0947EX_DE(t)+0.0237EX_EL(t)+0.0473EX_HU(t)+0.0237EX_IE(t)+0.0315EX_IT(t)+
0.0473EX_LV(t)+0.0947EX_LT(t)+0.0473EX_LU(t)+0.0237EX_MT(t)+0.0473EX_NL(t)+
0.0237EX_PT(t)+0.0315EX_RO(t)+0.0947EX_SK(t)+0.0315EX_SI(t)+0.0315EX_ES(t)+
0.0315EX_SE(t)+0.0315EX_UK(t)-84942.8966

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.7820 for the limits of autocorrelation: (0,0.97)). However we will analyze the differences between the regression coefficients and the actual data, due to temporal delay which will appear later (when eliminating autoregression).

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 17) indicates that there are no large differences (real vs. predicted imports) except Belgium+Luxembourg (figure 18) for which real imports – 1.40% are very much under the value from regression – 9.46% and Germany – 3.3% vs. 9.47%.

For the other countries, one can see that in general, real imports were under those provided by regression analysis, which shows a trade policy based more on need and not on spatial proximity.

The average distance between real data and those from the regression is: 2.17%.

Table 17. The correlation between the coefficients of regression and the real exports of EU-countries in Poland (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.73%

2.20%

Italy

3.15%

2.20%

Belgium+Luxembourg

9.46%

1.40%

Latvia

4.73%

3.80%

Bulgaria

2.37%

1.80%

Lithuania

9.47%

5.40%

Croatia

3.15%

1.20%

Malta

2.37%

0.46%

Czech Republic

9.47%

5.20%

Netherlands

4.73%

1.50%

Denmark

4.73%

2.50%

Poland

-

-

Estonia

3.15%

1.20%

Portugal

2.37%

0.94%

Finland

2.37%

2.20%

Romania

3.15%

2.30%

France

4.73%

1.40%

Slovakia

9.47%

6.30%

Germany

9.47%

3.30%

Slovenia

3.15%

2.70%

Greece

2.37%

1.10%

Spain

3.15%

1.50%

Hungary

4.73%

3.50%

Sweden

3.15%

2.40%

Ireland

2.37%

1.00%

United Kingdom

3.15%

1.20%



Figure 18. The relationship between exports based on distances and the real exports in 2013 in Poland (in percent)



Because in the upper analysis we have - the autocorrelation coefficient of errors having value =0.600743273 we shall make another regression analysis for the set of data:
Imports-computed-new(t)=Imports-computed(t)-
Imports-computed(t-1) and Exports-real-new(t)= Exports-real(t)-Exports-real(t-1) (table A.33). Finally, we obtain the equation of regression:

IM_PL(t)=0.6007IM_PL(t-1)+0.0404EX_AT(t)-0.0243EX_AT(t-1)+0.0404EX_BE(t)-0.0243EX_BE(t-1)+0.0202EX_BG(t)-0.0121EX_BG(t-1)+0.0269EX_HR(t)-0.0162EX_HR(t-1)+ 0.0162EX_CY(t)-0.0097EX_CY(t-1)+0.081EX_CZ(t)-0.0486EX_CZ(t-1)+0.0404EX_DK(t)-0.0243EX_DK(t-1)+0.0269EX_EE(t)-0.0162EX_EE(t-1)+0.0202EX_FI(t)-0.0121EX_FI(t-1)+ 0.0404EX_FR(t)-0.0243EX_FR(t-1)+0.081EX_DE(t)-0.0486EX_DE(t-1)+0.0202EX_EL(t)-0.0121EX_EL(t-1)+0.0404EX_HU(t)-0.0243EX_HU(t-1)+0.0202EX_IE(t)-0.0121EX_IE(t-1)+ 0.0269EX_IT(t)-0.0162EX_IT(t-1)+0.0404EX_LV(t)-0.0243EX_LV(t-1)+0.081EX_LT(t)-0.0486EX_LT(t-1)+0.0404EX_LU(t)-0.0243EX_LU(t-1)+0.0202EX_MT(t)-0.0121EX_MT(t-1)+ 0.0404EX_NL(t)-0.0243EX_NL(t-1)+0.0202EX_PT(t)-0.0121EX_PT(t-1)+0.0269EX_RO(t)-0.0162EX_RO(t-1)+0.081EX_SK(t)-0.0486EX_SK(t-1)+0.0269EX_SI(t)-0.0162EX_SI(t-1)+ 0.0269EX_ES(t)-0.0162EX_ES(t-1)+0.0269EX_SE(t)-0.0162EX_SE(t-1)+0.0269EX_UK(t)-0.0162EX_UK(t-1)-20068.4749

In the case of Portugal, from Appendix A.28 we can see that is a weak link between the two groups of indicators (R2=0.5046). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.05 which indicates a strong evidence against the null hypothesis. Therefore, we have:

IM_PT(t)=0.0046EX_AT(t)+0.0062EX_BE(t)+0.0037EX_BG(t)+0.0037EX_HR(t)+
0.0037EX_CY(t)+0.0046EX_CZ(t)+0.0046EX_DK(t)+0.0027EX_EE(t)+0.0031EX_FI(t)+
0.0093EX_FR(t)+0.0062EX_DE(t)+0.0046EX_EL(t)+0.0037EX_HU(t)+0.0046EX_IE(t)+
0.0062EX_IT(t)+0.0031EX_LV(t)+0.0037EX_LT(t)+0.0062EX_LU(t)+0.0046EX_MT(t)+
0.0046EX_NL(t)+0.0046EX_PL(t)+0.0031EX_RO(t)+0.0037EX_SK(t)+0.0046EX_SI(t)+
0.0186EX_ES(t)+0.0037EX_SE(t)+0.0062EX_UK(t)+30732.5842

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 18) indicates that there are no large differences between real and predicted imports except the traditional partner Spain – 6.90% vs. 1.86%) which is absolutely normal as a consequence of commercial traditions that have bound these countries. In general, real imports are very close to those provided by regression analysis, which shows a strong trade policy on dependence from proximity. The average distance between real data and those from the regression is small: 0.34%.

Table 18. The correlation between the coefficients of regression and the real exports of EU-countries in Portugal (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.46%

0.22%

Italy

0.62%

0.76%

Belgium+Luxembourg

1.24%

0.42%

Latvia

0.31%

0.07%

Bulgaria

0.37%

0.70%

Lithuania

0.37%

0.29%

Croatia

0.37%

0.14%

Malta

0.46%

0.28%

Czech Republic

0.46%

0.30%

Netherlands

0.46%

0.49%

Denmark

0.46%

0.32%

Poland

0.46%

0.34%

Estonia

0.27%

0.15%

Portugal

-

-

Finland

0.31%

0.27%

Romania

0.31%

0.36%

France

0.93%

0.84%

Slovakia

0.37%

0.27%

Germany

0.62%

0.57%

Slovenia

0.46%

0.24%

Greece

0.46%

0.50%

Spain

1.86%

6.90%

Hungary

0.37%

0.28%

Sweden

0.37%

0.34%

Ireland

0.46%

0.54%

United Kingdom

0.62%

0.45%



Figure 19. The relationship between exports based on distances and the real exports in 2013 in Portugal (in percent)

In the case of Romania, from Appendix A.29 we can see that is a strong link between the two groups of indicators (R2=0.9088), having:

IM_RO(t)=0.029EX_AT(t)+0.0145EX_BE(t)+0.0581EX_BG(t)+0.029EX_HR(t)+0.0193EX_CY(t)+0.0193EX_CZ(t)+0.0145EX_DK(t)+0.0097EX_EE(t)+0.0097EX_FI(t)+0.0145EX_FR(t)+
0.0193EX_DE(t)+0.029EX_EL(t)+0.0581EX_HU(t)+0.0097EX_IE(t)+0.0193EX_IT(t)+
0.0116EX_LV(t)+0.0145EX_LT(t)+0.0145EX_LU(t)+0.0145EX_MT(t)+0.0145EX_NL(t)+
0.0193EX_PL(t)+0.0097EX_PT(t)+0.029EX_SK(t)+0.029EX_SI(t)+0.0116EX_ES(t)+
0.0116EX_SE(t)+0.0116EX_UK(t)-20819.1367

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.7055 for the limits of autocorrelation: (0,0.97)). However we will analyze the differences between the regression coefficients and the actual data, due to temporal delay which will appear later (when eliminating autoregression).

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 19) indicates that there are no large differences (real vs. predicted imports) from where one can see that in general, real imports are close to those provided by regression analysis, which shows a trade policy based almost entirely on spatial proximity.

The average distance between real data and those from the regression is: 0.84%

Table 19. The correlation between the coefficients of regression and the real exports of EU-countries in Romania (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

2.90%

1.70%

Italy

1.93%

1.50%

Belgium+Luxembourg

2.90%

0.42%

Latvia

1.16%

0.17%

Bulgaria

5.81%

6.60%

Lithuania

1.45%

0.30%

Croatia

2.90%

0.91%

Malta

1.45%

0.86%

Czech Republic

1.93%

1.30%

Netherlands

1.45%

0.48%

Denmark

1.45%

0.58%

Poland

1.93%

1.60%

Estonia

0.97%

0.10%

Portugal

0.97%

0.60%

Finland

0.97%

0.25%

Romania

-

-

France

1.45%

0.73%

Slovakia

2.90%

2.20%

Germany

1.93%

0.93%

Slovenia

2.90%

1.50%

Greece

2.90%

2.20%

Spain

1.16%

0.58%

Hungary

5.81%

5.70%

Sweden

1.16%

0.24%

Ireland

0.97%

0.38%

United Kingdom

1.16%

0.35%



Figure 20. The relationship between exports based on distances and the real exports in 2013 in Romania (in percent)

Because in the upper analysis we have - the autocorrelation coefficient of errors having value =0.625714756 we shall make another regression analysis for the set of data: Imports-computed-new(t)=Imports-computed(t)-Imports-computed(t-1) and Exports-real-new(t)= Exports-real(t)-Exports-real(t-1) (table A.36). Finally, we obtain the equation of regression:

IM_RO(t)=0.6257IM_RO(t-1)+0.0305EX_AT(t)-0.0191EX_AT(t-1)+0.0152EX_BE(t)-0.0095EX_BE(t-1)+0.061EX_BG(t)-0.0382EX_BG(t-1)+0.0305EX_HR(t)-0.0191EX_HR(t-1)+ 0.0203EX_CY(t)-0.0127EX_CY(t-1)+0.0203EX_CZ(t)-0.0127EX_CZ(t-1)+0.0152EX_DK(t)-0.0095EX_DK(t-1)+0.0102EX_EE(t)-0.0064EX_EE(t-1)+0.0102EX_FI(t)-0.0064EX_FI(t-1)+ 0.0152EX_FR(t)-0.0095EX_FR(t-1)+0.0203EX_DE(t)-0.0127EX_DE(t-1)+0.0305EX_EL(t)-0.0191EX_EL(t-1)+0.061EX_HU(t)-0.0382EX_HU(t-1)+0.0102EX_IE(t)-0.0064EX_IE(t-1)+ 0.0203EX_IT(t)-0.0127EX_IT(t-1)+0.0122EX_LV(t)-0.0076EX_LV(t-1)+0.0152EX_LT(t)-0.0095EX_LT(t-1)+0.0152EX_LU(t)-0.0095EX_LU(t-1)+0.0152EX_MT(t)-0.0095EX_MT(t-1)+ 0.0152EX_NL(t)-0.0095EX_NL(t-1)+0.0203EX_PL(t)-0.0127EX_PL(t-1)+0.0102EX_PT(t)-0.0064EX_PT(t-1)+0.0305EX_SK(t)-0.0191EX_SK(t-1)+0.0305EX_SI(t)-0.0191EX_SI(t-1)+ 0.0122EX_ES(t)-0.0076EX_ES(t-1)+0.0122EX_SE(t)-0.0076EX_SE(t-1)+0.0122EX_UK(t)-0.0076EX_UK(t-1)-8887.5794

In the case of Slovakia, from Appendix A.30 we can see that is a strong link between the two groups of indicators (R2=0.9606). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.05 which indicates a strong evidence against the null hypothesis. Therefore, we have:

IM_SK(t)=0.0486EX_AT(t)+0.0162EX_BE(t)+0.0162EX_BG(t)+0.0243EX_HR(t)+
0.0122EX_CY(t)+0.0486EX_CZ(t)+0.0162EX_DK(t)+0.0122EX_EE(t)+0.0097EX_FI(t)+
0.0162EX_FR(t)+0.0243EX_DE(t)+0.0162EX_EL(t)+0.0486EX_HU(t)+0.0097EX_IE(t)+
0.0243EX_IT(t)+0.0162EX_LV(t)+0.0243EX_LT(t)+0.0162EX_LU(t)+0.0162EX_MT(t)+
0.0162EX_NL(t)+0.0486EX_PL(t)+0.0097EX_PT(t)+0.0243EX_RO(t)+0.0243EX_SI(t)+
0.0122EX_ES(t)+0.0122EX_SE(t)+0.0122EX_UK(t)-36725.8702

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 20) indicates that there are no large differences between real and predicted imports except formerly part of Czechoslovakia: Czech Republic – 7.60% vs. 4.86% which is absolutely normal as a consequence of commercial traditions that have bound these countries.

In general, real imports are under to those provided by regression analysis, which shows an insufficient correlation of imports with distances.

The average distance between real data and those from the regression is small: 1.36%.

Table 20. The correlation between the coefficients of regression and the real exports of EU-countries in Slovakia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.86%

1.50%

Italy

2.43%

0.57%

Belgium+Luxembourg

3.24%

0.26%

Latvia

1.62%

0.52%

Bulgaria

1.62%

0.71%

Lithuania

2.43%

0.31%

Croatia

2.43%

1.30%

Malta

1.62%

0.10%

Czech Republic

4.86%

7.60%

Netherlands

1.62%

0.21%

Denmark

1.62%

0.30%

Poland

4.86%

2.30%

Estonia

1.22%

0.34%

Portugal

0.97%

0.25%

Finland

0.97%

0.20%

Romania

2.43%

1.50%

France

1.62%

0.45%

Slovakia

-

-

Germany

2.43%

0.96%

Slovenia

2.43%

1.70%

Greece

1.62%

0.28%

Spain

1.22%

0.32%

Hungary

4.86%

4.20%

Sweden

1.22%

0.23%

Ireland

0.97%

0.16%

United Kingdom

1.22%

0.20%



Figure 21. The relationship between exports based on distances and the real exports in 2013 in Slovakia (in percent)

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.7802 for the limits of autocorrelation: (0,0.97)). Because in the analysis we have - the autocorrelation coefficient of errors having value =0.595858587 we made another regression analysis for the set of data: Imports-computed-new(t)=Imports-computed(t)-Imports-computed(t-1) and Exports-real-new(t)= Exports-real(t)-Exports-real(t-1). Finally, we obtained again a positive autocorrelation of errors (d=0.8278 for the limits of autocorrelation: (0,0.93)) and a value of R2 less than before. As a consequence we shall let the previous results as model of imports.

In the case of Slovenia, from Appendix A.31 we can see that is a strong link between the two groups of indicators (R2=0.8982), having:

IM_SI(t)=0.0138EX_AT(t)+0.0046EX_BE(t)+0.0046EX_BG(t)+0.0138EX_HR(t)+ 0.0046EX_CY(t)+0.0069EX_CZ(t)+0.0046EX_DK(t)+0.0023EX_EE(t)+0.0028EX_FI(t)+ 0.0069EX_FR(t)+0.0069EX_DE(t)+0.0069EX_EL(t)+0.0138EX_HU(t)+0.0034EX_IE(t)+ 0.0138EX_IT(t)+0.0028EX_LV(t)+0.0034EX_LT(t)+0.0046EX_LU(t)+0.0069EX_MT(t)+ 0.0046EX_NL(t)+0.0046EX_PL(t)+0.0034EX_PT(t)+0.0069EX_RO(t)+0.0069EX_SK(t)+

0.0046EX_ES(t)+0.0034EX_SE(t)+0.0046EX_UK(t)-4295.3188

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.5058 for the limits of autocorrelation: (0,0.97)). However we will analyze the differences between the regression coefficients and the actual data, due to temporal delay which will appear later (when eliminating autoregression).

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 21) indicates that there are no large differences (real vs. predicted imports) except Croatia (which were a part from the former Yugoslavia from where one can see that in general, real imports are close to those provided by regression analysis, which shows a trade policy based almost entirely on spatial proximity.

The average distance between real data and those from the regression is: 0.57 %











Table 21. The correlation between the coefficients of regression and the real exports of EU-countries in Slovenia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

1.38%

1.50%

Italy

1.38%

0.90%

Belgium+Luxembourg

0.92%

0.13%

Latvia

0.28%

0.11%

Bulgaria

0.46%

0.41%

Lithuania

0.34%

0.17%

Croatia

1.38%

9.50%

Malta

0.69%

0.22%

Czech Republic

0.69%

0.45%

Netherlands

0.46%

0.11%

Denmark

0.46%

0.09%

Poland

0.46%

0.36%

Estonia

0.23%

0.07%

Portugal

0.34%

0.22%

Finland

0.28%

0.10%

Romania

0.69%

0.41%

France

0.69%

0.22%

Slovakia

0.69%

0.58%

Germany

0.69%

0.35%

Slovenia

-

-

Greece

0.69%

0.54%

Spain

0.46%

0.20%

Hungary

1.38%

0.97%

Sweden

0.34%

0.12%

Ireland

0.34%

0.06%

United Kingdom

0.46%

0.09%



Figure 22. The relationship between exports based on distances and the real exports in 2013 in Slovenia (in percent)

Because in the upper analysis we have - the autocorrelation coefficient of errors having value =0,715462436 we shall make another regression analysis for the set of data:

Imports-computed-new(t)=Imports-computed(t)-Imports-computed(t-1) and Exports-real-new(t)= Exports-real(t)-Exports-real(t-1) (table A.39). Finally, we obtain the equation of regression:

IM_SI(t)=0.7155IM_SI(t-1)+0.014EX_AT(t)-0.01EX_AT(t-1)+0.0047EX_BE(t)-0.0033EX_BE(t-1)+ 0.0047EX_BG(t)-0.0033EX_BG(t-1)+0.014EX_HR(t)-0.01EX_HR(t-1)+0.0047EX_CY(t)-0.0033EX_CY(t-1)+0.007EX_CZ(t)-0.005EX_CZ(t-1)+0.0047EX_DK(t)-0.0033EX_DK(t-1)+ 0.0023EX_EE(t)-0.0017EX_EE(t-1)+0.0028EX_FI(t)-0.002EX_FI(t-1)+0.007EX_FR(t)-0.005EX_FR(t-1)+0.007EX_DE(t)-0.005EX_DE(t-1)+0.007EX_EL(t)-0.005EX_EL(t-1)+ 0.014EX_HU(t)-0.01EX_HU(t-1)+0.0035EX_IE(t)-0.0025EX_IE(t-1)+0.014EX_IT(t)-
0.01EX_IT(t-1)+0.0028EX_LV(t)-0.002EX_LV(t-1)+0.0035EX_LT(t)-0.0025EX_LT(t-1)+ 0.0047EX_LU(t)-0.0033EX_LU(t-1)+0.007EX_MT(t)-0.005EX_MT(t-1)+0.0047EX_NL(t)-0.0033EX_NL(t-1)+0.0047EX_PL(t)-0.0033EX_PL(t-1)+0.0035EX_PT(t)-0.0025EX_PT(t-1)+ 0.007EX_RO(t)-0.005EX_RO(t-1)+0.007EX_SK(t)-0.005EX_SK(t-1)+0.0047EX_ES(t)-0.0033EX_ES(t-1)+0.0035EX_SE(t)-0.0025EX_SE(t-1)+0.0047EX_UK(t)-0.0033EX_UK(t-1)-1281.1717

In the case of Spain, from Appendix A.32 we can see that is a weak link between the two groups of indicators (R2=0.6000). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.05 which indicates a strong evidence against the null hypothesis. Therefore, we have:

IM_ES(t)=0.0273EX_AT(t)+0.041EX_BE(t)+0.0205EX_BG(t)+0.0205EX_HR(t)+0.0205EX_CY(t)+0.0273EX_CZ(t)+0.0273EX_DK(t)+0.0137EX_EE(t)+0.0164EX_FI(t)+0.082EX_FR(t)+
0.041EX_DE(t)+0.0273EX_EL(t)+0.0205EX_HU(t)+0.0273EX_IE(t)+0.041EX_IT(t)+
0.0164EX_LV(t)+0.0205EX_LT(t)+0.041EX_LU(t)+0.0273EX_MT(t)+0.0273EX_NL(t)+
0.0273EX_PL(t)+0.082EX_PT(t)+0.0164EX_RO(t)+0.0205EX_SK(t)+0.0273EX_SI(t)
+0.0205EX_SE(t)+0.041EX_UK(t)+102990.7901

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 22) indicates that there are no large differences between real and predicted imports except the traditional partner Portugal – 21% vs. 8.20%) which is absolutely normal as a consequence of commercial traditions that have bound these countries and also Belgium+Luxembourg (2.40% vs. 8.20%). In general, real imports are very close to those provided by regression analysis, which shows a strong trade policy on dependence from proximity. The average distance between real data and those from the regression is small: 1.42%.

Table 22. The correlation between the coefficients of regression and the real exports of EU-countries in Spain (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

2.73%

1.40%

Italy

4.10%

4.00%

Belgium+Luxembourg

8.20%

2.40%

Latvia

1.64%

0.54%

Bulgaria

2.05%

2.30%

Lithuania

2.05%

0.97%

Croatia

2.05%

0.60%

Malta

2.73%

1.10%

Czech Republic

2.73%

2.30%

Netherlands

2.73%

2.40%

Denmark

2.73%

1.70%

Poland

2.73%

2.30%

Estonia

1.37%

0.60%

Portugal

8.20%

21.00%

Finland

1.64%

1.40%

Romania

1.64%

2.20%

France

8.20%

5.90%

Slovakia

2.05%

2.20%

Germany

4.10%

2.70%

Slovenia

2.73%

1.20%

Greece

2.73%

3.10%

Spain

-

-

Hungary

2.05%

2.40%

Sweden

2.05%

1.90%

Ireland

2.73%

2.80%

United Kingdom

4.10%

2.90%



Figure 23. The relationship between exports based on distances and the real exports in 2013 in Spain (in percent)

The case of Sweden, from Appendix A.33 is not relevant because even R2=0.9135, P-Value for Intercept 0.9126 that is the null hypothesis can be rejected with a very small probability (8%).

In the case of United Kingdom, from Appendix A.34 we can see that is a weak link between the two groups of indicators (R2=0.4452). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.05 which indicates a strong evidence against the null hypothesis. Therefore, we have:

IM_UK(t)=0.0373EX_AT(t)+0.1118EX_BE(t)+0.028EX_BG(t)+0.028EX_HR(t)+0.028EX_CY(t)+
0.0373EX_CZ(t)+0.0373EX_DK(t)+0.0186EX_EE(t)+0.0224EX_FI(t)+0.1118EX_FR(t)+ 0.0559EX_DE(t)+0.0373EX_EL(t)+0.028EX_HU(t)+0.1118EX_IE(t)+0.0559EX_IT(t)+ 0.0224EX_LV(t)+0.028EX_LT(t)+0.0559EX_LU(t)+0.0373EX_MT(t)+0.1118EX_NL(t)+ 0.0373EX_PL(t)+0.0373EX_PT(t)+0.0224EX_RO(t)+0.028EX_SK(t)+0.0373EX_SI(t)+

0.0559EX_ES(t)+0.028EX_SE(t)+202675.6936

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 23) indicates that there are no large differences between real and predicted imports except Belgium+Luxembourg (8.40% vs. 16.77%), Denmark (8.70% vs. 3.73%), France (6.90% vs. 11.18%) and Sweden (7% vs. 2.80%).

In general, real imports are over those provided by regression analysis, which shows a trade policy dependents weak from proximity.

The average distance between real data and those from the regression is small: 2.09%.

Table 23. The correlation between the coefficients of regression and the real exports of EU-countries in United Kingdom (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

3.73%

2.80%

Italy

5.59%

5.00%

Belgium+Luxembourg

16.77%

8.40%

Latvia

2.24%

5.70%

Bulgaria

2.80%

2.20%

Lithuania

2.80%

5.20%

Croatia

2.80%

1.80%

Malta

3.73%

2.30%

Czech Republic

3.73%

4.90%

Netherlands

11.18%

9.70%

Denmark

3.73%

8.70%

Poland

3.73%

6.50%

Estonia

1.86%

2.50%

Portugal

3.73%

4.90%

Finland

2.24%

5.00%

Romania

2.24%

3.50%

France

11.18%

6.90%

Slovakia

2.80%

4.90%

Germany

5.59%

6.40%

Slovenia

3.73%

1.90%

Greece

3.73%

3.40%

Spain

5.59%

7.20%

Hungary

2.80%

4.20%

Sweden

2.80%

7.00%

Ireland

11.18%

14.00%

United Kingdom

-

-



Figure 24. The relationship between exports based on distances and the real exports in 2013 in Spain (in percent)

4. Conclusions

The above analysis reveals a number of interesting issues. Overall, imports of countries that have recently joined the European Union heavily dependent on factor space which shows a certain amateurism in foreign trade, sprang but also from the weak purchasing countries receivers making imports to be dependent distances, and therefore lower costs.

On the other hand, the highly developed countries of the European Union have long commercial tradition which explains, in most cases, major differences compared to the theoretical results.

Another factor, again demonstrated numerically, is still the tight dependencies between countries that belonged to the now dismantled some states (such as the former Yugoslavia or Czechoslovakia).



5. References

Bari, I.T. (2010). Tratat de economie politică globală/Treaty of global political economy. Bucharest: Editura Economică.

Ioan, C.A. & Ioan, G. (2016). The determination of spatial interdependencies in the European Union. Acta Universitatis Danubius. Œconomica, to appear.

Ioan, C.A. & Ioan G. (2012). Methods of mathematical modeling in economics. Galati: Zigotto Publishers.

Ioan, C.A. (2001). Determining the minimum effective way with Bellman-Kalaba algorithm. The Annals of Danubius University, Fascicle I, Economics.

Montalbano, P. (2009). Trade Openness and Vulnerability in Central and Eastern Europe. World Institute for Development Economics Research.

Appendix A.1

Table A.1. The matrix of the graph of edges between European Union countries ([2])

Country

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

01

0

1

1

1

1

1

1

02

0

1

1

1

1

1

03

0

1

1

04

0

1

1

05

0

1

06

1

0

1

1

1

07

0

1

1

08

0

1

1

09

1

0

1

10

1

0

1

1

1

1

1

11

1

1

1

1

1

0

1

1

1

12

1

1

0

1

13

1

1

0

1

1

1

14

0

1

15

1

1

1

0

1

1

16

1

0

1

17

1

0

1

18

1

1

1

0

19

1

0

20

1

1

0

1

21

1

1

1

0

1

22

0

1

23

1

1

0

24

1

1

1

1

0

25

1

1

1

1

0

26

1

1

0

27

1

1

0

28

1

1

1

1

0

Appendix A.2

Table A.2. The matrix of minimal distances between European Union countries ([2])

Country

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

01

0

2

3

2

3

1

2

5

4

2

1

2

1

4

1

4

3

2

2

2

2

4

2

1

1

3

3

3

02

2

0

4

4

4

2

2

5

4

1

1

3

3

2

2

4

3

1

3

1

2

3

4

3

3

2

3

1

03

3

4

0

3

2

4

5

7

7

3

4

1

2

5

2

6

5

4

3

5

4

5

1

3

3

4

6

4

04

2

4

3

0

4

3

4

6

6

3

3

3

1

5

2

5

4

4

3

4

3

5

2

2

1

4

5

4

05

3

4

2

4

0

4

5

8

7

3

4

1

4

5

2

7

6

4

3

5

5

5

3

4

3

4

6

4

06

1

2

4

3

4

0

2

4

4

2

1

3

2

4

2

3

2

2

3

2

1

4

3

1

2

3

3

3

07

2

2

5

4

5

2

0

3

2

2

1

4

3

4

3

4

3

2

4

2

2

4

4

3

3

3

1

3

08

5

5

7

6

8

4

3

0

1

5

4

7

5

7

6

1

2

5

7

5

3

7

6

4

6

6

2

6

09

4

4

7

6

7

4

2

1

0

4

3

6

5

6

5

2

3

4

6

4

4

6

6

5

5

5

1

5

10

2

1

3

3

3

2

2

5

4

0

1

2

3

2

1

4

3

1

2

2

2

2

4

3

2

1

3

1

11

1

1

4

3

4

1

1

4

3

1

0

3

2

3

2

3

2

1

3

1

1

3

3

2

2

2

2

2

12

2

3

1

3

1

3

4

7

6

2

3

0

3

4

1

6

5

3

2

4

4

4

2

3

2

3

5

3

13

1

3

2

1

4

2

3

5

5

3

2

3

0

5

2

4

3

3

3

3

2

5

1

1

1

4

4

4

14

4

2

5

5

5

4

4

7

6

2

3

4

5

0

3

6

5

3

4

2

4

4

6

5

4

3

5

1

15

1

2

2

2

2

2

3

6

5

1

2

1

2

3

0

5

4

2

1

3

3

3

3

2

1

2

4

2

16

4

4

6

5

7

3

4

1

2

4

3

6

4

6

5

0

1

4

6

4

2

6

5

3

5

5

3

5

17

3

3

5

4

6

2

3

2

3

3

2

5

3

5

4

1

0

3

5

3

1

5

4

2

4

4

4

4

18

2

1

4

4

4

2

2

5

4

1

1

3

3

3

2

4

3

0

3

2

2

3

4

3

3

2

3

2

19

2

3

3

3

3

3

4

7

6

2

3

2

3

4

1

6

5

3

0

4

4

4

4

3

2

3

5

3

20

2

1

5

4

5

2

2

5

4

2

1

4

3

2

3

4

3

2

4

0

2

4

4

3

3

3

3

1

21

2

2

4

3

5

1

2

3

4

2

1

4

2

4

3

2

1

2

4

2

0

4

3

1

3

3

3

3

22

4

3

5

5

5

4

4

7

6

2

3

4

5

4

3

6

5

3

4

4

4

0

6

5

4

1

5

3

23

2

4

1

2

3

3

4

6

6

4

3

2

1

6

3

5

4

4

4

4

3

6

0

2

2

5

5

5

24

1

3

3

2

4

1

3

4

5

3

2

3

1

5

2

3

2

3

3

3

1

5

2

0

2

4

4

4

25

1

3

3

1

3

2

3

6

5

2

2

2

1

4

1

5

4

3

2

3

3

4

2

2

0

3

4

3

26

3

2

4

4

4

3

3

6

5

1

2

3

4

3

2

5

4

2

3

3

3

1

5

4

3

0

4

2

27

3

3

6

5

6

3

1

2

1

3

2

5

4

5

4

3

4

3

5

3

3

5

5

4

4

4

0

4

28

3

1

4

4

4

3

3

6

5

1

2

3

4

1

2

5

4

2

3

1

3

3

5

4

3

2

4

0

Appendix A.3

Table A.3. The normalized matrix of strength of links between European Union countries

Country

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

01

0

0.0352

0.0235

0.0352

0.0235

0.0704

0.0352

0.0141

0.0176

0.0352

0.0704

0.0352

0.0704

0.0176

0.0704

0.0176

0.0235

0.0352

0.0352

0.0352

0.0352

0.0176

0.0352

0.0704

0.0704

0.0235

0.0235

0.0235

02

0.0389

0

0.0194

0.0194

0.0194

0.0389

0.0389

0.0155

0.0194

0.0777

0.0777

0.0259

0.0259

0.0389

0.0389

0.0194

0.0259

0.0777

0.0259

0.0777

0.0389

0.0259

0.0194

0.0259

0.0259

0.0389

0.0259

0.0777

03

0.0376

0.0282

0

0.0376

0.0564

0.0282

0.0226

0.0161

0.0161

0.0376

0.0282

0.1128

0.0564

0.0226

0.0564

0.0188

0.0226

0.0282

0.0376

0.0226

0.0282

0.0226

0.1128

0.0376

0.0376

0.0282

0.0188

0.0282

04

0.0528

0.0264

0.0352

0

0.0264

0.0352

0.0264

0.0176

0.0176

0.0352

0.0352

0.0352

0.1057

0.0211

0.0528

0.0211

0.0264

0.0264

0.0352

0.0264

0.0352

0.0211

0.0528

0.0528

0.1057

0.0264

0.0211

0.0264

05

0.0435

0.0326

0.0653

0.0326

0

0.0326

0.0261

0.0163

0.0187

0.0435

0.0326

0.1305

0.0326

0.0261

0.0653

0.0187

0.0218

0.0326

0.0435

0.0261

0.0261

0.0261

0.0435

0.0326

0.0435

0.0326

0.0218

0.0326

06

0.079

0.0395

0.0197

0.0263

0.0197

0

0.0395

0.0197

0.0197

0.0395

0.079

0.0263

0.0395

0.0197

0.0395

0.0263

0.0395

0.0395

0.0263

0.0395

0.079

0.0197

0.0263

0.079

0.0395

0.0263

0.0263

0.0263

07

0.0462

0.0462

0.0185

0.0231

0.0185

0.0462

0

0.0308

0.0462

0.0462

0.0925

0.0231

0.0308

0.0231

0.0308

0.0231

0.0308

0.0462

0.0231

0.0462

0.0462

0.0231

0.0231

0.0308

0.0308

0.0308

0.0925

0.0308

08

0.0268

0.0268

0.0192

0.0224

0.0168

0.0335

0.0447

0

0.1341

0.0268

0.0335

0.0192

0.0268

0.0192

0.0224

0.1341

0.067

0.0268

0.0192

0.0268

0.0447

0.0192

0.0224

0.0335

0.0224

0.0224

0.067

0.0224

09

0.0316

0.0316

0.0181

0.0211

0.0181

0.0316

0.0633

0.1265

0

0.0316

0.0421

0.0211

0.0253

0.0211

0.0253

0.0633

0.0421

0.0316

0.0211

0.0316

0.0316

0.0211

0.0211

0.0253

0.0253

0.0253

0.1265

0.0253

10

0.035

0.07

0.0233

0.0233

0.0233

0.035

0.035

0.014

0.0175

0

0.07

0.035

0.0233

0.035

0.07

0.0175

0.0233

0.07

0.035

0.035

0.035

0.035

0.0175

0.0233

0.035

0.07

0.0233

0.07

11

0.0649

0.0649

0.0162

0.0216

0.0162

0.0649

0.0649

0.0162

0.0216

0.0649

0

0.0216

0.0324

0.0216

0.0324

0.0216

0.0324

0.0649

0.0216

0.0649

0.0649

0.0216

0.0216

0.0324

0.0324

0.0324

0.0324

0.0324

12

0.0471

0.0313

0.0941

0.0313

0.0941

0.0313

0.0235

0.0135

0.0157

0.0471

0.0313

0

0.0313

0.0235

0.0941

0.0157

0.0188

0.0313

0.0471

0.0235

0.0235

0.0235

0.0471

0.0313

0.0471

0.0313

0.0188

0.0313

13

0.0819

0.0273

0.0409

0.0819

0.0205

0.0409

0.0273

0.0164

0.0164

0.0273

0.0409

0.0273

0

0.0164

0.0409

0.0205

0.0273

0.0273

0.0273

0.0273

0.0409

0.0164

0.0819

0.0819

0.0819

0.0205

0.0205

0.0205

14

0.0317

0.0635

0.0254

0.0254

0.0254

0.0317

0.0317

0.0182

0.0212

0.0635

0.0423

0.0317

0.0254

0

0.0423

0.0212

0.0254

0.0423

0.0317

0.0635

0.0317

0.0317

0.0212

0.0254

0.0317

0.0423

0.0254

0.127

15

0.0737

0.0369

0.0369

0.0369

0.0369

0.0369

0.0245

0.0123

0.0147

0.0737

0.0369

0.0737

0.0369

0.0245

0

0.0147

0.0184

0.0369

0.0737

0.0245

0.0245

0.0245

0.0245

0.0369

0.0737

0.0369

0.0184

0.0369

16

0.0303

0.0303

0.0202

0.0242

0.0173

0.0403

0.0303

0.1211

0.0605

0.0303

0.0403

0.0202

0.0303

0.0202

0.0242

0

0.1211

0.0303

0.0202

0.0303

0.0605

0.0202

0.0242

0.0403

0.0242

0.0242

0.0403

0.0242

17

0.0348

0.0348

0.0209

0.0261

0.0174

0.0522

0.0348

0.0522

0.0348

0.0348

0.0522

0.0209

0.0348

0.0209

0.0261

0.1044

0

0.0348

0.0209

0.0348

0.1044

0.0209

0.0261

0.0522

0.0261

0.0261

0.0261

0.0261

18

0.0427

0.0855

0.0214

0.0214

0.0214

0.0427

0.0427

0.0171

0.0214

0.0855

0.0855

0.0285

0.0285

0.0285

0.0427

0.0214

0.0285

0

0.0285

0.0427

0.0427

0.0285

0.0214

0.0285

0.0285

0.0427

0.0285

0.0427

19

0.0553

0.0368

0.0368

0.0368

0.0368

0.0368

0.0277

0.0158

0.0185

0.0553

0.0368

0.0553

0.0368

0.0277

0.1106

0.0185

0.0221

0.0368

0

0.0277

0.0277

0.0277

0.0277

0.0368

0.0553

0.0368

0.0221

0.0368

20

0.0447

0.0894

0.0179

0.0224

0.0179

0.0447

0.0447

0.0179

0.0224

0.0447

0.0894

0.0224

0.0298

0.0447

0.0298

0.0224

0.0298

0.0447

0.0224

0

0.0447

0.0224

0.0224

0.0298

0.0298

0.0298

0.0298

0.0894

21

0.0404

0.0404

0.0202

0.0269

0.0162

0.0809

0.0404

0.0269

0.0202

0.0404

0.0809

0.0202

0.0404

0.0202

0.0269

0.0404

0.0809

0.0404

0.0202

0.0404

0

0.0202

0.0269

0.0809

0.0269

0.0269

0.0269

0.0269

22

0.0335

0.0446

0.0268

0.0268

0.0268

0.0335

0.0335

0.0192

0.0224

0.067

0.0446

0.0335

0.0268

0.0335

0.0446

0.0224

0.0268

0.0446

0.0335

0.0335

0.0335

0

0.0224

0.0268

0.0335

0.1341

0.0268

0.0446

23

0.0533

0.0266

0.1066

0.0533

0.0355

0.0355

0.0266

0.0178

0.0178

0.0266

0.0355

0.0533

0.1066

0.0178

0.0355

0.0213

0.0266

0.0266

0.0266

0.0266

0.0355

0.0178

0

0.0533

0.0533

0.0213

0.0213

0.0213

24

0.0844

0.0281

0.0281

0.0422

0.0211

0.0844

0.0281

0.0211

0.0169

0.0281

0.0422

0.0281

0.0844

0.0169

0.0422

0.0281

0.0422

0.0281

0.0281

0.0281

0.0844

0.0169

0.0422

0

0.0422

0.0211

0.0211

0.0211

25

0.0829

0.0276

0.0276

0.0829

0.0276

0.0414

0.0276

0.0138

0.0166

0.0414

0.0414

0.0414

0.0829

0.0207

0.0829

0.0166

0.0207

0.0276

0.0414

0.0276

0.0276

0.0207

0.0414

0.0414

0

0.0276

0.0207

0.0276

26

0.0333

0.0499

0.025

0.025

0.025

0.0333

0.0333

0.0167

0.02

0.0999

0.0499

0.0333

0.025

0.0333

0.0499

0.02

0.025

0.0499

0.0333

0.0333

0.0333

0.0999

0.02

0.025

0.0333

0

0.025

0.0499

27

0.0372

0.0372

0.0187

0.0224

0.0187

0.0372

0.1118

0.0559

0.1118

0.0372

0.0559

0.0224

0.0279

0.0224

0.0279

0.0372

0.0279

0.0372

0.0224

0.0372

0.0372

0.0224

0.0224

0.0279

0.0279

0.0279

0

0.0279

28

0.0298

0.0894

0.0224

0.0224

0.0224

0.0298

0.0298

0.0149

0.0179

0.0894

0.0447

0.0298

0.0224

0.0894

0.0447

0.0179

0.0224

0.0447

0.0298

0.0894

0.0298

0.0298

0.0179

0.0224

0.0298

0.0447

0.0224

0



Appendix A.4

Table A.4. The exports of European Union countries (million of Euro) during 2004-2009

Country/

Year

2004

2005

2006

2007

2008

2009

Austria

94703

100468

108913

119387

123259

98214

Belgium

246563

268735

292087

314449

320805

265986

Bulgaria

7708

9156

11748

13512

15204

11699

Croatia

6218

6960

8252

9004

9585

7516

Cyprus

758

1175

1062

1017

1110

901

Czech Republic

55286

62722

75604

89382

99809

80983

Denmark

61917

68403

73716

75280

79496

67382

Estonia

4767

6201

7719

8034

8470

6487

Finland

49441

52641

61489

65688

65580

45063

France

363208

372395

394925

408327

418983

348035

Germany

730444

779989

882532

964038

983255

803012

Greece

12970

14826

17273

19392

21319

17674

Hungary

44260

50405

59936

69610

73772

59513

Ireland

84227

88137

86593

88686

85477

83114

Italy

283494

299574

332013

364744

369016

291733

Latvia

3223

4148

4902

6062

6897

5522

Lithuania

7473

9489

11263

12509

16077

11797

Luxembourg

13060

15366

18337

16734

17470

15299

Malta

2023

1928

2226

2508

2367

2049

Netherlands

287110

326555

369249

401901

433722

356962

Poland

60216

71889

88229

102259

115895

97865

Portugal

28768

31137

35640

38294

38847

31697

Romania

18753

22172

25850

29543

33679

29085

Slovak Republic

22212

25583

33340

42696

48370

40208

Slovenia

12671

15270

18501

21980

23204

18695

Spain

146728

154815

170211

184821

191388

162990

Sweden

98950

105266

117707

123179

124645

93763

United Kingdom

279266

314136

359117

322387

321028

254704

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002

Table A.5. The exports of European Union countries (million of Euro)

during 2010-2015

Country/

Year

2010

2011

2012

2013

2014

2015

Austria

115079

127462

129679

131885

134173

137755

Belgium

307530

341718

347089

352956

355528

359565

Bulgaria

15561

20265

20770

22272

22044

23161

Croatia

8905

9582

9629

9531

10431

11671

Cyprus

1058

1306

1354

1520

1364

1648

Czech Republic

100311

117054

122230

122185

131799

142822

Denmark

72747

80362

82090

82905

83468

85864

Estonia

8743

12003

12521

12289

12083

11627

Finland

52439

56855

56878

56048

55973

53900

France

395087

428501

442643

437439

436937

455990

Germany

949629

1058897

1090530

1088071

1125034

1198306

Greece

21140

24295

27585

27559

27221

25793

Hungary

72024

80684

80612

80945

83266

88934

Ireland

87875

90330

90888

87822

91792

110479

Italy

337407

375904

390182

390233

398870

413881

Latvia

7191

9433

10983

10893

10957

10865

Lithuania

15651

20151

23047

24545

24361

22984

Luxembourg

14180

14990

14659

13888

14485

15556

Malta

2705

3151

3308

2738

2206

2325

Netherlands

433173

479239

510098

505651

506339

511333

Poland

120483

135558

144282

154344

165715

178671

Portugal

37268

42828

45213

47303

48105

49858

Romania

37398

45284

45019

49571

52493

54609

Slovak Republic

48777

57349

62742

64566

65081

67998

Slovenia

22027

24915

25033

25615

27075

28820

Spain

191912

220223

229802

239314

244287

255441

Sweden

119597

134313

134141

126157

123921

126338

United Kingdom

313766

363915

367989

407060

380282

414761

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002



Appendix A.5

Table A.6. The imports of European Union countries (million of Euro) during 2004-2009

Country/

Year

2004

2005

2006

2007

2008

2009

Austria

96256

102283

109280

118962

125301

102569

Belgium

229574

256153

280053

300298

317043

254367

Bulgaria

11577

12473

15424

21862

25094

16876

Croatia

13241

14900

17105

18833

20817

15218

Cyprus

4420

5073

5518

6286

7237

5617

Czech Republic

56216

61483

74220

86224

96572

75314

Denmark

54787

60749

68100

71526

74356

59602

Estonia

6702

8229

10711

11439

10896

7270

Finland

41353

47234

55253

59616

62402

43655

France

378506

405164

431602

460315

487350

404098

Germany

575090

624465

722112

769779

805730

664143

Greece

44998

46382

52847

60130

64857

52087

Hungary

48580

53446

62331

69730

74069

55750

Ireland

49692

55112

58233

61162

57088

44955

Italy

285064

309032

352465

373340

382050

297609

Latvia

5701

6990

9191

11180

10975

7034

Lithuania

9957

12494

15429

17813

21144

13123

Luxembourg

16115

18170

21611

20452

21864

18160

Malta

2926

2988

3430

3503

3604

3210

Netherlands

256944

292415

331979

359443

394980

317718

Poland

72087

81697

101138

120912

141966

107155

Portugal

44173

51372

56295

59927

64194

51379

Romania

26235

32538

40746

51305

57148

38948

Slovak Republic

23988

27837

35828

44229

50253

39898

Slovenia

14159

16273

19227

23038

25180

19053

Spain

207656

232109

261784

284058

286105

210222

Sweden

80723

89781

101583

111803

114565

85945

United Kingdom

378293

417359

487951

465715

447228

372581

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002

Table A.7. The imports of European Union countries (million of Euro) during 2010-2015

Country/

Year

2010

2011

2012

2013

2014

2015

Austria

119943

137513

138942

138000

137001

140132

Belgium

295072

335447

341787

340093

342215

338750

Bulgaria

19245

23407

25460

25829

26118

26408

Croatia

15137

16281

16214

16581

17154

18558

Cyprus

6464

6234

5678

4754

5089

5016

Czech Republic

95536

109285

110066

108621

116203

126805

Denmark

62648

68724

71548

72728

74783

76957

Estonia

9268

12543

14077

13899

13775

13074

Finland

51899

60535

59517

58407

57769

54251

France

460941

517262

524918

513114

509299

515938

Germany

795666

901487

898857

889416

908575

946454

Greece

50741

48474

49291

46808

48004

43639

Hungary

66514

73592

74078

75379

78978

83487

Ireland

45467

47849

48855

54314

60721

66530

Italy

367390

401428

380292

361002

356939

368715

Latvia

8819

11703

13409

13451

13285

12900

Lithuania

17653

22826

24879

26208

25889

25397

Luxembourg

18713

20733

21437

20266

20099

20878

Malta

3818

4520

5135

4625

5132

5220

Netherlands

386834

426987

456824

444015

443689

456370

Poland

134306

151291

154934

156319

168366

174990

Portugal

58647

59551

56374

57013

58976

60162

Romania

46850

54943

54644

55328

58555

62976

Slovak Republic

49050

57358

60241

61543

61689

66289

Slovenia

22720

25525

24934

25129

25551

26789

Spain

246674

270550

262561

256455

270173

281298

Sweden

112352

127174

127985

120931

122132

124467

United Kingdom

445291

487905

541112

496977

519733

564190

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002



Appendix A.6

Table A.8. The imports of European Union countries (million of Euro) as functions of the exports of the others during 2004-2006

Country

2004 real

2004 computed

2005 real

2005 computed

2006 real

2006 computed

Austria

96256.00

134274.34

102283.00

145144.30

109280.00

163308.32

Belgium

229574.00

168280.37

256153.00

181965.09

280053.00

203640.76

Bulgaria

11577.00

97539.61

12473.00

105496.59

15424.00

117953.41

Croatia

13241.00

104536.66

14900.00

113249.71

17105.00

127103.55

Cyprus

4420.00

109430.71

5073.00

118065.42

5518.00

131799.06

Czech Republic

56216.00

142231.31

61483.00

153721.18

74220.00

172523.57

Denmark

54787.00

159185.12

60749.00

171662.41

68100.00

192578.86

Estonia

6702.00

94182.42

8229.00

102068.89

10711.00

114758.79

Finland

41353.00

107039.52

47234.00

115847.36

55253.00

129609.59

France

378506.00

149152.16

405164.00

161945.60

431602.00

181850.19

Germany

575090.00

110371.47

624465.00

120132.94

722112.00

133499.08

Greece

44998.00

114109.28

46382.00

122738.43

52847.00

136750.83

Hungary

48580.00

99897.71

53446.00

108217.10

62331.00

121529.75

Ireland

49692.00

158847.80

55112.00

172900.92

58233.00

193624.52

Italy

285064.00

109119.50

309032.00

117461.56

352465.00

130580.83

Latvia

5701.00

99156.86

6990.00

107724.98

9191.00

121202.89

Lithuania

9957.00

114355.48

12494.00

124279.42

15429.00

140010.25

Luxembourg

16115.00

179623.09

18170.00

193138.27

21611.00

214993.46

Malta

2926.00

133613.97

2988.00

143637.64

3430.00

159947.50

Netherlands

256944.00

166365.41

292415.00

179651.26

331979.00

200940.53

Poland

72087.00

137614.28

81697.00

148635.53

101138.00

166851.64

Portugal

44173.00

142468.25

51372.00

153135.77

56295.00

170200.75

Romania

26235.00

93921.66

32538.00

101949.70

40746.00

114738.17

Slovak Republic

23988.00

108144.62

27837.00

117494.07

35828.00

132253.33

Slovenia

14159.00

121353.61

16273.00

130722.12

19227.00

146080.18

Spain

207656.00

145190.29

232109.00

155900.29

261784.00

173067.89

Sweden

80723.00

121133.34

89781.00

131094.94

101583.00

146826.96

United Kingdom

378293.00

155518.68

417359.00

167345.76

487951.00

184624.67

Table A.9. The imports of European Union countries (million of Euro) as functions of the exports of the others during 2007-2009

Country

2007 real

2007 computed

2008 real

2008 computed

2009 real

2009 computed

Austria

118962.00

176907.67

125301.00

182930.94

102569.00

149219.17

Belgium

300298.00

215163.02

317043.00

222080.13

254367.00

181641.42

Bulgaria

21862.00

126567.68

25094.00

131005.61

16876.00

107036.55

Croatia

18833.00

137148.87

20817.00

142058.14

15218.00

115848.48

Cyprus

6286.00

141032.66

7237.00

145597.14

5617.00

118779.95

Czech Republic

86224.00

186189.03

96572.00

192543.30

75314.00

157406.40

Denmark

71526.00

207068.28

74356.00

213454.28

59602.00

173774.68

Estonia

11439.00

123046.13

10896.00

127368.57

7270.00

102815.36

Finland

59616.00

138432.60

62402.00

143034.45

43655.00

116305.01

France

460315.00

193481.21

487350.00

198730.65

404098.00

162209.70

Germany

769779.00

142111.11

805730.00

148378.11

664143.00

121704.74

Greece

60130.00

146487.20

64857.00

150842.99

52087.00

122742.87

Hungary

69730.00

131484.30

74069.00

136498.92

55750.00

111404.33

Ireland

61162.00

201134.69

57088.00

207046.45

44955.00

168527.84

Italy

373340.00

138628.06

382050.00

143280.52

297609.00

117638.95

Latvia

11180.00

130242.39

10975.00

135292.63

7034.00

110066.30

Lithuania

17813.00

151113.59

21144.00

157097.81

13123.00

128578.65

Luxembourg

20452.00

229857.47

21864.00

236687.49

18160.00

193862.77

Malta

3503.00

171267.85

3604.00

176259.09

3210.00

143440.19

Netherlands

359443.00

211995.73

394980.00

216980.09

317718.00

177363.49

Poland

120912.00

179959.47

141966.00

186118.49

107155.00

152032.23

Portugal

59927.00

181101.41

64194.00

186714.92

51379.00

153424.26

Romania

51305.00

124088.28

57148.00

128751.78

38948.00

104921.34

Slovak Republic

44229.00

143385.23

50253.00

149224.56

39898.00

121732.08

Slovenia

23038.00

157337.52

25180.00

162381.38

19053.00

132118.07

Spain

284058.00

183146.81

286105.00

188383.85

210222.00

154049.35

Sweden

111803.00

157248.38

114565.00

162512.64

85945.00

132519.16

United Kingdom

465715.00

198856.54

447228.00

205855.63

372581.00

170066.39

Table A.10. The imports of European Union countries (million of Euro) as functions of the exports of the others during 2010-2012

Country

2010 real

2010 computed

2011 real

2011 computed

2012 real

2012 computed

Austria

119943.00

176301.76

137513.00

197272.02

138942.00

203979.11

Belgium

295072.00

214825.56

335447.00

239858.73

341787.00

248155.45

Bulgaria

19245.00

126358.33

23407.00

141589.04

25460.00

146278.39

Croatia

15137.00

136908.53

16281.00

153319.18

16214.00

158237.62

Cyprus

6464.00

139953.11

6234.00

156656.90

5678.00

162000.26

Czech Republic

95536.00

185918.34

109285.00

207610.16

110066.00

214684.39

Denmark

62648.00

206074.27

68724.00

230148.30

71548.00

237437.56

Estonia

9268.00

121928.77

12543.00

136457.66

14077.00

140887.27

Finland

51899.00

138251.06

60535.00

154936.31

59517.00

159716.34

France

460941.00

191839.00

517262.00

215338.68

524918.00

222024.95

Germany

795666.00

143395.27

901487.00

159964.35

898857.00

165724.24

Greece

50741.00

144347.37

48474.00

161491.27

49291.00

166685.95

Hungary

66514.00

131824.11

73592.00

147788.28

74078.00

152822.99

Ireland

45467.00

200087.12

47849.00

224617.18

48855.00

231677.47

Italy

367390.00

138454.59

401428.00

154553.68

380292.00

159445.94

Latvia

8819.00

130629.93

11703.00

146544.07

13409.00

151627.72

Lithuania

17653.00

152392.09

22826.00

170611.14

24879.00

176657.57

Luxembourg

18713.00

228154.77

20733.00

254390.36

21437.00

262500.10

Malta

3818.00

168470.98

4520.00

188193.60

5135.00

194442.21

Netherlands

386834.00

209184.44

426987.00

234304.69

456824.00

240551.39

Poland

134306.00

179769.32

151291.00

201255.02

154934.00

208042.68

Portugal

58647.00

180518.30

59551.00

202036.13

56374.00

208762.94

Romania

46850.00

124211.70

54943.00

139186.32

54644.00

143787.68

Slovak Republic

49050.00

144352.39

57358.00

161699.97

60241.00

167065.44

Slovenia

22720.00

155682.97

25525.00

173990.57

24934.00

179642.25

Spain

246674.00

180736.99

270550.00

201207.35

262561.00

207614.22

Sweden

112352.00

155738.58

127174.00

173854.84

127985.00

179526.99

United Kingdom

445291.00

198967.23

487905.00

220410.04

541112.00

228362.66

Table A.11. The imports of European Union countries (million of Euro) as functions of the exports of the others during 2013-2015

Country

2013 real

2013 computed

2014 real

2014 computed

2015 real

2015 computed

Austria

138000.00

205349.42

137001.00

209683.58

140132.00

220485.61

Belgium

340093.00

250989.30

342215.00

253562.71

338750.00

267145.90

Bulgaria

25829.00

148260.27

26118.00

150511.44

26408.00

157623.03

Croatia

16581.00

160060.43

17154.00

162783.82

18558.00

170843.60

Cyprus

4754.00

163881.80

5089.00

166062.30

5016.00

173848.59

Czech Republic

108621.00

216712.55

116203.00

220918.33

126805.00

232016.96

Denmark

72728.00

238504.13

74783.00

242830.66

76957.00

255029.18

Estonia

13899.00

141942.38

13775.00

143994.51

13074.00

150277.17

Finland

58407.00

160315.50

57769.00

162367.68

54251.00

169876.07

France

513114.00

225875.98

509299.00

228879.24

515938.00

240843.43

Germany

889416.00

167794.77

908575.00

169350.65

946454.00

175974.53

Greece

46808.00

168576.34

48004.00

170970.21

43639.00

179240.17

Hungary

75379.00

154661.07

78978.00

157694.35

83487.00

165352.31

Ireland

54314.00

237148.90

60721.00

236969.08

66530.00

248703.99

Italy

361002.00

161359.26

356939.00

163139.61

368715.00

171269.81

Latvia

13451.00

153254.29

13285.00

155837.21

12900.00

163126.93

Lithuania

26208.00

178774.20

25889.00

182519.48

25397.00

191946.03

Luxembourg

20266.00

264745.82

20099.00

268802.53

20878.00

282040.33

Malta

4625.00

196446.34

5132.00

199219.80

5220.00

208695.82

Netherlands

444015.00

244839.33

443689.00

247761.74

456370.00

262001.60

Poland

156319.00

209263.92

168366.00

213198.20

174990.00

223979.93

Portugal

57013.00

211739.86

58976.00

214414.45

60162.00

225020.11

Romania

55328.00

145250.28

58555.00

147743.20

62976.00

155037.36

Slovak Republic

61543.00

169041.84

61689.00

172986.95

66289.00

181873.40

Slovenia

25129.00

181301.13

25551.00

184356.69

26789.00

193306.57

Spain

256455.00

209570.21

270173.00

211744.11

281298.00

222302.06

Sweden

120931.00

181227.64

122132.00

184243.03

124467.00

192927.63

United Kingdom

496977.00

228483.51

519733.00

232194.00

414761.00

242093.07

Appendix A.7

Table A.12. The regression analysis of the real imports of Austria in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.984434543






R Square

0.969111369






Adjusted R Square

0.966022506






Standard Error

3019.820038






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2861127147

2861127147

313.743714

7.01067E-09


Residual

10

91193130.6

9119313.06




Total

11

2952320278

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

18112.54238

5939.687936

3.04940976

0.01226406

4878.092921

31346.9918

X Variable 1

0.576865784

0.032567713

17.7128121

7.0107E-09

0.504300397

0.64943117

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.078798

Observation

Predicted Y

Residuals





1

95570.81475

685.1852481





2

101841.3227

441.6772541





3

112319.5244

-3039.524378





4

120164.5241

-1202.524073





5

123639.1424

1661.857558





6

104191.9758

-1622.975822





7

119814.9953

128.0046736





8

131912.0208

5600.979205





9

135781.1115

3160.888476





10

136571.5965

1428.403524





11

139071.8251

-2070.825081





12

145303.1466

-5171.146583























Appendix A.8

Table A.13. The regression analysis of the real imports of Belgium in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.976537421






R Square

0.953625335






Adjusted R Square

0.948987869






Standard Error

9006.561858






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

16680730715

16680730715

205.6349828

5.38357E-08


Residual

10

811181565

81118156.5




Total

11

17491912280

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 91.0%

Upper 91.0%

Intercept

35798.97447

18784.18168

1.905804314

0.085796996

545.303395

71052.64555

X Variable 1

1.209252484

0.084327357

14.33997848

5.38357E-08

1.05098906

1.367515907

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.1645678

Observation

Predicted Y

Residuals





1

239292.4299

-9718.429862





2

255840.7115

312.2884885





3

282052.0693

-1999.069296





4

295985.3908

4312.609181





5

304349.9233

12693.07673





6

255449.3128

-1082.31276





7

295577.3165

-505.3164761





8

325848.7395

9598.260525





9

335881.5687

5905.431258





10

339308.4089

784.5911073





11

342420.3113

-205.3113269





12

358845.8176

-20095.81757







Appendix A.9

Table A.14. The regression analysis of the real imports of Luxembourg in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.704218547






R Square

0.495923762






Adjusted R Square

0.445516138






Standard Error

1290.21588






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

16377343.49

16377343.49

9.838268979

0.010571103


Residual

10

16646570.17

1664657.017




Total

11

33023913.67

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

11351.04349

2742.928742

4.138293247

0.002017319

5239.417391

17462.66959

X Variable 1

0.036416123

0.011610057

3.136601502

0.010571103

0.010547303

0.062284943

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.310979289

Observation

Predicted Y

Residuals





1

17892.22008

-1777.220077





2

18384.39054

-214.3905378





3

19180.27183

2430.728169





4

19721.56145

730.4385486





5

19970.2843

1893.715698





6

18410.77402

-250.7740191





7

19659.55572

-946.5557183





8

20614.9542

118.0458021





9

20910.27949

526.7205106





10

20992.05991

-726.0599057





11

21139.78956

-1040.789557





12

21621.85891

-743.8589138





Appendix A.10

Table A.15. The regression analysis of the real imports of Bulgaria in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.943277059






R Square

0.88977161






Adjusted R Square

0.878748771






Standard Error

1919.381011






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

297377064.3

297377064.3

80.72073019

4.20279E-06


Residual

10

36840234.67

3684023.467




Total

11

334217298.9

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-13417.99393

3850.251515

-3.484965561

0.005872231

-21996.88892

-4839.098939

X Variable 1

0.263965853

0.029380231

8.984471614

4.20279E-06

0.198502619

0.329429088

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.018084921

Observation

Predicted Y

Residuals





1

12329.13246

-752.1324629





2

14429.50348

-1956.503479





3

17717.6786

-2293.678601





4

19991.55173

1870.448268





5

21163.01371

3930.986288





6

14836.00033

2039.999666





7

19936.29048

-691.2904811





8

23956.67784

-549.6778438





9

25194.50612

265.4938816





10

25717.65476

111.3452361





11

26311.88677

-193.886774





12

28189.1037

-1781.103697







Appendix A.11

Table A.16. The regression analysis of the real imports of Croatia in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.536778481






R Square

0.288131137






Adjusted R Square

0.216944251






Standard Error

1801.31873






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

13133223.23

13133223.23

4.047531119

0.071952578


Residual

10

32447491.68

3244749.168




Total

11

45580714.92

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 92.0%

Upper 92.0%

Intercept

9575.555906

3564.424956

2.686423764

0.022839479

2631.701543

16519.41027

X Variable 1

0.050610784

0.02515637

2.011847688

0.071952578

0.001603674

0.099617895

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.90205392

Observation

Predicted Y

Residuals





1

14866.23827

-1625.23827





2

15307.21257

-407.2125655





3

16008.36628

1096.633725





4

16516.7678

2316.2322





5

16765.22981

4051.770194





6

15438.73835

-220.7383537





7

16504.604

-1367.604004





8

17335.15987

-1054.159874





9

17584.08598

-1370.085981





10

17676.33982

-1095.339824





11

17814.17273

-660.1727287





12

18222.08452

335.9154832





Appendix A.12

Table A.17. The regression analysis of the real imports of Cyprus in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.084453965






R Square

0.007132472






Adjusted R Square

-0.092154281






Standard Error

851.1760671






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

52046.02816

52046.02816

0.071837099

0.794127937


Residual

10

7245006.972

724500.6972




Total

11

7297053

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 20.0%

Upper 20.0%

Intercept

5148.213658

1760.676501

2.923997484

0.015196114

4690.112343

5606.314973

X Variable 1

0.00324672

0.012113523

0.268024437

0.794127937

9.49653E-05

0.006398475

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.87224119

Observation

Predicted Y

Residuals





1

5503.504554

-1083.504554





2

5531.539042

-458.5390418





3

5576.128328

-58.12832824





4

5606.107244

679.8927561





5

5620.926833

1616.073167





6

5533.858921

83.14107918





7

5602.602247

861.3977529





8

5656.834779

577.1652205





9

5674.183174

3.816825671





10

5680.292008

-926.2920083





11

5687.371482

-598.3714816





12

5712.651387

-696.6513867









Appendix A.13

Table A.18. The regression analysis of the real imports of Czech Republic in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.972156908






R Square

0.945089055






Adjusted R Square

0.93959796






Standard Error

5524.728906






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

5253343006

5253343006

172.113055

1.2577E-07


Residual

10

305226294.8

30522629.48




Total

11

5558569301

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-59893.965

11766.2755

-5.09030789

0.000470641

-86110.86058

-33677.06942

X Variable 1

0.837836299

0.063863434

13.11918652

1.2577E-07

0.695539701

0.980132897

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.969896117

Observation

Predicted Y

Residuals





1

53062.99921

3153.000794





2

64121.15647

-2638.156468





3

81383.64234

-7163.642337





4

91803.25942

-5579.259421





5

99855.17626

-3283.176257





6

68330.97387

6983.026127





7

92694.06373

2841.936269





8

111297.0039

-2012.003896





9

113654.5579

-3588.557945





10

110495.8062

-1874.806178





11

113572.207

2630.792985





12

116274.1537

10530.84632





Appendix A.14

Table A.19. The regression analysis of the real imports of Denmark in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.893458341






R Square

0.798267807






Adjusted R Square

0.778094588






Standard Error

3303.144877






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

431746325.9

431746325.9

39.57067017

9.01837E-05


Residual

10

109107660.8

10910766.08




Total

11

540853986.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

25877.46319

6770.404189

3.822144508

0.003361751

10792.06257

40962.86381

X Variable 1

0.200169675

0.031820836

6.290522249

9.01837E-05

0.129268435

0.271070915

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.812480069

Observation

Predicted Y

Residuals





1

57741.49693

-2954.496934





2

60239.07202

509.9279817





3

64425.91102

3674.088982





4

67326.25351

4199.746489





5

68604.53706

5751.462945





6

60661.88442

-1059.884418





7

67127.28285

-4479.282852





8

71946.17361

-3222.173614





9

73405.26242

-1857.262419





10

73618.75739

-890.7573896





11

74484.79749

298.2025063





12

76926.57128

30.42872192







Table A.20. The regression analysis of the real imports of Denmark, after eliminating the autoregression, in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.857868942






R Square

0.735939122






Adjusted R Square

0.706599024






Standard Error

2637.901525






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

174541013.6

174541013.6

25.08304953

0.000730649


Residual

9

62626720.11

6958524.457




Total

10

237167733.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 88.0%

Upper 88.0%

Intercept

7957.141817

4526.129266

1.758045639

0.11260838

183.1573702

15731.12626

X Variable 1

0.233546747

0.046631958

5.008298067

0.000730649

0.153452676

0.313640818

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.91299833

Observation

Predicted Y

Residuals





1

26496.50567

2492.131632





2

29692.19303

3191.236004





3

30244.30329

1803.705594





4

29774.03207

3117.903427





5

19642.39965

-3145.032655





6

32558.02508

-4461.673054





7

33807.44365

-1400.876654





8

32250.47996

-542.2077355





9

31512.69198

-261.510023





10

32378.73768

243.3909785





11

34641.89997

-1037.067514







Appendix A.15

Table A.21. The regression analysis of the real imports of Estonia in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.950165109






R Square

0.902813735






Adjusted R Square

0.893095108






Standard Error

857.191011






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

68257201.96

68257201.96

92.8951981

2.22587E-06


Residual

10

7347764.293

734776.4293




Total

11

75604966.25

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-5844.295155

1764.086636

-3.312929781

0.007840452

-9774.925127

-1913.665182

X Variable 1

0.134700794

0.013975699

9.638215504

2.22587E-06

0.103560997

0.165840591

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.0801031

Observation

Predicted Y

Residuals





1

6842.151616

-140.1516158





2

7904.465388

324.5346121





3

9613.804996

1097.195004





4

10730.11628

708.8837247





5

11312.35238

-416.352376





6

8005.01549

-735.0154898





7

10579.607

-1311.606996





8

12536.66002

6.339982727





9

13133.332

943.6679979





10

13275.45616

623.543843





11

13551.8797

223.1203022





12

14398.15899

-1324.158989







Appendix A.16

Table A.22. The regression analysis of the real imports of Finland in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.768516905






R Square

0.590618234






Adjusted R Square

0.549680057






Standard Error

4642.330099






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

310921240.7

310921240.7

14.42707719

0.00349553


Residual

10

215512287.5

21551228.75




Total

11

526433528.3

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 91.0%

Upper 91.0%

Intercept

18173.07584

9611.610538

1.890742011

0.087954402

134.2513546

36211.90033

X Variable 1

0.255827112

0.067353069

3.79829925

0.00349553

0.129420597

0.382233627

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.140441508

Observation

Predicted Y

Residuals





1

45556.68712

-4203.687118





2

47809.97139

-575.9713891





3

51330.72295

3922.277055





4

53587.88811

6028.111887





5

54765.16611

7636.833891





6

47927.05067

-4272.050667





7

53541.44526

-1642.445259





8

57809.98458

2725.015419





9

59032.84585

484.1541488





10

59186.12722

-779.1272237





11

59711.13051

-1942.130507





12

61631.98024

-7380.980236







Appendix A.17

Table A.23. The regression analysis of the real imports of France in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.967817933






R Square

0.936671552






Adjusted R Square

0.930338707






Standard Error

13679.70087






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

27678444842

27678444842

147.9069165

2.57562E-07


Residual

10

1871342159

187134215.9




Total

11

29549787001

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

133956.0736

27698.48771

4.836223371

0.00068536

72239.997

195672.1502

X Variable 1

1.686655166

0.13868582

12.16169875

2.57562E-07

1.377643901

1.99566643

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.012440681

Observation

Predicted Y

Residuals





1

385524.3347

-7018.334738





2

407102.4564

-1938.456399





3

440674.6359

-9072.635942





4

460292.1559

22.84409356





5

469146.151

18203.849





6

407547.902

-3449.902029





7

457522.3139

3418.686073





8

497158.1706

20103.82941





9

508435.6024

16482.39758





10

514930.9621

-1816.962066





11

519996.4261

-10697.42606





12

540175.8889

-24237.88892







Appendix A.18





Table A.24. The regression analysis of the real imports of Germany in function of exports of the other EU countries (million of Euro)



















SUMMARY OUTPUT






Regression Statistics






Multiple R

0.990771488






R Square

0.981628142






Adjusted R Square

0.979790956






Standard Error

17536.24845






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

1.64311E+11

1.64311E+11

534.3107566

5.1906E-10


Residual

10

3075200096

307520009.6




Total

11

1.67386E+11

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 59.0%

Upper 59.0%

Intercept

-30938.86458

35951.85188

-0.860563864

0.409636602

-61852.86799

-24.86116572

X Variable 1

5.614782359

0.242904728

23.11516292

5.1906E-10

5.4059153

5.823649419

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.859251646

Observation

Predicted Y

Residuals





1

588772.9181

-13682.91813





2

643581.4477

-19116.44769





3

718629.4148

3482.585233





4

766984.0889

2794.911112





5

802171.9299

3558.070068





6

652406.7626

11736.2374





7

774194.3678

21471.6322





8

867226.1459

34260.85411





9

899566.6747

-709.6746559





10

911192.25

-21776.24997





11

919928.1776

-11353.17755





12

957119.8221

-10665.82212







Appendix A.19

Table A.24. The regression analysis of the real imports of Greece in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.102395208






R Square

0.010484779






Adjusted R Square

-0.088466744






Standard Error

6494.473544






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

4469147.475

4469147.475

0.105958739

0.751501439


Residual

10

421781866.2

42178186.62




Total

11

426251013.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 24.0%

Upper 24.0%

Intercept

55123.63841

13754.46566

4.007690287

0.002487297

50805.23017

59442.04665

X Variable 1

-0.029818583

0.09160488

-0.32551304

0.751501439

-0.058579225

-0.001057941

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.818344406

Observation

Predicted Y

Residuals





1

51721.06138

-6723.061382





2

51463.75236

-5081.752357





3

51045.92245

1801.077554





4

50755.59769

9374.40231





5

50625.7142

14231.2858





6

51463.61996

623.380037





7

50819.40439

-78.40438784





8

50308.19758

-1834.197584





9

50153.29959

-862.2995874





10

50096.93084

-3288.930836





11

50025.54903

-2021.549025





12

49778.95054

-6139.950537





Appendix A.20



Table A.25. The regression analysis of the real imports of Hungary in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.975993593






R Square

0.952563493






Adjusted R Square

0.947819842






Standard Error

2479.675346






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

1234726815

1234726815

200.8081021

6.03157E-08


Residual

10

61487898.24

6148789.824




Total

11

1296214713

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 16.0%

Upper 16.0%

Intercept

1051.909516

4777.947433

0.22015929

0.830176567

61.84283104

2041.976202

X Variable 1

0.496123629

0.035010579

14.17067755

6.03157E-08

0.48886888

0.503378378

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.973656826

Observation

Predicted Y

Residuals





1

50613.52391

-2033.52391





2

54740.96987

-1294.969866





3

61345.69009

985.3099069





4

66284.37756

3445.622438





5

68772.24903

5296.750966





6

56322.22998

-572.2299796





7

66452.96533

61.03466758





8

74373.16728

-781.1672835





9

76871.00588

-2793.005879





10

77782.9208

-2403.920798





11

79287.80268

-309.802679





12

83087.09758

399.9024166







Appendix A.21

Table A.26. The regression analysis of the real imports of Ireland in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.435345178






R Square

0.189525424






Adjusted R Square

0.108477967






Standard Error

6488.265024






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

98443091.49

98443091.49

2.338449964

0.157209809


Residual

10

420975830.2

42097583.02




Total

11

519418921.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 84.0%

Upper 84.0%

Intercept

33320.92027

13758.69154

2.421808802

0.035950252

12436.63

54205.21053

X Variable 1

0.100805373

0.065920371

1.529199125

0.157209809

0.000744975

0.200865771

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.48855042

Observation

Predicted Y

Residuals





1

49333.632

358.3679991





2

50750.262

4361.737995





3

52839.31223

5393.687766





4

53596.37772

7565.622278





5

54192.31489

2895.685106





6

50309.43204

-5354.432044





7

53490.77704

-8023.777037





8

55963.53889

-8114.538886





9

56675.25405

-7820.254054





10

57226.8036

-2912.803596





11

57208.67677

3512.323226





12

58391.61875

8138.381246





Appendix A.22







Table A.27. The regression analysis of the real imports of Italy in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.782078665






R Square

0.611647039






Adjusted R Square

0.572811743






Standard Error

23728.52009






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

8867793310

8867793310

15.74977146

0.002649341


Residual

10

5630426658

563042665.8




Total

11

14498219968

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

155094.5257

50322.08011

3.082037257

0.011600318

42969.94394

267219.1076

X Variable 1

1.392543081

0.35089042

3.968598174

0.002649341

0.610710503

2.174375658

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.130386862

Observation

Predicted Y

Residuals





1

307048.1304

-21984.13042





2

318664.8084

-9632.808351





3

336933.957

15531.04299





4

348140.0715

25199.92853





5

354618.8224

27431.17755





6

318911.8316

-21302.83157





7

347898.507

19491.49298





8

370317.1834

31110.8166





9

377129.8662

3162.13379





10

379794.2467

-18792.24674





11

382273.4608

-25334.46081





12

393595.1146

-24880.11456





Appendix A.23

Table A.28. The regression analysis of the real imports of Latvia in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.964324436






R Square

0.929921617






Adjusted R Square

0.922913779






Standard Error

769.8415789






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

78643892.43

78643892.43

132.6973572

4.28652E-07


Residual

10

5926560.566

592656.0566




Total

11

84570453

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-6674.882369

1497.675551

-4.456828025

0.001222129

-10011.91145

-3337.853285

X Variable 1

0.127585092

0.011075639

11.51943389

4.28652E-07

0.10290703

0.152263154

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.141337721

Observation

Predicted Y

Residuals





1

5976.054753

-275.0547531





2

7069.219133

-79.21913303





3

8788.799523

402.2004774





4

9942.104963

1237.895037





5

10586.4403

388.5597009





6

7367.936661

-333.936661





7

9991.54929

-1172.54929





8

12021.95631

-318.9563085





9

12670.55426

738.4457378





10

12878.08035

572.9196544





11

13207.62243

77.37756813





12

14137.68203

-1237.68203





Appendix A.24

















Table A.29. The regression analysis of the real imports of Lithuania in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.983945782






R Square

0.968149302






Adjusted R Square

0.964964232






Standard Error

1080.90361






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

355138141.9

355138141.9

303.9648625

8.17599E-09


Residual

10

11683526.15

1168352.615




Total

11

366821668

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-15820.96621

2044.18992

-7.739479613

1.57173E-05

-20375.70519

-11266.22723

X Variable 1

0.226224651

0.012975624

17.43458811

8.17599E-09

0.19731316

0.255136142

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.552895926

Observation

Predicted Y

Residuals





1

10049.06238

-92.06237751





2

12294.10224

199.8977563





3

15852.80378

-423.8037755





4

18364.653

-551.6529955





5

19718.43108

1425.568922





6

13266.69405

-143.6940514





7

18653.88121

-1000.881212





8

22775.47945

50.52055412





9

24143.33096

735.6690356





10

24622.16485

1585.835152





11

25469.43951

419.5604898





12

27601.9575

-2204.957497







Appendix A.25























Table A.30. The regression analysis of the real imports of Malta in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.948557034






R Square

0.899760446






Adjusted R Square

0.889736491






Standard Error

288.1224599






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

7451470.731

7451470.731

89.7610185

2.60181E-06


Residual

10

830145.5189

83014.55189




Total

11

8281616.25

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-1786.180846

617.3334283

-2.893381054

0.01601414

-3161.685442

-410.6762495

X Variable 1

0.033376849

0.003522909

9.474229179

2.6018E-06

0.025527318

0.04122638

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.746023383

Observation

Predicted Y

Residuals





1

2673.432437

252.5675629





2

3007.990956

-19.99095574





3

3552.362688

-122.3626879





4

3930.200299

-427.200299





5

4096.792162

-492.7921621





6

3001.400697

208.5993031





7

3836.849592

-18.84959169





8

4495.128499

24.87150139





9

4703.68741

431.3125898





10

4770.578954

-145.5789543





11

4863.14831

268.8516905





12

5179.427997

40.57200309





Appendix A.26

Table A.31. The regression analysis of the real imports of Netherlands in function of exports of the other EU countries (million of Euro)



SUMMARY OUTPUT






Regression Statistics






Multiple R

0.970946929






R Square

0.942737939






Adjusted R Square

0.937011733






Standard Error

17219.81974






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

48818138004

48818138004

164.635698

1.55262E-07


Residual

10

2965221918

296522191.8




Total

11

51783359922

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-85890.2647

36701.05671

-2.340266804

0.041320763

-167665.3151

-4115.214327

X Variable 1

2.160112435

0.168350477

12.83104431

1.55262E-07

1.785004195

2.535220674

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.710585387

Observation

Predicted Y

Residuals





1

273477.7262

-16533.72617





2

302176.656

-9761.655965





3

348163.8728

-16184.87282





4

372044.3478

-12601.34781





5

382811.1258

12168.87417





6

297234.8155

20483.18446





7

365971.6453

20862.35468





8

420234.2097

6752.790283





9

433727.7841

23096.21594





10

442990.2166

1024.783422





11

449302.9508

-5613.950759





12

480062.6494

-23692.64942





Appendix A.27

Table A.32. The regression analysis of the real imports of Poland in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.976437597






R Square

0.95343038






Adjusted R Square

0.948773418






Standard Error

7644.271041






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

11963505379

11963505379

204.7322666

5.49815E-08


Residual

10

584348797.6

58434879.76




Total

11

12547854177

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-84942.89661

15213.03076

-5.583561747

0.00023295

-118839.6415

-51046.15172

X Variable 1

1.171183896

0.081852499

14.30846835

5.49815E-08

0.988805162

1.35356263

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.782022365

Observation

Predicted Y

Residuals





1

76228.73203

-4141.732035





2

89136.64255

-7439.642553





3

110471.0572

-9333.057239





4

125822.7367

-4910.736652





5

133036.0817

8929.918307





6

93114.80289

14040.19711





7

125600.036

8705.963966





8

150763.7419

527.2581238





9

158713.34

-3779.339962





10

160143.6366

-3824.636584





11

164751.402

3614.598036





12

177378.7905

-2388.790515





Table A.33. The regression analysis of the real imports of Poland, after eliminating the autoregression, in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.944686139






R Square

0.892431902






Adjusted R Square

0.880479891






Standard Error

5690.583195






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2417951919

2417951919

74.66792914

1.18963E-05


Residual

9

291444633.9

32382737.1




Total

10

2709396553

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 93.0%

Upper 93.0%

Intercept

-20068.47485

9402.232871

-2.13443712

0.061575723

-39393.77596

-743.1737398

X Variable 1

1.000800811

0.115819209

8.641060649

1.18963E-05

0.762746604

1.238855018

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.436233874

Observation

Predicted Y

Residuals





1

45949.02735

-7557.807708





2

57553.48109

-5494.404303





3

59719.83899

434.1878135





4

58003.04456

11325.88475





5

20186.53508

1683.34536





6

68439.32694

1494.027587





7

73266.01888

-2658.444963





8

67141.38838

-3094.438965





9

64282.69985

-1039.258185





10

67485.89124

6972.520998





11

75910.87041

-2065.61239







Appendix A.28

Table A.34. The regression analysis of the real imports of Portugal in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.710324874






R Square

0.504561426






Adjusted R Square

0.455017569






Standard Error

3913.92976






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

156009226.6

156009226.6

10.1841369

0.009633532


Residual

10

153188461.7

15318846.17




Total

11

309197688.3

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

30732.58421

8154.668729

3.768710321

0.003669301

12562.84999

48902.31843

X Variable 1

0.138715782

0.04346741

3.191259454

0.009633532

0.041864358

0.235567206

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.039918627

Observation

Predicted Y

Residuals





1

50495.17893

-6322.178932





2

51974.93231

-602.9323121





3

54342.11436

1952.88564





4

55854.20794

4072.792063





5

56632.89037

7561.109633





6

52014.95043

-635.9504281





7

55773.32138

2873.678623





8

58758.184

792.8160046





9

59691.29871

-3317.298706





10

60104.24449

-3091.244492





11

60475.25234

-1499.252336





12

61946.42476

-1784.424757







Appendix A.29

Table A.35. The regression analysis of the real imports of Romania in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.953288032






R Square

0.908758071






Adjusted R Square

0.899633878






Standard Error

3603.9702






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

1293648255

1293648255

99.59873542

1.61911E-06


Residual

10

129886012

12988601.2




Total

11

1423534267

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-20819.13675

7008.614944

-2.970506572

0.014033656

-36435.304

-5202.969494

X Variable 1

0.544796841

0.054589318

9.979916604

1.61911E-06

0.423164261

0.666429422

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.705501918

Observation

Predicted Y

Residuals





1

30349.08694

-4114.086942





2

34722.73778

-2184.737775





3

41689.85584

-943.8558351





4

46783.76623

4521.233772





5

49324.4263

7823.573703





6

36341.67786

2606.32214





7

46851.00505

-1.00505436





8

55009.13073

-66.13072888





9

57515.93712

-2871.937122





10

58312.75698

-2984.756982





11

59670.89192

-1115.891924





12

63644.72725

-668.727251





Table A.36. The regression analysis of the real imports of Romania, after eliminating the autoregression, in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.920872471






R Square

0.848006107






Adjusted R Square

0.831117897






Standard Error

2732.474342






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

374910442.2

374910442.2

50.21290546

5.75365E-05


Residual

9

67197744.27

7466416.03




Total

10

442108186.5

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 93.0%

Upper 93.0%

Intercept

-8887.5794

4289.126845

-2.072118573

0.0681298

-17703.42867

-71.73012926

X Variable 1

0.572256413

0.080757523

7.086106509

5.75365E-05

0.406267814

0.738245011

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.205288922

Observation

Predicted Y

Residuals





1

15823.32888

299.0445031





2

20267.01833

119.4749476





3

21038.52048

4771.10609





4

20359.25109

4686.453373





5

5052.27289

-1862.619747





6

24624.25362

-2144.591929





7

26286.2906

-658.0269061





8

23557.49695

-3292.142768





9

22746.87351

-1610.430617





10

23649.75083

285.7031652





11

26931.24259

-593.9701125





Appendix A.30

Table A.37. The regression analysis of the real imports of Slovakia in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.980105871






R Square

0.960607518






Adjusted R Square

0.956668269






Standard Error

2916.724438






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2074547738

2074547738

243.8555433

2.37367E-08


Residual

10

85072814.44

8507281.444




Total

11

2159620553

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-36725.87022

5502.185695

-6.674778398

5.53559E-05

-48985.50394

-24466.2365

X Variable 1

0.575900075

0.036879143

15.61587472

2.37367E-08

0.493728224

0.658071926

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.780158349

Observation

Predicted Y

Residuals





1

25554.62458

-1566.624577





2

30938.97354

-3101.973535





3

39438.83248

-3610.83248





4

45849.69453

-1620.694528





5

49212.56511

1040.434886





6

33379.64381

6518.356187





7

46406.68204

2643.317956





8

56397.15467

960.8453281





9

59487.12925

753.8707514





10

60625.33816

917.6618427





11

62897.3273

-1208.327303





12

68015.03453

-1726.034527









Appendix A.31

Table A.38. The regression analysis of the real imports of Slovenia in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.947756132






R Square

0.898241686






Adjusted R Square

0.888065854






Standard Error

1381.897333






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

168567893.3

168567893.3

88.27206816

2.80693E-06


Residual

10

19096402.38

1909640.238




Total

11

187664295.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 83.0%

Upper 83.0%

Intercept

-4295.3188

2858.475747

-1.502660572

0.163830389

-8522.308915

-68.32868483

X Variable 1

0.166358915

0.01770657

9.39532161

2.80693E-06

0.140175207

0.192542623

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.505807971

Observation

Predicted Y

Residuals





1

15892.93613

-1733.936133





2

17451.4713

-1178.471295





3

20006.4215

-779.4214984





4

21879.18037

1158.819629





5

22718.27145

2461.728551





6

17683.70002

1369.299977





7

21603.93123

1116.068773





8

24649.56371

875.4362943





9

25589.77106

-655.7710604





10

25865.74054

-736.7405379





11

26374.06019

-823.0601853





12

27862.95251

-1073.952515





Table A.39. The regression analysis of the real imports of Slovenia, after eliminating the autoregression, in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.927619251






R Square

0.860477475






Adjusted R Square

0.844974972






Standard Error

927.2219849






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

47720515.79

47720515.79

55.50571332

3.89126E-05


Residual

9

7737665.483

859740.6093




Total

10

55458181.27

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 68.0%

Upper 68.0%

Intercept

-1281.17168

1195.249742

-1.071886179

0.311671166

-2539.190547

-23.15281251

X Variable 1

0.169227716

0.022714472

7.450215656

3.89126E-05

0.145320382

0.19313505

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.226522174

Observation

Predicted Y

Residuals





1

6147.61545

-4.848084362





2

7612.322455

-28.04267918





3

7657.882782

1623.920956





4

7148.44916

1548.727234





5

1416.36757

-378.7117142





6

9068.364526

19.92967628





7

9313.372284

-43.67883512





8

8053.180852

-1381.359536





9

7649.6261

-359.9664848





10

7965.860862

-393.7164218





11

9110.473403

-602.254111







Appendix A.32























Table A.40. The regression analysis of the real imports of Spain in function of exports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.774374347






R Square

0.599655629






Adjusted R Square

0.559621192






Standard Error

17798.54832






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

4745012409

4745012409

14.97849534

0.003108117


Residual

10

3167883223

316788322.3




Total

11

7912895632

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

102990.7901

39817.34326

2.586581164

0.027108502

14272.22059

191709.3596

X Variable 1

0.821238971

0.212195151

3.87020611

0.003108117

0.34843871

1.294039231

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.13873941

Observation

Predicted Y

Residuals





1

222226.7144

-14570.71442





2

231022.1838

1086.816204





3

245120.886

16663.11405





4

253398.0878

30659.91216





5

257698.9492

28406.05082





6

229502.1197

-19280.11974





7

251419.0497

-4745.049742





8

268230.1071

2319.892879





9

273491.6784

-10930.67845





10

275098.0137

-18643.01366





11

276883.3051

-6710.305059





12

285553.9051

-4255.905051







Appendix A.33

Table A.41. The regression analysis of the real imports of Sweden in function of exports of the other EU countries (million of Euro)





SUMMARY OUTPUT






Regression Statistics






Multiple R

0.955752837






R Square

0.913463486






Adjusted R Square

0.904809835






Standard Error

5128.545564






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2776388481

2776388481

105.5581566

1.23988E-06


Residual

10

263019796

26301979.6




Total

11

3039408277

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 8.0%

Upper 8.0%

Intercept

1203.006923

10687.89191

0.112557924

0.912608491

102.1643655

2303.849481

X Variable 1

0.680095947

0.066194863

10.27414992

1.23988E-06

0.67327794

0.686913954

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.116353987

Observation

Predicted Y

Residuals





1

83585.30052

-2862.300518





2

90360.1443

-579.1443047





3

101059.4273

523.5726533





4

108146.9929

3656.007148





5

111727.1947

2837.805258





6

91328.75055

-5383.750555





7

107120.184

5231.816009





8

119440.979

7733.021006





9

123298.5852

4686.41478





10

124455.1904

-3524.190393





11

126505.9449

-4373.944911





12

132412.3062

-7945.306173





Appendix A.34

Table A.42. The regression analysis of the real imports of United Kingdom in function of exports of the other EU countries (million of Euro)











SUMMARY OUTPUT






Regression Statistics






Multiple R

0.667253679






R Square

0.445227472






Adjusted R Square

0.389750219






Standard Error

41803.54691






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

14024690012

14024690012

8.0254059

0.017762898


Residual

10

17475365342

1747536534




Total

11

3039408277

 

 

 


 

Coefficients

Standard Error

t Stat

.

Lower 8.0%

Upper 8.0%

Intercept

202675.6936

90317.10797

2.244045432

0.048669026

1436.636311

403914.7509

X Variable 1

1.250750151

0.441506458

2.832914736

0.017762898

0.267012458

2.234487844

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.473229489

Observation

Predicted Y

Residuals





1

397190.7061

-18897.70614





2

411983.4282

5375.571758





3

433595.0275

54355.97246





4

451395.5411

14319.4589





5

460149.654

-12921.65398





6

415386.2566

-42805.25663





7

451533.9866

-6242.986633





8

478353.5845

9551.415513





9

488300.3252

52811.67484





10

488451.4783

8525.521688





11

493092.3742

26640.62576





12

505473.6375

-90712.63754







1 Associate Professor PhD, Danubius University of Galati, Department of Economics, Romania, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.

2 Senior Lecturer, PhD, Danubius University of Galati, Department of Economics, Romania, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, E-mail: ginaioan@univ-danubius.ro.

AUDŒ, Vol. 12, no. 6, pp. 5-118

Refbacks

  • There are currently no refbacks.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.