Acta Universitatis Danubius. Œconomica, Vol 13, No 1 (2017)

The Relationship between Spatial Interdependencies in the European Union and the Trade - II



Cătălin Angelo Ioan1, Gina Ioan2



Abstract: The article treats the links between exports of EU countries and relative distances between them. Mostly there are linear regressions equations that modeling the export relative to the spatial relations between states.

Keywords: graph; European Union; trade; export; import

JEL Classification: F21



1. Introduction

In the previous paper we analyzed the dependence of European Union countries imports on exports depending on their closeness.

Thus, after the construction of a graph of links between countries, we determined the minimum length between these roads, then we built a normalized matrix based on inverse distance (in the sense of graph theory and not actual distances). Considering the situation of global exports of those countries we multiplied (for each individual year) their values with the dependence degree of EU countries obtaining a virtual import value of each country. After this, we performed regression analysis in which we correlate these data with real data virtual obtaining in most cases, links expressing linear dependence of imports to exports of other countries. Finally, we compared the regression coefficients (with meanings of percentage) with actual percentages of UE-exports in each country commenting, finally, differences emerged.

In what follows, we will analyze the reverse dependence of exports on imports of other countries according to their closeness. All theoretical concepts and primary results on the degrees of connection matrix between countries are concretely explained in the first part of this article.



2. The Analysis of the Exports of EU Countries

In this section we shall analyze the relations between the import of EU countries and exports of each of them.

In Appendix A.1 and A.2 we have the tables of imports of European Union countries during 2004-2015.

Multiplying the matrix G with the values from tables A.1 and A.2, we find the tables A.3-A.6 in Appendix A.2.

Because not all imports from one country will be transferred to the EU reference country, we shall search if there is a linear dependence between real exports and computed exports (after the results from tables A.3-A.6).

In the case of Austria, from Appendix A.7 we can see that is a strong link between the two groups of indicators (R2=0.9687), having finally:

EX_AT(t)=0.021IM_BE(t)+0.014IM_BG(t)+0.021IM_HR(t)+0.014IM_CY(t)+0.0419IM_CZ(t)+
0.021IM_DK(t)+0.0084IM_EE(t)+0.0105IM_FI(t)+0.021IM_FR(t)+0.0419IM_DE(t)+
0.021IM_EL(t)+0.0419IM_HU(t)+0.0105IM_IE(t)+0.0419IM_IT(t)+0.0105IM_LV(t)+
0.014IM_LT(t)+0.021IM_LU(t)+0.021IM_MT(t)+0.021IM_NL(t)+0.021IM_PL(t)+0.0105IM_PT(t)+0.021IM_RO(t)+0.0419IM_SK(t)+0.0419IM_SI(t)+0.014IM_ES(t)+0.014IM_SE(t)+0.014IM_UK(t)+15293.754

where EX_ means real exports, IM_ means real imports, t – the reference time and the abbreviations for countries are the usual: Austria – AT, Belgium – BE, Bulgaria – BG, Croatia – HR, Cyprus – CY, Czech Republic – CZ, Denmark – DK, Estonia – EE, Finland – FI, France – FR, Germany – DE, Greece – EL, Hungary – HU, Ireland – IE, Italy – IT, Latvia – LV, Lithuania – LT,
Luxembourg – LU, Malta – MT, Netherlands – NL, Poland – PL, Portugal – PT, Romania – RO, Slovakia – SK, Slovenia – SI, Spain – ES, Sweden – SE, United Kingdom – UK.

A comparison of regression coefficients and percentages exports into studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 1) indicates that there are no large differences except Croatia (8.90% vs. 2.10%) and Slovenia (8.40% vs. 4.19%). Also, we can see that the real imports of EU-countries from Austria are in general below of those suggested by the regression equation which means that exports are below the potential offered by its geographic position.

The average distance between real data and those from the regression is: 1.32%.

Table 1. The correlation between the coefficients of regression and the real imports of EU-countries in Austria (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

-

-

Italy

4.19%

2.50%

Belgium+Luxembourg

4.20%

0.64%

Latvia

1.05%

1.20%

Bulgaria

1.40%

2.70%

Lithuania

1.40%

0.85%

Croatia

2.10%

8.90%

Malta

2.10%

0.53%

Czech Republic

4.19%

3.10%

Netherlands

2.10%

0.48%

Denmark

2.10%

1.00%

Poland

2.10%

1.80%

Estonia

0.84%

0.74%

Portugal

1.05%

0.48%

Finland

1.05%

0.87%

Romania

2.10%

3.90%

France

2.10%

1.10%

Slovakia

4.19%

2.90%

Germany

4.19%

3.90%

Slovenia

4.19%

8.40%

Greece

2.10%

0.97%

Spain

1.40%

0.71%

Hungary

4.19%

6.10%

Sweden

1.40%

1.20%

Ireland

1.05%

1.60%

United Kingdom

1.40%

0.73%



Figure 1. The relationship between imports based on distances and the real imports in 2013 in Austria (in percent)

Because in the upper analysis we have Durbin Watson statistic d=0.8443 therefore a positive autocorrelation of errors for the limits of autocorrelation: (0,0.97) and - the autocorrelation coefficient of errors has value = 0.528085453 we shall make another regression analysis for the set of data: Exports-computed-new(t)=Exports-computed(t)-Exports-computed(t-1) and Imports-real-new(t)= Imports-real(t)-Imports-real(t-1) (table A.8). Finally, we obtain the equation of regression:

EX_AT(t)=0.5281EX_AT(t-1)+0.IM_AT(t)+0.IM_AT(t-1)+0.0228IM_BE(t)-0.0121IM_BE(t-1)+ 0.0152IM_BG(t)-0.0081IM_BG(t-1)+0.0228IM_HR(t)-0.0121IM_HR(t-1)+0.0152IM_CY(t)-0.0081IM_CY(t-1)+0.0457IM_CZ(t)-0.0241IM_CZ(t-1)+0.0228IM_DK(t)-0.0121IM_DK(t-1)+ 0.0091IM_EE(t)-0.0048IM_EE(t-1)+0.0114IM_FI(t)-0.006IM_FI(t-1)+0.0228IM_FR(t)-0.0121IM_FR(t-1)+0.0457IM_DE(t)-0.0241IM_DE(t-1)+0.0228IM_EL(t)-0.0121IM_EL(t-1)+ 0.0457IM_HU(t)-0.0241IM_HU(t-1)+0.0114IM_IE(t)-0.006IM_IE(t-1)+0.0457IM_IT(t)-0.0241IM_IT(t-1)+0.0114IM_LV(t)-0.006IM_LV(t-1)+0.0152IM_LT(t)-0.0081IM_LT(t-1)+ 0.0228IM_LU(t)-0.0121IM_LU(t-1)+0.0228IM_MT(t)-0.0121IM_MT(t-1)+0.0228IM_NL(t)-0.0121IM_NL(t-1)+0.0228IM_PL(t)-0.0121IM_PL(t-1)+0.0114IM_PT(t)-0.006IM_PT(t-1)+ 0.0228IM_RO(t)-0.0121IM_RO(t-1)+0.0457IM_SK(t)-0.0241IM_SK(t-1)+0.0457IM_SI(t)-0.0241IM_SI(t-1)+0.0152IM_ES(t)-0.0081IM_ES(t-1)+0.0152IM_SE(t)-0.0081IM_SE(t-1)+ 0.0152IM_UK(t)-0.0081IM_UK(t-1)+2372.02

In the case of Belgium, from Appendix A.4 we can see that is a strong link between the two groups of indicators (R2=0.9846), having finally:

EX_BE(t)=0.0497IM_AT(t)+0.0248IM_BG(t)+0.0248IM_HR(t)+0.0248IM_CY(t)
+0.0497IM_CZ(t)+0.0497IM_DK(t)+0.0198IM_EE(t)+0.0248IM_FI(t)+0.0992IM_FR(t)+
0.0992IM_DE(t)+0.0331IM_EL(t)+0.0331IM_HU(t)+0.0497IM_IE(t)+0.0497IM_IT(t)+
0.0248IM_LV(t)+0.0331IM_LT(t)+0.0992IM_LU(t)+0.0331IM_MT(t)+0.0992IM_NL(t)+
0.0497IM_PL(t)+0.0331IM_PT(t)+0.0248IM_RO(t)+0.0331IM_SK(t)+0.0331IM_SI(t)+
0.0497IM_ES(t)+0.0331IM_SE(t)+0.0992IM_UK(t)+33128.7758

Also, in the case of Luxembourg, from Appendix A.5 we can see that practically is not a link between the two groups of indicators (R2=0.0018) therefore we will immerse the data into those of Belgium.

A comparison of regression coefficients and percentages exports into studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 2) indicates that there are no large differences except Germany (5% vs. 9.92% - figure 2) and United Kingdom (5.2% vs. 9.92%) for which the imports are much below the distance. Also, we can see that the real imports of EU-countries from Belgium and Luxembourg are below of those suggested by the regression equation which means that imports are below the potential offered by its geographic position.

The average distance between real data and those from the regression is: 1.86 %.





















Table 2.The correlation between the coefficients of regression and the real imports of EU-countries in Belgium+Luxembourg (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.97%

1.90%

Italy

4.97%

4.50%

Belgium+Luxembourg

-

-

Latvia

2.48%

1.70%

Bulgaria

2.48%

2.00%

Lithuania

3.31%

3.30%

Croatia

2.48%

1.70%

Malta

3.31%

1.30%

Czech Republic

4.97%

2.10%

Netherlands

9.92%

9.70%

Denmark

4.97%

3.30%

Poland

4.97%

2.70%

Estonia

1.98%

1.50%

Portugal

3.31%

2.20%

Finland

2.48%

2.70%

Romania

2.48%

2.30%

France

9.92%

8.40%

Slovakia

3.31%

1.20%

Germany

9.92%

5.00%

Slovenia

3.31%

1.70%

Greece

3.31%

3.20%

Spain

4.97%

2.90%

Hungary

3.31%

2.30%

Sweden

3.31%

4.30%

Ireland

4.97%

2.20%

United Kingdom

9.92%

5.20%



Figure 2. The relationship between imports based on distances and the real imports in 2013 in Austria (in percent)



In the case of Bulgaria, from Appendix A.6 we can see that is a strong link between the two groups of indicators (R2=0.8730), having finally:

EX_BG(t)=0.0108IM_AT(t)+0.0081IM_BE(t)+0.0108IM_HR(t)+0.0162IM_CY(t)+
0.0081IM_CZ(t)+0.0065IM_DK(t)+0.0046IM_EE(t)+0.0046IM_FI(t)+0.0108IM_FR(t)+
0.0081IM_DE(t)+0.0325IM_EL(t)+0.0162IM_HU(t)+0.0065IM_IE(t)+0.0162IM_IT(t)+
0.0054IM_LV(t)+0.0065IM_LT(t)+0.0081IM_LU(t)+0.0108IM_MT(t)+0.0065IM_NL(t)+
0.0081IM_PL(t)+0.0065IM_PT(t)+0.0325IM_RO(t)+0.0108IM_SK(t)+0.0108IM_SI(t)+
0.0081IM_ES(t)+0.0054IM_SE(t)+0.0081IM_UK(t)-22905.4187

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 3) indicates that there are no large differences, therefore we can see that the real imports of EU-countries from Bulgaria are closer to those suggested by the regression equation which means that imports depend preferential from the potential offered by its geographic position.

The average distance between real data and those from the regression is: 0.62%.

Table 3. The correlation between the coefficients of regression and the real imports of EU-countries in Bulgaria (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

1.08%

0.32%

Italy

1.62%

0.64%

Belgium+Luxembourg

1.62%

0.21%

Latvia

0.54%

0.19%

Bulgaria

-

-

Lithuania

0.65%

0.21%

Croatia

1.08%

0.33%

Malta

1.08%

0.19%

Czech Republic

0.81%

0.23%

Netherlands

0.65%

0.13%

Denmark

0.65%

0.14%

Poland

0.81%

0.26%

Estonia

0.46%

0.15%

Portugal

0.65%

0.28%

Finland

0.46%

0.10%

Romania

3.25%

2.70%

France

1.08%

0.20%

Slovakia

1.08%

0.25%

Germany

0.81%

0.31%

Slovenia

1.08%

0.42%

Greece

3.25%

3.00%

Spain

0.81%

0.21%

Hungary

1.62%

0.36%

Sweden

0.54%

0.09%

Ireland

0.65%

0.07%

United Kingdom

0.81%

0.10%



Figure 3. The relationship between imports based on distances and the real imports in 2013 in Bulgaria (in percent)

In the case of Croatia, from Appendix A.7 we can see that is a strong link between the two groups of indicators (R2=0.9170), having finally:

EX_HR(t)=0.0039IM_AT(t)+0.002IM_BE(t)+0.0026IM_BG(t)+0.002IM_CY(t)+0.0026IM_CZ(t)+
0.002IM_DK(t)+0.0013IM_EE(t)+0.0013IM_FI(t)+0.0026IM_FR(t)+0.0026IM_DE(t)+
0.0026IM_EL(t)+0.0078IM_HU(t)+0.0016IM_IE(t)+0.0039IM_IT(t)+0.0016IM_LV(t)+
0.002IM_LT(t)+0.002IM_LU(t)+0.0026IM_MT(t)+0.002IM_NL(t)+0.0026IM_PL(t)+
0.0016IM_PT(t)+0.0039IM_RO(t)+0.0039IM_SK(t)+0.0078IM_SI(t)+0.002IM_ES(t)+
0.0016IM_SE(t)+0.002IM_UK(t)-1510.5281

Let note that we have a small autoregression (d=0.7535) and P-Value for the Intercept is 0.16. If we shall try to eliminate the autoregression we shall find again d=0.5860 (much worth) and a P-Value for the Intercept 0.61. Therefore, we shall let the first regression which is much better than the second.

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 4) indicates that there are no large differences except Slovenia (figure 4) which is absolutely normal because of their former membership to Yugoslavia. Also, we can see that the real imports of EU-countries from Croatia are closer to those suggested by the regression equation which means that imports depend preferential from the potential offered by its geographic position.

The average distance between real data and those from the regression is: 0.30 %.

Table 4. The correlation between the coefficients of regression and the real imports of EU-countries in Croatia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.39%

0.44%

Italy

0.39%

0.36%

Belgium+Luxembourg

0.40%

0.05%

Latvia

0.16%

0.04%

Bulgaria

0.26%

0.15%

Lithuania

0.20%

0.03%

Croatia

-

-

Malta

0.26%

1.10%

Czech Republic

0.26%

0.09%

Netherlands

0.20%

0.04%

Denmark

0.20%

0.04%

Poland

0.26%

0.07%

Estonia

0.13%

0.22%

Portugal

0.16%

0.02%

Finland

0.13%

0.04%

Romania

0.39%

0.16%

France

0.26%

0.03%

Slovakia

0.39%

0.19%

Germany

0.26%

0.11%

Slovenia

0.78%

4.00%

Greece

0.26%

0.20%

Spain

0.20%

0.02%

Hungary

0.78%

0.28%

Sweden

0.16%

0.04%

Ireland

0.16%

0.01%

United Kingdom

0.20%

0.04%

Figure 4. The relationship between imports based on distances and the real imports in 2013 in Croatia (in percent)

In the case of Cyprus, from Appendix A.8 we can see that is a weak link between the two groups of indicators (R2=0.6655), having finally:

EX_CY(t)=0.0005IM_AT(t)+0.0004IM_BE(t)+0.0007IM_BG(t)+0.0004IM_HR(t)+
0.0004IM_CZ(t)+0.0003IM_DK(t)+0.0002IM_EE(t)+0.0002IM_FI(t)+0.0005IM_FR(t)+
0.0004IM_DE(t)+0.0014IM_EL(t)+0.0004IM_HU(t)+0.0003IM_IE(t)+0.0007IM_IT(t)+
0.0002IM_LV(t)+0.0002IM_LT(t)+0.0004IM_LU(t)+0.0005IM_MT(t)+0.0003IM_NL(t)+
0.0003IM_PL(t)+0.0003IM_PT(t)+0.0005IM_RO(t)+0.0004IM_SK(t)+0.0005IM_SI(t)+
0.0004IM_ES(t)+0.0002IM_SE(t)+0.0004IM_UK(t)-457.8204

Let note that we have a P-Value for the Intercept 0.25 therefore we will reject the null hypothesis with a probability almost 0.75.

In the case of Czech Republic, from Appendix A.9 we can see that is a strong link between the two groups of indicators (R2=0.9308), having finally:

EX_CZ(t)=0.0804IM_AT(t)+0.0402IM_BE(t)+0.02IM_BG(t)+0.0268IM_HR(t)+0.02IM_CY(t)+
0.0402IM_DK(t)+0.02IM_EE(t)+0.02IM_FI(t)+0.0402IM_FR(t)+0.0804IM_DE(t)+0.0268IM_EL(t)+0.0402IM_HU(t)+0.02IM_IE(t)+0.0402IM_IT(t)+0.0268IM_LV(t)+0.0402IM_LT(t)+
0.0402IM_LU(t)+0.0268IM_MT(t)+0.0402IM_NL(t)+0.0804IM_PL(t)+0.02IM_PT(t)+
0.0268IM_RO(t)+0.0804IM_SK(t)+0.0402IM_SI(t)+0.0268IM_ES(t)+0.0268IM_SE(t)+
0.0268IM_UK(t)-86039.0944

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 5) indicates that there are many differences (real vs. predicted imports) like Austria (3.90% vs. 8.04%), Belgium+Luxembourg (0.98% vs. 8.04%), Germany (3.90% vs. 8.04%), Poland (3.90% vs. 8.04%) and Slovakia (14% vs. 8.04%) in the last case being absolutely normal because of their former membership to Czechoslovakia.

Also, we can see that the real imports of EU-countries from Czech Republic are under to those suggested by the regression equation which means that imports not use the potential offered by its geographic position.

The average distance between real data and those from the regression is: 2.18%.

Table 5. The correlation between the coefficients of regression and the real imports of EU-countries in Czech Republic (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

8.04%

3.90%

Italy

4.02%

1.20%

Belgium+Luxembourg

8.04%

0.98%

Latvia

2.68%

1.50%

Bulgaria

2.00%

2.10%

Lithuania

4.02%

1.60%

Croatia

2.68%

1.90%

Malta

2.68%

0.21%

Czech Republic

-

-

Netherlands

4.02%

0.99%

Denmark

4.02%

1.40%

Poland

8.04%

3.90%

Estonia

2.00%

1.10%

Portugal

2.00%

0.61%

Finland

2.00%

1.10%

Romania

2.68%

2.80%

France

4.02%

1.20%

Slovakia

8.04%

14.00%

Germany

8.04%

3.90%

Slovenia

4.02%

2.30%

Greece

2.68%

0.47%

Spain

2.68%

1.10%

Hungary

4.02%

4.00%

Sweden

2.68%

1.30%

Ireland

2.00%

0.72%

United Kingdom

2.68%

1.20%



Figure 5. The relationship between imports based on distances and the real imports in 2013 in Czech Republic (in percent)

In the case of Denmark, from Appendix A.10 we can see that is a strong link between the two groups of indicators (R2=0.9581), having:

EX_DK(t)=0.0117IM_AT(t)+0.0117IM_BE(t)+0.0047IM_BG(t)+0.0059IM_HR(t)+
0.0047IM_CY(t)+0.0117IM_CZ(t)+0.0078IM_EE(t)+0.0117IM_FI(t)+0.0117IM_FR(t)+
0.0235IM_DE(t)+0.0059IM_EL(t)+0.0078IM_HU(t)+0.0059IM_IE(t)+0.0078IM_IT(t)+
0.0059IM_LV(t)+0.0078IM_LT(t)+0.0117IM_LU(t)+0.0059IM_MT(t)+0.0117IM_NL(t)+
0.0117IM_PL(t)+0.0059IM_PT(t)+0.0059IM_RO(t)+0.0078IM_SK(t)+0.0078IM_SI(t)+
0.0078IM_ES(t)+0.0235IM_SE(t)+0.0078IM_UK(t)+25237.4467

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 6) indicates that there are no large differences (real vs. predicted imports) except Sweden (8% vs. 0.78% - figure 6) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Unlike the other countries analyzed so far, one can see that in general, real imports are close to those provided by regression analysis, which shows a strong trade policy, taking into account the dependence on proximity.

The average distance between real data and those from the regression is: 0.78%.

Table 6. The correlation between the coefficients of regression and the real imports of EU-countries in Denmark (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

1.17%

0.41%

Italy

0.78%

0.57%

Belgium+Luxembourg

2.34%

0.36%

Latvia

0.59%

2.00%

Bulgaria

0.47%

0.36%

Lithuania

0.78%

1.70%

Croatia

0.59%

1.20%

Malta

0.59%

0.60%

Czech Republic

1.17%

0.61%

Netherlands

1.17%

0.94%

Denmark

-

-

Poland

1.17%

1.20%

Estonia

0.78%

1.20%

Portugal

0.59%

0.43%

Finland

1.17%

3.20%

Romania

0.59%

0.83%

France

1.17%

0.50%

Slovakia

0.78%

0.36%

Germany

2.35%

1.20%

Slovenia

0.78%

0.31%

Greece

0.59%

0.94%

Spain

0.78%

0.54%

Hungary

0.78%

0.68%

Sweden

2.35%

8.00%

Ireland

0.59%

1.40%

United Kingdom

0.78%

1.40%

Figure 6. The relationship between imports based on distances and the real imports in 2013 in Denmark (in percent)

In the case of Estonia, from Appendix A.11 we can see that is a strong link between the two groups of indicators (R2=0.9040), having:

EX_EE(t)=0.004IM_AT(t)+0.004IM_BE(t)+0.0028IM_BG(t)+0.0033IM_HR(t)+0.0025IM_CY(t)+
0.0049IM_CZ(t)+0.0066IM_DK(t)+0.0198IM_FI(t)+0.004IM_FR(t)+0.0049IM_DE(t)+
0.0028IM_EL(t)+0.004IM_HU(t)+0.0028IM_IE(t)+0.0033IM_IT(t)+0.0198IM_LV(t)+
0.0099IM_LT(t)+0.004IM_LU(t)+0.0028IM_MT(t)+0.004IM_NL(t)+0.0066IM_PL(t)+
0.0028IM_PT(t)+0.0033IM_RO(t)+0.0049IM_SK(t)+0.0033IM_SI(t)+0.0033IM_ES(t)+
0.0099IM_SE(t)+0.0033IM_UK(t)-9027.2563

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 7) indicates that there are no large differences (real vs. predicted imports) except former Soviet Union countries – Latvia (6.70% vs. 1.98%) and Lithuania (2.50% vs. 0.99%) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Let note that in general, real imports were close, but under to those provided by regression analysis, which shows a trade policy depending on proximity of the EU-countries but not exploring all the possibilities of the minimal distances recovery.

The average distance between real data and those from the regression is: 0.57%.

























Table 7. The correlation between the coefficients of regression andthe real imports of EU-countries in Estonia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.40%

0.03%

Italy

0.33%

0.03%

Belgium+Luxembourg

0.80%

0.08%

Latvia

1.98%

6.70%

Bulgaria

0.28%

0.09%

Lithuania

0.99%

2.50%

Croatia

0.33%

0.07%

Malta

0.28%

0.06%

Czech Republic

0.49%

0.05%

Netherlands

0.40%

0.07%

Denmark

0.66%

0.43%

Poland

0.66%

0.10%

Estonia

-

-

Portugal

0.28%

0.04%

Finland

1.98%

2.80%

Romania

0.33%

0.02%

France

0.40%

0.05%

Slovakia

0.49%

0.07%

Germany

0.49%

0.06%

Slovenia

0.33%

0.04%

Greece

0.28%

0.02%

Spain

0.33%

0.03%

Hungary

0.40%

0.03%

Sweden

0.99%

1.70%

Ireland

0.28%

0.04%

United Kingdom

0.33%

0.07%



Figure 7. The relationship between imports based on distances and the real imports in 2013 in Estonia (in percent)

In the case of Finland, from Appendix A.12 we can see that is a very weak link between the two groups of indicators (R2=0.1840), having:

EX_FI(t)=0.0042IM_AT(t)+0.0042IM_BE(t)+0.0024IM_BG(t)+0.0028IM_HR(t)+0.0024IM_CY(t)+0.0042IM_CZ(t)+0.0084IM_DK(t)+0.0169IM_EE(t)+0.0042IM_FR(t)+0.0056IM_DE(t)+
0.0028IM_EL(t)+0.0034IM_HU(t)+0.0028IM_IE(t)+0.0034IM_IT(t)+0.0084IM_LV(t)+
0.0056IM_LT(t)+0.0042IM_LU(t)+0.0028IM_MT(t)+0.0042IM_NL(t)+0.0042IM_PL(t)+
0.0028IM_PT(t)+0.0028IM_RO(t)+0.0034IM_SK(t)+0.0034IM_SI(t)+0.0034IM_ES(t)+
0.0169IM_SE(t)+0.0034IM_UK(t)+37525.6209

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 8) indicates that there are no large differences (real vs. predicted imports) except Estonia (9.60% vs. 1.69%), Latvia (4.30% vs. 0.84%), Lithuania (1.90% vs. 0.56%) and Sweden (5.60% vs. 1.69%).

In general, real imports were close which shows a trade policy depending on proximity of the EU-countries.

The average distance between real data and those from the regression is: 0.76%.



Table 8. The correlation between the coefficients of regression and the real imports of EU-countries in Finland (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.42%

0.32%

Italy

0.34%

0.39%

Belgium+Luxembourg

0.84%

0.59%

Latvia

0.84%

4.30%

Bulgaria

0.24%

0.19%

Lithuania

0.56%

1.90%

Croatia

0.28%

0.22%

Malta

0.28%

0.06%

Czech Republic

0.42%

0.27%

Netherlands

0.42%

0.82%

Denmark

0.84%

1.60%

Poland

0.42%

0.86%

Estonia

1.69%

9.60%

Portugal

0.28%

0.28%

Finland

-

-

Romania

0.28%

0.28%

France

0.42%

0.41%

Slovakia

0.34%

0.18%

Germany

0.56%

0.64%

Slovenia

0.34%

0.27%

Greece

0.28%

0.29%

Spain

0.34%

0.34%

Hungary

0.34%

0.29%

Sweden

1.69%

5.60%

Ireland

0.28%

0.22%

United Kingdom

0.34%

0.62%



Figure 8. The relationship between imports based on distances and the real imports in 2013 in Finland (in percent)

In the case of France, from Appendix A.13 we can see that is a strong link between the two groups of indicators (R2=0.9311), having:

EX_FR(t)=0.0444IM_AT(t)+0.0889IM_BE(t)+0.0296IM_BG(t)+0.0296IM_HR(t)+
0.0296IM_CY(t)+0.0444IM_CZ(t)+0.0444IM_DK(t)+0.0178IM_EE(t)+0.0222IM_FI(t)+
0.0889IM_DE(t)+0.0444IM_EL(t)+0.0296IM_HU(t)+0.0444IM_IE(t)+0.0889IM_IT(t)+
0.0222IM_LV(t)+0.0296IM_LT(t)+0.0889IM_LU(t)+0.0444IM_MT(t)+0.0444IM_NL(t)+
0.0444IM_PL(t)+0.0444IM_PT(t)+0.0222IM_RO(t)+0.0296IM_SK(t)+0.0444IM_SI(t)+
0.0889IM_ES(t)+0.0296IM_SE(t)+0.0889IM_UK(t)+158856.3841

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 9) indicates that there are no large differences (real vs. predicted imports) except Belgium+Luxembourg – under the distance between them (11% vs. 17.78%) and, on the other side, Romania (5.80% vs. 2.22%) and Portugal (6.30% vs. 4.44%) over the coefficients of regression.

Let note that in general, real imports were close to those provided by regression analysis.

The average distance between real data and those from the regression is: 1.22 %.

Table 9. The correlation between the coefficients of regression and the real imports of EU-countries in France (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.44%

2.80%

Italy

8.89%

8.30%

Belgium+Luxembourg

17.78%

11.00%

Latvia

2.22%

1.80%

Bulgaria

2.96%

2.90%

Lithuania

2.96%

2.70%

Croatia

2.96%

2.20%

Malta

4.44%

7.10%

Czech Republic

4.44%

3.30%

Netherlands

4.44%

4.20%

Denmark

4.44%

3.20%

Poland

4.44%

3.90%

Estonia

1.78%

2.10%

Portugal

4.44%

6.30%

Finland

2.22%

3.20%

Romania

2.22%

5.80%

France

-

-

Slovakia

2.96%

3.00%

Germany

8.89%

7.20%

Slovenia

4.44%

4.20%

Greece

4.44%

4.90%

Spain

8.89%

10.00%

Hungary

2.96%

4.00%

Sweden

2.96%

4.20%

Ireland

4.44%

4.20%

United Kingdom

8.89%

6.20%



Figure 9

In the case of Germany, from Appendix A.14 we can see that is a strong link between the two groups of indicators (R2=0.9681). The P-Value Analysis reveals for Intercept a great value (0.2002) which indicates a weak evidence against the null hypothesis. In fact, assuming the threshold of 79% we obtain the regression in the table A.19. Finally, we have:

EX_DE(t)=0.4463IM_AT(t)+0.4463IM_BE(t)+0.1114IM_BG(t)+0.1486IM_HR(t)+
0.1114IM_CY(t)+0.4463IM_CZ(t)+0.4463IM_DK(t)+0.1114IM_EE(t)+0.1486IM_FI(t)+
0.4463IM_FR(t)+0.1486IM_EL(t)+0.2228IM_HU(t)+0.1486IM_IE(t)+0.2228IM_IT(t)+
0.1486IM_LV(t)+0.2228IM_LT(t)+0.4463IM_LU(t)+0.1486IM_MT(t)+0.4463IM_NL(t)+
0.4463IM_PL(t)+0.1486IM_PT(t)+0.1486IM_RO(t)+0.2228IM_SK(t)+0.2228IM_SI(t)+
0.2228IM_ES(t)+0.2228IM_SE(t)+0.2228IM_UK(t)-83740.245

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 10) indicates that there are many differences (real vs. predicted imports) between countries - Belgium+Luxembourg with a real percent of imports of 14% instead 89.26% (after regression), Czech Republic (26% vs. 44.63%), Denmark with 20% vs. 44.63%, France – 18% vs. 44.63%, Netherlands – 15% vs. 44.63%, Poland – 23% vs. 44.63%. We can easily see that these difference, maybe except Poland, are encountered in the case of the very developed countries from the European Union, which have themselves a strong import.

Let note that in general, real imports were strong under to those provided by regression analysis, even Germany is the main engine of UE.

The average distance between real data and those from the regression is very high: 11.44 %.

Table 10. The correlation between the coefficients of regression and the real imports of EU-countries in Germany (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

44.63%

38.00%

Italy

22.28%

15.00%

Belgium+Luxembourg

89.26%

14.00%

Latvia

14.86%

10.00%

Bulgaria

11.14%

10.00%

Lithuania

22.28%

10.00%

Croatia

14.86%

14.00%

Malta

14.86%

4.20%

Czech Republic

44.63%

26.00%

Netherlands

44.63%

15.00%

Denmark

44.63%

20.00%

Poland

44.63%

23.00%

Estonia

11.14%

9.30%

Portugal

14.86%

11.00%

Finland

14.86%

13.00%

Romania

14.86%

18.00%

France

44.63%

18.00%

Slovakia

22.28%

16.00%

Germany

-

-

Slovenia

22.28%

17.00%

Greece

14.86%

10.00%

Spain

22.28%

12.00%

Hungary

22.28%

24.00%

Sweden

22.28%

18.00%

Ireland

14.86%

9.20%

United Kingdom

22.28%

14.00%



Figure 10

In the case of Greece, from Appendix A.15 we can see that is a strong link between the two groups of indicators (R2=0.8716). We have:

EX_EL(t)=0.0114IM_AT(t)+0.0076IM_BE(t)+0.0228IM_BG(t)+0.0076IM_HR(t)+
0.0228IM_CY(t)+0.0076IM_CZ(t)+0.0057IM_DK(t)+0.0033IM_EE(t)+0.0038IM_FI(t)+
0.0114IM_FR(t)+0.0076IM_DE(t)+0.0076IM_HU(t)+0.0057IM_IE(t)+0.0228IM_IT(t)+
0.0038IM_LV(t)+0.0046IM_LT(t)+0.0076IM_LU(t)+0.0114IM_MT(t)+0.0057IM_NL(t)+
0.0057IM_PL(t)+0.0057IM_PT(t)+0.0114IM_RO(t)+0.0076IM_SK(t)+0.0114IM_SI(t)+
0.0076IM_ES(t)+0.0046IM_SE(t)+0.0076IM_UK(t)-15317.9389

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 11) indicates that there are only one major difference (real vs. predicted imports) between countries – Bulgaria were real imports are 5.20% versus 2.28% from the regression.

Let note that in general, real imports were under to those provided by regression analysis, therefore the export of Greece not exploit all the opportunities generated by the distances.

The average distance between real data and those from the regression is low: 0.64 %.

Table 11. The correlation between the coefficients of regression and the real imports of EU-countries in Greece (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

1.14%

0.14%

Italy

2.28%

0.64%

Belgium+Luxembourg

1.52%

0.09%

Latvia

0.38%

0.11%

Bulgaria

2.28%

5.20%

Lithuania

0.46%

0.12%

Croatia

0.76%

0.41%

Malta

1.14%

1.90%

Czech Republic

0.76%

0.16%

Netherlands

0.57%

0.12%

Denmark

0.57%

0.18%

Poland

0.57%

0.20%

Estonia

0.33%

0.11%

Portugal

0.57%

0.24%

Finland

0.38%

0.12%

Romania

1.14%

1.10%

France

1.14%

0.13%

Slovakia

0.76%

0.12%

Germany

0.76%

0.20%

Slovenia

1.14%

0.65%

Greece

-

-

Spain

0.76%

0.34%

Hungary

0.76%

0.10%

Sweden

0.46%

0.16%

Ireland

0.57%

0.08%

United Kingdom

0.76%

0.19%



Figure 11

In the case of Hungary, from Appendix A.16 we can see that is a strong link between the two groups of indicators (R2=0.9758). The P-Value Analysis reveals low values under 0.0003 which indicates a very strong evidence against the null hypothesis. Therefore, finally, we have:

EX_HU(t)=0.0583IM_AT(t)+0.0194IM_BE(t)+0.0291IM_BG(t)+0.0583IM_HR(t)+
0.0146IM_CY(t)+0.0291IM_CZ(t)+0.0194IM_DK(t)+0.0117IM_EE(t)+0.0117IM_FI(t)+
0.0194IM_FR(t)+0.0291IM_DE(t)+0.0194IM_EL(t)+0.0117IM_IE(t)+0.0291IM_IT(t)+
0.0146IM_LV(t)+0.0194IM_LT(t)+0.0194IM_LU(t)+0.0194IM_MT(t)+0.0194IM_NL(t)+
0.0291IM_PL(t)+0.0117IM_PT(t)+0.0583IM_RO(t)+0.0583IM_SK(t)+0.0583IM_SI(t)+
0.0146IM_ES(t)+0.0146IM_SE(t)+0.0146IM_UK(t)-25082.8642

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 12) indicates that there are not great differences (real vs. predicted imports) between countries, except Romania with real imports – 8.10% versus 5.83% after regression analysis. We can conclude that exports of Hungary are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 1.13%.



Table 12. The correlation between the coefficients of regression and the real imports of EU-countries in Hungary (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

5.83%

2.90%

Italy

2.91%

1.10%

Belgium+Luxembourg

3.88%

0.40%

Latvia

1.46%

1.10%

Bulgaria

2.91%

2.90%

Lithuania

1.94%

0.79%

Croatia

5.83%

6.00%

Malta

1.94%

0.12%

Czech Republic

2.91%

2.50%

Netherlands

1.94%

0.51%

Denmark

1.94%

0.84%

Poland

2.91%

1.70%

Estonia

1.17%

1.20%

Portugal

1.17%

0.37%

Finland

1.17%

0.40%

Romania

5.83%

8.10%

France

1.94%

0.66%

Slovakia

5.83%

5.10%

Germany

2.91%

2.20%

Slovenia

5.83%

3.30%

Greece

1.94%

0.66%

Spain

1.46%

0.75%

Hungary

-

-

Sweden

1.46%

0.68%

Ireland

1.17%

0.30%

United Kingdom

1.46%

0.67%



Figure 12

The case of Ireland, from Appendix A.17 is less relevant because R2=0.3920, that is the linear regression analysis explains very slightly the phenomenon. Because P-Values are less then 0.03 the null hypothesis can be rejected with a significant probability (97%). We have also:

EX_IE(t)=0.0048IM_AT(t)+0.0097IM_BE(t)+0.0039IM_BG(t)+0.0039IM_HR(t)+0.0039IM_CY(t)+0.0048IM_CZ(t)+0.0048IM_DK(t)+0.0028IM_EE(t)+0.0032IM_FI(t)+0.0097IM_FR(t)+
0.0064IM_DE(t)+0.0048IM_EL(t)+0.0039IM_HU(t)+0.0064IM_IT(t)+0.0032IM_LV(t)+
0.0039IM_LT(t)+0.0064IM_LU(t)+0.0048IM_MT(t)+0.0097IM_NL(t)+0.0048IM_PL(t)+
0.0048IM_PT(t)+0.0032IM_RO(t)+0.0039IM_SK(t)+0.0048IM_SI(t)+0.0064IM_ES(t)+
0.0039IM_SE(t)+0.0193IM_UK(t)+56109.6725

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 13) indicates that there are very little differences (real vs. predicted imports) between countries. We can conclude that exports of Ireland are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 0.36%.

Table 13. The correlation between the coefficients of regression and the real imports of EU-countries in Ireland (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.48%

0.88%

Italy

0.64%

0.75%

Belgium+Luxembourg

1.61%

3.60%

Latvia

0.32%

0.24%

Bulgaria

0.39%

0.33%

Lithuania

0.39%

0.24%

Croatia

0.39%

0.33%

Malta

0.48%

0.23%

Czech Republic

0.48%

0.60%

Netherlands

0.97%

1.10%

Denmark

0.48%

1.30%

Poland

0.48%

0.67%

Estonia

0.28%

0.30%

Portugal

0.48%

0.97%

Finland

0.32%

0.78%

Romania

0.32%

0.73%

France

0.97%

1.30%

Slovakia

0.39%

0.26%

Germany

0.64%

0.88%

Slovenia

0.48%

0.29%

Greece

0.48%

0.62%

Spain

0.64%

1.20%

Hungary

0.39%

0.51%

Sweden

0.39%

1.20%

Ireland

-

-

United Kingdom

1.93%

3.00%

Figure 13

In the case of Italy, from Appendix A.18 we can see that is a strong link between the two groups of indicators (R2=0.9671). On the other hand, P-Values Analysis reveals for Intercept a big value (0.1879) which indicates a small evidence against the null hypothesis. Therefore, finally, we have:

EX_IT(t)=0.1629IM_AT(t)+0.0816IM_BE(t)+0.0816IM_BG(t)+0.0816IM_HR(t)+0.0816IM_CY(t)+0.0816IM_CZ(t)+0.0542IM_DK(t)+0.0272IM_EE(t)+0.0325IM_FI(t)+0.1629IM_FR(t)+
0.0816IM_DE(t)+0.1629IM_EL(t)+0.0816IM_HU(t)+0.0542IM_IE(t)+0.0325IM_LV(t)+
0.0407IM_LT(t)+0.0816IM_LU(t)+0.1629IM_MT(t)+0.0542IM_NL(t)+0.0542IM_PL(t)+
0.0542IM_PT(t)+0.0542IM_RO(t)+0.0816IM_SK(t)+0.1629IM_SI(t)+0.0816IM_ES(t)+
0.0407IM_SE(t)+0.0816IM_UK(t)+27138.5206

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 14) indicates that there are great differences (real vs. predicted imports) between almost all countries: Austria (6.20% vs. 16.29%), Belgium+Luxembourg (3.30% vs. 16.32%), France (7.50% vs. 16.29%), Greece (8% vs. 16.29%), Romania (11% vs. 5.42%) in this last case real imports of Romania being much upper than that of regression.

The average distance between real data and those from the regression is: 3.40%.



Table 14. The correlation between the coefficients of regression and the real imports of EU-countries in Italy (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

16.29%

6.20%

Italy

-

-

Belgium+Luxembourg

16.32%

3.30%

Latvia

3.25%

3.00%

Bulgaria

8.16%

6.90%

Lithuania

4.07%

4.10%

Croatia

8.16%

13.00%

Malta

16.29%

18.00%

Czech Republic

8.16%

4.00%

Netherlands

5.42%

2.10%

Denmark

5.42%

3.60%

Poland

5.42%

5.30%

Estonia

2.72%

2.20%

Portugal

5.42%

5.10%

Finland

3.25%

2.60%

Romania

5.42%

11.00%

France

16.29%

7.50%

Slovakia

8.16%

3.40%

Germany

8.16%

5.10%

Slovenia

16.29%

15.00%

Greece

16.29%

8.00%

Spain

8.16%

6.20%

Hungary

8.16%

4.40%

Sweden

4.07%

3.00%

Ireland

5.42%

1.80%

United Kingdom

8.16%

4.00%



Figure 14

Durbin Watson statistical analysis reveals a positive autocorrelation of errors (d=0.7876 for the limits of autocorrelation: (0,0.97)). Because in the upper analysis we have - the autocorrelation coefficient of errors having value = 0.558744702 we shall make another regression analysis for the set of data:
Imports-computed-new(t)=Imports-computed(t)-
Imports-computed(t-1) and Imports-real-new(t)= Imports-real(t)-Imports-real(t-1) (table A.33). Finally, we obtain the equation of regression:

EX_IT(t)=0.5587EX_IT(t-1)+0.1808IM_AT(t)-0.101IM_AT(t-1)+0.0905IM_BE(t)-
0.0506IM_BE(t-1)+0.0905IM_BG(t)-0.0506IM_BG(t-1)+0.0905IM_HR(t)-0.0506IM_HR(t-1)+ 0.0905IM_CY(t)-0.0506IM_CY(t-1)+0.0905IM_CZ(t)-0.0506IM_CZ(t-1)+0.0601IM_DK(t)-0.0336IM_DK(t-1)+0.0302IM_EE(t)-0.0169IM_EE(t-1)+0.0361IM_FI(t)-0.0201IM_FI(t-1)+ 0.1808IM_FR(t)-0.101IM_FR(t-1)+0.0905IM_DE(t)-0.0506IM_DE(t-1)+0.1808IM_EL(t)-0.101IM_EL(t-1)+0.0905IM_HU(t)-0.0506IM_HU(t-1)+0.0601IM_IE(t)-0.0336IM_IE(t-1)+ 0.0361IM_LV(t)-0.0201IM_LV(t-1)+0.0451IM_LT(t)-0.0252IM_LT(t-1)+0.0905IM_LU(t)-0.0506IM_LU(t-1)+0.1808IM_MT(t)-0.101IM_MT(t-1)+0.0601IM_NL(t)-0.0336IM_NL(t-1)+ 0.0601IM_PL(t)-0.0336IM_PL(t-1)+0.0601IM_PT(t)-0.0336IM_PT(t-1)+0.0601IM_RO(t)-0.0336IM_RO(t-1)+0.0905IM_SK(t)-0.0506IM_SK(t-1)+0.1808IM_SI(t)-0.101IM_SI(t-1)+ 0.0905IM_ES(t)-0.0506IM_ES(t-1)+0.0451IM_SE(t)-0.0252IM_SE(t-1)+0.0905IM_UK(t)-0.0506IM_UK(t-1)-5288.7694

In the case of Latvia, from Appendix A.19 we can see that is a strong link between the two groups of indicators (R2=0.8850). On the other hand, P-Values Analysis reveals for both coefficients of the regression small values which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

EX_LV(t)=0.0043IM_AT(t)+0.0043IM_BE(t)+0.0028IM_BG(t)+0.0034IM_HR(t)+
0.0024IM_CY(t)+0.0057IM_CZ(t)+0.0043IM_DK(t)+0.0171IM_EE(t)+0.0085IM_FI(t)+
0.0043IM_FR(t)+0.0057IM_DE(t)+0.0028IM_EL(t)+0.0043IM_HU(t)+0.0028IM_IE(t)+
0.0034IM_IT(t)+0.0171IM_LT(t)+0.0043IM_LU(t)+0.0028IM_MT(t)+0.0043IM_NL(t)+
0.0085IM_PL(t)+0.0028IM_PT(t)+0.0034IM_RO(t)+0.0057IM_SK(t)+0.0034IM_SI(t)+
0.0034IM_ES(t)+0.0057IM_SE(t)+0.0034IM_UK(t)-11040.2738

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 15) indicates that there are not great differences (real vs. predicted imports) between countries except cases of close neighborhoods: Estonia (4.90% - real vs. 1.71% - regression) and Lithuania (6% - real vs. 1.71% - regression) therefore imports of Latvia are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 0.60%.

Table 15. The correlation between the coefficients of regression and the real imports of EU-countries in Latvia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.43%

0.03%

Italy

0.34%

0.03%

Belgium+Luxembourg

0.86%

0.05%

Latvia

-

-

Bulgaria

0.28%

0.06%

Lithuania

1.71%

6.00%

Croatia

0.34%

0.03%

Malta

0.28%

0.03%

Czech Republic

0.57%

0.10%

Netherlands

0.43%

0.11%

Denmark

0.43%

0.58%

Poland

0.85%

0.24%

Estonia

1.71%

4.90%

Portugal

0.28%

0.01%

Finland

0.85%

0.45%

Romania

0.34%

0.03%

France

0.43%

0.04%

Slovakia

0.57%

0.08%

Germany

0.57%

0.07%

Slovenia

0.34%

0.05%

Greece

0.28%

0.03%

Spain

0.34%

0.02%

Hungary

0.43%

0.03%

Sweden

0.57%

0.46%

Ireland

0.28%

0.06%

United Kingdom

0.34%

0.12%



Figure 15

In the case of Lithuania, from Appendix A.20 we can see that is a strong link between the two groups of indicators (R2=0.8827). On the other hand, P-Values Analysis reveals for both coefficients of the regression great values which indicates a strong evidence against the null hypothesis. Therefore, finally, we have:

EX_LT(t)=0.0088IM_AT(t)+0.0088IM_BE(t)+0.0053IM_BG(t)+0.0066IM_HR(t)+
0.0044IM_CY(t)+0.0132IM_CZ(t)+0.0088IM_DK(t)+0.0132IM_EE(t)+0.0088IM_FI(t)+
0.0088IM_FR(t)+0.0132IM_DE(t)+0.0053IM_EL(t)+0.0088IM_HU(t)+0.0053IM_IE(t)+
0.0066IM_IT(t)+0.0265IM_LV(t)+0.0088IM_LU(t)+0.0053IM_MT(t)+0.0088IM_NL(t)+
0.0265IM_PL(t)+0.0053IM_PT(t)+0.0066IM_RO(t)+0.0132IM_SK(t)+0.0066IM_SI(t)+
0.0066IM_ES(t)+0.0066IM_SE(t)+0.0066IM_UK(t)-22155.7822

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 16) indicates that there are not great differences (real vs. predicted imports) between countries except cases of close neighborhoods: Estonia (6.20% - real vs. 1.32% - regression) and Latvia (18% - real vs. 2.65% - regression) therefore exports of Lithuania are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 1.39%.

Table 16. The correlation between the coefficients of regression and the real imports of EU-countries in Lithuania (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.88%

0.07%

Italy

0.66%

0.11%

Belgium+Luxembourg

1.76%

0.10%

Latvia

2.65%

18.00%

Bulgaria

0.53%

0.17%

Lithuania

-

-

Croatia

0.66%

0.07%

Malta

0.53%

0.02%

Czech Republic

1.32%

0.18%

Netherlands

0.88%

0.18%

Denmark

0.88%

0.66%

Poland

2.65%

0.75%

Estonia

1.32%

6.20%

Portugal

0.53%

0.11%

Finland

0.88%

0.60%

Romania

0.66%

0.12%

France

0.88%

0.14%

Slovakia

1.32%

0.10%

Germany

1.32%

0.19%

Slovenia

0.66%

0.16%

Greece

0.53%

0.06%

Spain

0.66%

0.09%

Hungary

0.88%

0.19%

Sweden

0.66%

0.70%

Ireland

0.53%

0.17%

United Kingdom

0.66%

0.24%



Figure 16

In the case of Malta, from Appendix A.21 we can see that is a very weak link between the two groups of indicators (R2=0.4657). On the other hand, P-Values Analysis reveals for Intercept coefficient of the regression a great value – 0.9185 which indicates an almost null evidence against the null hypothesis. Finally, we have:

EX_MT(t)=0.0007IM_AT(t)+0.0005IM_BE(t)+0.0005IM_BG(t)+0.0005IM_HR(t)+
0.0005IM_CY(t)+0.0005IM_CZ(t)+0.0004IM_DK(t)+0.0002IM_EE(t)+0.0002IM_FI(t)+
0.0007IM_FR(t)+0.0005IM_DE(t)+0.0007IM_EL(t)+0.0005IM_HU(t)+0.0004IM_IE(t)+
0.0015IM_IT(t)+0.0002IM_LV(t)+0.0003IM_LT(t)+0.0005IM_LU(t)+0.0004IM_NL(t)+
0.0004IM_PL(t)+0.0004IM_PT(t)+0.0004IM_RO(t)+0.0005IM_SK(t)+0.0007IM_SI(t)+
0.0005IM_ES(t)+0.0003IM_SE(t)+0.0005IM_UK(t)+85.0799

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 17) indicates that there are not great differences (real vs. predicted imports) between countries except the case of Greece (0.25% vs. 0.07%) therefore imports of Malta are directed by territorial proximity criterion.

The average distance between real data and those from the regression is: 0.03 %.

Table 17. The correlation between the coefficients of regression and the real imports of EU-countries in Malta (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.07%

0.01%

Italy

0.15%

0.06%

Belgium+Luxembourg

0.10%

0.01%

Latvia

0.02%

0.00%

Bulgaria

0.05%

0.03%

Lithuania

0.03%

0.01%

Croatia

0.05%

0.11%

Malta

-

-

Czech Republic

0.05%

0.05%

Netherlands

0.04%

0.02%

Denmark

0.04%

0.04%

Poland

0.04%

0.02%

Estonia

0.02%

0.01%

Portugal

0.04%

0.03%

Finland

0.02%

0.00%

Romania

0.04%

0.10%

France

0.07%

0.05%

Slovakia

0.05%

0.01%

Germany

0.05%

0.06%

Slovenia

0.07%

0.06%

Greece

0.07%

0.25%

Spain

0.05%

0.03%

Hungary

0.05%

0.02%

Sweden

0.03%

0.05%

Ireland

0.04%

0.03%

United Kingdom

0.05%

0.03%



Figure 17

In the case of Netherlands, from Appendix A.22 we can see that is a strong link between the two groups of indicators (R2=0.9550). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.006 which indicates a strong evidence against the null hypothesis. Therefore, we have:

EX_NL(t)=0.118IM_AT(t)+0.2359IM_BE(t)+0.0472IM_BG(t)+0.0591IM_HR(t)+0.0472IM_CY(t)+0.118IM_CZ(t)+0.118IM_DK(t)+0.0472IM_EE(t)+0.0591IM_FI(t)+0.118IM_FR(t)+
0.2359IM_DE(t)+0.0591IM_EL(t)+0.0786IM_HU(t)+0.118IM_IE(t)+0.0786IM_IT(t)+
0.0591IM_LV(t)+0.0786IM_LT(t)+0.118IM_LU(t)+0.0591IM_MT(t)+0.118IM_PL(t)+
0.0591IM_PT(t)+0.0591IM_RO(t)+0.0786IM_SK(t)+0.0786IM_SI(t)+0.0786IM_ES(t)+
0.0786IM_SE(t)+0.2359IM_UK(t)-139596.1248

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 18) indicates that there are many and large differences between real and predicted imports: Austria (2.80% vs. 11.80%), Belgium+Luxembourg (20% vs. 35.39%), Czech Republic (3.60% vs. 11.80%), Germany (10% vs. 23.59%), United Kingdom (8.30% vs. 23.59%) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

Unlike the other countries analyzed so far, one can see that in general, real imports were under those provided by regression analysis, which shows a weak trade policy on dependence from proximity.

The average distance between real data and those from the regression is very large: 4.98%.

Table 18. The correlation between the coefficients of regression and the real imports of EU-countries in Netherlands (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

11.80%

2.80%

Italy

7.86%

5.80%

Belgium+Luxembourg

35.39%

20.00%

Latvia

5.91%

3.50%

Bulgaria

4.72%

2.60%

Lithuania

7.86%

5.20%

Croatia

5.91%

3.20%

Malta

5.91%

2.70%

Czech Republic

11.80%

3.60%

Netherlands

-

-

Denmark

11.80%

7.50%

Poland

11.80%

4.10%

Estonia

4.72%

2.40%

Portugal

5.91%

3.50%

Finland

5.91%

5.60%

Romania

5.91%

3.70%

France

11.80%

5.00%

Slovakia

7.86%

1.40%

Germany

23.59%

10.00%

Slovenia

7.86%

2.00%

Greece

5.91%

4.80%

Spain

7.86%

4.10%

Hungary

7.86%

3.80%

Sweden

7.86%

7.90%

Ireland

11.80%

6.20%

United Kingdom

23.59%

8.30%



Figure 18

In the case of Poland, from Appendix A.23 we can see that is a strong link between the two groups of indicators (R2=0.8915), having:

EX_PL(t)=0.056IM_AT(t)+0.056IM_BE(t)+0.028IM_BG(t)+0.0373IM_HR(t)+0.0225IM_CY(t)+
0.1122IM_CZ(t)+0.056IM_DK(t)+0.0373IM_EE(t)+0.028IM_FI(t)+0.056IM_FR(t)+
0.1122IM_DE(t)+0.028IM_EL(t)+0.056IM_HU(t)+0.028IM_IE(t)+0.0373IM_IT(t)+0.056IM_LV(t)+0.1122IM_LT(t)+0.056IM_LU(t)+0.028IM_MT(t)+0.056IM_NL(t)+0.028IM_PT(t)+
0.0373IM_RO(t)+0.1122IM_SK(t)+0.0373IM_SI(t)+0.0373IM_ES(t)+0.0373IM_SE(t)+
0.0373IM_UK(t)-122654.2762

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 19) indicates that there are many differences (real vs. predicted imports) like in the case of Belgium+Luxembourg (1.10% vs. 11.20%), Germany (3.90% vs. 11.22%), Slovakia (5.20% vs. 11.22%). For the other countries, one can see that in general, real imports were under those provided by regression analysis, which shows a trade policy based more on need and not on spatial proximity.

The average distance between real data and those from the regression is: 2.59%.

Table 19. The correlation between the coefficients of regression and the real imports of EU-countries in Poland (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

5.60%

2.00%

Italy

3.73%

1.90%

Belgium+Luxembourg

11.20%

1.10%

Latvia

5.60%

8.70%

Bulgaria

2.80%

2.90%

Lithuania

11.22%

9.10%

Croatia

3.73%

2.20%

Malta

2.80%

0.52%

Czech Republic

11.22%

7.60%

Netherlands

5.60%

1.40%

Denmark

5.60%

3.50%

Poland

-

-

Estonia

3.73%

5.70%

Portugal

2.80%

0.88%

Finland

2.80%

2.20%

Romania

3.73%

4.40%

France

5.60%

1.60%

Slovakia

11.22%

5.20%

Germany

11.22%

3.90%

Slovenia

3.73%

2.40%

Greece

2.80%

1.00%

Spain

3.73%

1.40%

Hungary

5.60%

4.80%

Sweden

3.73%

3.30%

Ireland

2.80%

0.91%

United Kingdom

3.73%

2.00%



Figure 19

In the case of Portugal, from Appendix A.24 we can see that is a strong link between the two groups of indicators (R2=0.9062), therefore we have:

EX_PT(t)=0.0092IM_AT(t)+0.0123IM_BE(t)+0.0074IM_BG(t)+0.0074IM_HR(t)+0.0074IM_CY(t)+0.0092IM_CZ(t)+0.0092IM_DK(t)+0.0053IM_EE(t)+0.0062IM_FI(t)+0.0184IM_FR(t)+
0.0123IM_DE(t)+0.0092IM_EL(t)+0.0074IM_HU(t)+0.0092IM_IE(t)+0.0123IM_IT(t)+
0.0062IM_LV(t)+0.0074IM_LT(t)+0.0123IM_LU(t)+0.0092IM_MT(t)+0.0092IM_NL(t)+
0.0092IM_PL(t)+0.0062IM_RO(t)+0.0074IM_SK(t)+0.0092IM_SI(t)+0.0369IM_ES(t)+
0.0074IM_SE(t)+0.0123IM_UK(t)-13663.5342

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 20) indicates that there are close differences between real and predicted imports.

In general, real imports are under to those provided by regression analysis, which shows an insufficient trade policy on dependence from proximity.

The average distance between real data and those from the regression is small: 0.56%.





Table 20. The correlation between the coefficients of regression and the real imports of EU-countries in Portugal (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

0.92%

0.34%

Italy

1.23%

0.45%

Belgium+Luxembourg

2.46%

0.46%

Latvia

0.62%

0.14%

Bulgaria

0.74%

0.23%

Lithuania

0.74%

0.16%

Croatia

0.74%

0.10%

Malta

0.92%

0.21%

Czech Republic

0.92%

0.33%

Netherlands

0.92%

0.46%

Denmark

0.92%

0.45%

Poland

0.92%

0.29%

Estonia

0.53%

0.18%

Portugal

-

-

Finland

0.62%

0.45%

Romania

0.62%

0.54%

France

1.84%

1.00%

Slovakia

0.74%

0.19%

Germany

1.23%

0.57%

Slovenia

0.92%

0.47%

Greece

0.92%

0.31%

Spain

3.69%

4.00%

Hungary

0.74%

0.27%

Sweden

0.74%

0.39%

Ireland

0.92%

0.31%

United Kingdom

1.23%

0.49%



Figure 20

In the case of Romania, from Appendix A.25 we can see that is a strong link between the two groups of indicators (R2=0.8507), having:

EX_RO(t)=0.0337IM_AT(t)+0.0168IM_BE(t)+0.0674IM_BG(t)+0.0337IM_HR(t)+
0.0224IM_CY(t)+0.0224IM_CZ(t)+0.0168IM_DK(t)+0.0112IM_EE(t)+0.0112IM_FI(t)+
0.0168IM_FR(t)+0.0224IM_DE(t)+0.0337IM_EL(t)+0.0674IM_HU(t)+0.0112IM_IE(t)+
0.0224IM_IT(t)+0.0135IM_LV(t)+0.0168IM_LT(t)+0.0168IM_LU(t)+0.0168IM_MT(t)+
0.0168IM_NL(t)+0.0224IM_PL(t)+0.0112IM_PT(t)+0.0337IM_SK(t)+0.0337IM_SI(t)+
0.0135IM_ES(t)+0.0135IM_SE(t)+0.0135IM_UK(t)-43168.1268

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 21) indicates that there are no large differences (real vs. predicted imports) except Hungary (2.70% vs. 6.74%) from where one can see that in general, real imports are close to those provided by regression analysis, which shows a trade policy based almost entirely on spatial proximity.

The average distance between real data and those from the regression is: 1.45%

Table 21. The correlation between the coefficients of regression and the real imports of EU-countries in Romania (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

3.37%

0.87%

Italy

2.24%

1.40%

Belgium+Luxembourg

3.36%

0.25%

Latvia

1.35%

0.17%

Bulgaria

6.74%

6.50%

Lithuania

1.68%

0.19%

Croatia

3.37%

0.72%

Malta

1.68%

0.36%

Czech Republic

2.24%

1.00%

Netherlands

1.68%

0.34%

Denmark

1.68%

0.30%

Poland

2.24%

0.76%

Estonia

1.12%

0.35%

Portugal

1.12%

0.32%

Finland

1.12%

0.29%

Romania

-

-

France

1.68%

0.84%

Slovakia

3.37%

1.20%

Germany

2.24%

1.00%

Slovenia

3.37%

0.94%

Greece

3.37%

1.20%

Spain

1.35%

0.46%

Hungary

6.74%

2.70%

Sweden

1.35%

0.42%

Ireland

1.12%

0.25%

United Kingdom

1.35%

0.38%



Figure 21

In the case of Slovakia, from Appendix A.26 we can see that is a strong link between the two groups of indicators (R2=0.9166). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.0003 which indicates a strong evidence against the null hypothesis. Therefore, we have:

EX_SK(t)=0.0595IM_AT(t)+0.0198IM_BE(t)+0.0198IM_BG(t)+0.0298IM_HR(t)+
0.0149IM_CY(t)+0.0595IM_CZ(t)+0.0198IM_DK(t)+0.0149IM_EE(t)+0.0119IM_FI(t)+
0.0198IM_FR(t)+0.0298IM_DE(t)+0.0198IM_EL(t)+0.0595IM_HU(t)+0.0119IM_IE(t)+
0.0298IM_IT(t)+0.0198IM_LV(t)+0.0298IM_LT(t)+0.0198IM_LU(t)+0.0198IM_MT(t)+
0.0198IM_NL(t)+0.0595IM_PL(t)+0.0119IM_PT(t)+0.0298IM_RO(t)+0.0298IM_SI(t)+
0.0149IM_ES(t)+0.0149IM_SE(t)+0.0149IM_UK(t)-54467.4082

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 22) indicates that there are no large differences between real and predicted imports.

In general, real imports are under to those provided by regression analysis, which shows an insufficient correlation of imports with distances.

The average distance between real data and those from the regression is small: 1.42%.

Table 22. The correlation between the coefficients of regression and the real imports of EU-countries in Slovakia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

5.95%

2.60%

Italy

2.98%

0.82%

Belgium+Luxembourg

3.96%

0.30%

Latvia

1.98%

1.10%

Bulgaria

1.98%

1.30%

Lithuania

2.98%

0.51%

Croatia

2.98%

1.60%

Malta

1.98%

0.23%

Czech Republic

5.95%

6.10%

Netherlands

1.98%

0.34%

Denmark

1.98%

0.82%

Poland

5.95%

2.40%

Estonia

1.49%

0.46%

Portugal

1.19%

0.28%

Finland

1.19%

0.39%

Romania

2.98%

2.40%

France

1.98%

0.62%

Slovakia

-

-

Germany

2.98%

1.40%

Slovenia

2.98%

1.50%

Greece

1.98%

0.28%

Spain

1.49%

0.52%

Hungary

5.95%

4.90%

Sweden

1.49%

0.71%

Ireland

1.19%

0.17%

United Kingdom

1.49%

0.60%



Figure 22

In the case of Slovenia, from Appendix A.27 we can see that is a strong link between the two groups of indicators (R2=0.9414), having:

EX_SI(t)=0.0184IM_AT(t)+0.0061IM_BE(t)+0.0061IM_BG(t)+0.0184IM_HR(t)+0.0061IM_CY(t)+0.0092IM_CZ(t)+0.0061IM_DK(t)+0.0031IM_EE(t)+0.0037IM_FI(t)+0.0092IM_FR(t)+
0.0092IM_DE(t)+0.0092IM_EL(t)+0.0184IM_HU(t)+0.0046IM_IE(t)+0.0184IM_IT(t)+
0.0037IM_LV(t)+0.0046IM_LT(t)+0.0061IM_LU(t)+0.0092IM_MT(t)+0.0061IM_NL(t)+
0.0061IM_PL(t)+0.0046IM_PT(t)+0.0092IM_RO(t)+0.0092IM_SK(t)+0.0061IM_ES(t)+
0.0046IM_SE(t)+0.0061IM_UK(t)-13714.9968

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 23) indicates that there are no large differences (real vs. predicted imports) except Croatia (which were a part from the former Yugoslavia) with 10% vs. 1.84% from where one can see that in general, real imports are close to those provided by regression analysis, which shows a trade policy based almost entirely on spatial proximity.

The average distance between real data and those from the regression is: 0.74 %.

Table 23. The correlation between the coefficients of regression and the real imports of EU-countries in Slovenia (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

1.84%

1.30%

Italy

1.84%

0.70%

Belgium+Luxembourg

1.22%

0.07%

Latvia

0.37%

0.30%

Bulgaria

0.61%

0.64%

Lithuania

0.46%

0.30%

Croatia

1.84%

10.00%

Malta

0.92%

0.08%

Czech Republic

0.92%

0.50%

Netherlands

0.61%

0.09%

Denmark

0.61%

0.31%

Poland

0.61%

0.39%

Estonia

0.31%

0.20%

Portugal

0.46%

0.09%

Finland

0.37%

0.13%

Romania

0.92%

0.62%

France

0.92%

0.24%

Slovakia

0.92%

0.60%

Germany

0.92%

0.51%

Slovenia

-

-

Greece

0.92%

0.17%

Spain

0.61%

0.11%

Hungary

1.84%

1.10%

Sweden

0.46%

0.18%

Ireland

0.46%

0.04%

United Kingdom

0.61%

0.09%



Figure 23. The relationship between imports based on distances and the real imports in 2013 in Slovenia (in percent)

In the case of Spain, from Appendix A.28 we can see that is a weak link between the two groups of indicators (R2=0.8985). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.04 which indicates a strong evidence against the null hypothesis. Therefore, we have:

EX_ES(t)=0.0476IM_AT(t)+0.0713IM_BE(t)+0.0357IM_BG(t)+0.0357IM_HR(t)+0.0357IM_CY(t)+0.0476IM_CZ(t)+0.0476IM_DK(t)+0.0239IM_EE(t)+0.0286IM_FI(t)+0.1428IM_FR(t)+
0.0713IM_DE(t)+0.0476IM_EL(t)+0.0357IM_HU(t)+0.0476IM_IE(t)+0.0713IM_IT(t)+
0.0286IM_LV(t)+0.0357IM_LT(t)+0.0713IM_LU(t)+0.0476IM_MT(t)+0.0476IM_NL(t)+
0.0476IM_PL(t)+0.1428IM_PT(t)+0.0286IM_RO(t)+0.0357IM_SK(t)+0.0476IM_SI(t)+
0.0357IM_SE(t)+0.0713IM_UK(t)-71457.9694

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 24) indicates that there are no large differences between real and predicted imports except Belgium+Luxembourg (2% vs. 14.26%), France (6.50% vs. 14.28%), Germany (2.60% vs. 7.13%) and the traditional partner Portugal (27% vs. 14.28%) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

In general, real imports are under to those provided by regression analysis, which shows an insufficient trade policy on dependence from proximity.

The average distance between real data and those from the regression is small: 3.32%.

Table 24. The correlation between the coefficients of regression and the real imports of EU-countries in Spain (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

4.76%

1.60%

Italy

7.13%

4.40%

Belgium+Luxembourg

14.26%

2.00%

Latvia

2.86%

1.20%

Bulgaria

3.57%

5.10%

Lithuania

3.57%

1.70%

Croatia

3.57%

1.50%

Malta

4.76%

2.10%

Czech Republic

4.76%

1.70%

Netherlands

4.76%

1.60%

Denmark

4.76%

1.50%

Poland

4.76%

2.20%

Estonia

2.39%

0.85%

Portugal

14.28%

27.00%

Finland

2.86%

1.30%

Romania

2.86%

2.40%

France

14.28%

6.50%

Slovakia

3.57%

1.10%

Germany

7.13%

2.60%

Slovenia

4.76%

2.00%

Greece

4.76%

3.10%

Spain

-

-

Hungary

3.57%

1.80%

Sweden

3.57%

1.40%

Ireland

4.76%

1.60%

United Kingdom

7.13%

3.30%



Figure 24. The relationship between imports based on distances and the real imports in 2013 in Spain (in percent)

In the case of Sweden, from Appendix A.29 we can see that is a weak link between the two groups of indicators (R2=0.8346). On the other hand, P-Values Analysis reveals for both coefficients of the regression values under 0.03 which indicates a strong evidence against the null hypothesis. Therefore, we have:

EX_SE(t)=0.0206IM_AT(t)+0.0206IM_BE(t)+0.0104IM_BG(t)+0.0124IM_HR(t)+0.0104IM_CY(t)+0.0206IM_CZ(t)+0.0619IM_DK(t)+0.031IM_EE(t)+0.0619IM_FI(t)+0.0206IM_FR(t)+
0.031IM_DE(t)+0.0124IM_EL(t)+0.0155IM_HU(t)+0.0124IM_IE(t)+0.0155IM_IT(t)+
0.0206IM_LV(t)+0.0155IM_LT(t)+0.0206IM_LU(t)+0.0124IM_MT(t)+0.0206IM_NL(t)+
0.0206IM_PL(t)+0.0124IM_PT(t)+0.0124IM_RO(t)+0.0155IM_SK(t)+0.0155IM_SI(t)+
0.0155IM_ES(t)+0.0155IM_UK(t)+32860.698

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 25) indicates that there are no large differences between real and predicted imports except Denmark (12% vs. 6.19%), Estonia (6.60% vs. 3.10%), Finland (11% vs. 6.19%) which is absolutely normal as a consequence of commercial traditions that have bound these countries.

In general, real imports are close to those provided by regression analysis, which shows a trade policy dependent from proximity.

The average distance between real data and those from the regression is small: 1.25%.

Table 25. The correlation between the coefficients of regression and the real imports of EU-countries in Sweden (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

2.06%

0.97%

Italy

1.55%

0.87%

Belgium+Luxembourg

4.12%

2.00%

Latvia

2.06%

3.20%

Bulgaria

1.04%

0.61%

Lithuania

1.55%

3.20%

Croatia

1.24%

0.72%

Malta

1.24%

2.20%

Czech Republic

2.06%

0.96%

Netherlands

2.06%

1.60%

Denmark

6.19%

12.00%

Poland

2.06%

1.90%

Estonia

3.10%

6.60%

Portugal

1.24%

0.75%

Finland

6.19%

11.00%

Romania

1.24%

0.55%

France

2.06%

1.20%

Slovakia

1.55%

0.44%

Germany

3.10%

1.50%

Slovenia

1.55%

0.64%

Greece

1.24%

0.64%

Spain

1.55%

0.95%

Hungary

1.55%

0.97%

Sweden

-

-

Ireland

1.24%

0.95%

United Kingdom

1.55%

1.80%



Figure 25. The relationship between imports based on distances and the real imports in 2013 in Sweden (in percent)

In the case of United Kingdom, from Appendix A.30 we can see that is a weak link between the two groups of indicators (R2=0.4903). On the other hand, P-Values Analysis reveals for Intercept coefficient of the regression a high value – 0.6832 which indicates a less evidence against the null hypothesis. However, we have:

EX_UK(t)=0.0623IM_AT(t)+0.1869IM_BE(t)+0.0468IM_BG(t)+0.0468IM_HR(t)+
0.0468IM_CY(t)+0.0623IM_CZ(t)+0.0623IM_DK(t)+0.0311IM_EE(t)+0.0374IM_FI(t)+
0.1869IM_FR(t)+0.0934IM_DE(t)+0.0623IM_EL(t)+0.0468IM_HU(t)+0.1869IM_IE(t)+
0.0934IM_IT(t)+0.0374IM_LV(t)+0.0468IM_LT(t)+0.0934IM_LU(t)+0.0623IM_MT(t)+
0.1869IM_NL(t)+0.0623IM_PL(t)+0.0623IM_PT(t)+0.0374IM_RO(t)+0.0468IM_SK(t)+
0.0623IM_SI(t)+0.0934IM_ES(t)+0.0468IM_SE(t)-56019.0344

A comparison of regression coefficients and percentages imports from studied countries (Source: http://atlas.media.mit.edu/en/profile/country - column Real in Table 26) indicates that there are no large differences between real and predicted imports except Belgium+Luxembourg (5.30% vs. 28.03%), France (4.40% vs. 18.69%), Ireland (34% vs. 18.69%) and Netherlands (6.60% vs. 18.69%).

In general, real imports are under those provided by regression analysis, which shows a trade policy dependents weak from proximity.

The average distance between real data and those from the regression is very high: 5.01%.

Table 26. The correlation between the coefficients of regression and the real imports of EU-countries in United Kingdom (in percent) in 2013

Country

Regression

Real

Country

Regression

Real

Austria

6.23%

1.50%

Italy

9.34%

2.70%

Belgium+Luxembourg

28.03%

5.30%

Latvia

3.74%

2.30%

Bulgaria

4.68%

1.50%

Lithuania

4.68%

2.30%

Croatia

4.68%

0.95%

Malta

6.23%

4.10%

Czech Republic

6.23%

1.90%

Netherlands

18.69%

6.60%

Denmark

6.23%

5.20%

Poland

6.23%

2.60%

Estonia

3.11%

3.60%

Portugal

6.23%

2.90%

Finland

3.74%

3.10%

Romania

3.74%

2.30%

France

18.69%

4.40%

Slovakia

4.68%

1.10%

Germany

9.34%

4.10%

Slovenia

6.23%

1.40%

Greece

6.23%

2.50%

Spain

9.34%

4.00%

Hungary

4.68%

1.80%

Sweden

4.68%

5.90%

Ireland

18.69%

34.00%

United Kingdom

-

-





Figure 26. The relationship between imports based on distances and the real imports in 2013 in United Kingdom (in percent)

3. Conclusions

The above analysis reveals a number of interesting issues. Overall, exports of countries that have recently joined the European Union depend heavy on distances which shows still searches and settlements of trade policies.

On the other hand, the highly developed countries of the European Union have long commercial tradition which explains, in most cases, major differences compared to the theoretical results.

Another factor, again demonstrated numerically, is still the tight dependencies between countries that belonged to the now dismantled some states (such as the former Yugoslavia or Czechoslovakia).



4. References

Ioan C.A. & Ioan G. (2016). The relationship between spatial interdependencies in the European Union and the Trade – I. Acta Universitatis Danubius. Œconomica, Vol 12, no 6.

Ioan, C.A. & Ioan, G. (2016). The determination of spatial interdependencies in the European Union. Acta Universitatis Danubius. Œconomica, Vol 12, No 4.

Ioan, C.A. & Ioan, G. (2012). Methods of mathematical modeling in economics. Galati: Zigotto Publisher.

Ioan, C.A. (2001). Determining the minimum effective way with Bellman-Kalaba algorithm. The Annals of Danubius University, Fascicle I, Economics.

Montalbano, P. (2009). Trade Openness and Vulnerability in Central and Eastern Europe, World Institute for Development Economics Research.



Appendix A.1

Table A.1. The imports of European Union countries (million of Euro) during 2004-2009

Country/

Year

2004

2005

2006

2007

2008

2009

Austria

96256

102283

109280

118962

125301

102569

Belgium

229574

256153

280053

300298

317043

254367

Bulgaria

11577

12473

15424

21862

25094

16876

Croatia

13241

14900

17105

18833

20817

15218

Cyprus

4420

5073

5518

6286

7237

5617

Czech Republic

56216

61483

74220

86224

96572

75314

Denmark

54787

60749

68100

71526

74356

59602

Estonia

6702

8229

10711

11439

10896

7270

Finland

41353

47234

55253

59616

62402

43655

France

378506

405164

431602

460315

487350

404098

Germany

575090

624465

722112

769779

805730

664143

Greece

44998

46382

52847

60130

64857

52087

Hungary

48580

53446

62331

69730

74069

55750

Ireland

49692

55112

58233

61162

57088

44955

Italy

285064

309032

352465

373340

382050

297609

Latvia

5701

6990

9191

11180

10975

7034

Lithuania

9957

12494

15429

17813

21144

13123

Luxembourg

16115

18170

21611

20452

21864

18160

Malta

2926

2988

3430

3503

3604

3210

Netherlands

256944

292415

331979

359443

394980

317718

Poland

72087

81697

101138

120912

141966

107155

Portugal

44173

51372

56295

59927

64194

51379

Romania

26235

32538

40746

51305

57148

38948

Slovak Republic

23988

27837

35828

44229

50253

39898

Slovenia

14159

16273

19227

23038

25180

19053

Spain

207656

232109

261784

284058

286105

210222

Sweden

80723

89781

101583

111803

114565

85945

United Kingdom

378293

417359

487951

465715

447228

372581

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002























Table A.2. The imports of European Union countries (million of Euro) during 2010-2015

Country/

Year

2010

2011

2012

2013

2014

2015

Austria

119943

137513

138942

138000

137001

140132

Belgium

295072

335447

341787

340093

342215

338750

Bulgaria

19245

23407

25460

25829

26118

26408

Croatia

15137

16281

16214

16581

17154

18558

Cyprus

6464

6234

5678

4754

5089

5016

Czech Republic

95536

109285

110066

108621

116203

126805

Denmark

62648

68724

71548

72728

74783

76957

Estonia

9268

12543

14077

13899

13775

13074

Finland

51899

60535

59517

58407

57769

54251

France

460941

517262

524918

513114

509299

515938

Germany

795666

901487

898857

889416

908575

946454

Greece

50741

48474

49291

46808

48004

43639

Hungary

66514

73592

74078

75379

78978

83487

Ireland

45467

47849

48855

54314

60721

66530

Italy

367390

401428

380292

361002

356939

368715

Latvia

8819

11703

13409

13451

13285

12900

Lithuania

17653

22826

24879

26208

25889

25397

Luxembourg

18713

20733

21437

20266

20099

20878

Malta

3818

4520

5135

4625

5132

5220

Netherlands

386834

426987

456824

444015

443689

456370

Poland

134306

151291

154934

156319

168366

174990

Portugal

58647

59551

56374

57013

58976

60162

Romania

46850

54943

54644

55328

58555

62976

Slovak Republic

49050

57358

60241

61543

61689

66289

Slovenia

22720

25525

24934

25129

25551

26789

Spain

246674

270550

262561

256455

270173

281298

Sweden

112352

127174

127985

120931

122132

124467

United Kingdom

445291

487905

541112

496977

519733

564190

Source: http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tet00002



Appendix A.2

Table A.3. The exports of European Union countries (million of Euro) as functions of the imports of the others during 2004-2006

Country

2004 real

2004 computed

2005 real

2005 computed

2006 real

2006 computed

Austria

96256.00

134274.34

102283.00

145144.30

109280.00

163308.32

Belgium

229574.00

168280.37

256153.00

181965.09

280053.00

203640.76

Bulgaria

11577.00

97539.61

12473.00

105496.59

15424.00

117953.41

Croatia

13241.00

104536.66

14900.00

113249.71

17105.00

127103.55

Cyprus

4420.00

109430.71

5073.00

118065.42

5518.00

131799.06

Czech Republic

56216.00

142231.31

61483.00

153721.18

74220.00

172523.57

Denmark

54787.00

159185.12

60749.00

171662.41

68100.00

192578.86

Estonia

6702.00

94182.42

8229.00

102068.89

10711.00

114758.79

Finland

41353.00

107039.52

47234.00

115847.36

55253.00

129609.59

France

378506.00

149152.16

405164.00

161945.60

431602.00

181850.19

Germany

575090.00

110371.47

624465.00

120132.94

722112.00

133499.08

Greece

44998.00

114109.28

46382.00

122738.43

52847.00

136750.83

Hungary

48580.00

99897.71

53446.00

108217.10

62331.00

121529.75

Ireland

49692.00

158847.80

55112.00

172900.92

58233.00

193624.52

Italy

285064.00

109119.50

309032.00

117461.56

352465.00

130580.83

Latvia

5701.00

99156.86

6990.00

107724.98

9191.00

121202.89

Lithuania

9957.00

114355.48

12494.00

124279.42

15429.00

140010.25

Luxembourg

16115.00

179623.09

18170.00

193138.27

21611.00

214993.46

Malta

2926.00

133613.97

2988.00

143637.64

3430.00

159947.50

Netherlands

256944.00

166365.41

292415.00

179651.26

331979.00

200940.53

Poland

72087.00

137614.28

81697.00

148635.53

101138.00

166851.64

Portugal

44173.00

142468.25

51372.00

153135.77

56295.00

170200.75

Romania

26235.00

93921.66

32538.00

101949.70

40746.00

114738.17

Slovak Republic

23988.00

108144.62

27837.00

117494.07

35828.00

132253.33

Slovenia

14159.00

121353.61

16273.00

130722.12

19227.00

146080.18

Spain

207656.00

145190.29

232109.00

155900.29

261784.00

173067.89

Sweden

80723.00

121133.34

89781.00

131094.94

101583.00

146826.96

United Kingdom

378293.00

155518.68

417359.00

167345.76

487951.00

184624.67

Table A.4. The exports of European Union countries (million of Euro) as functions of the imports of the others during 2007-2009

Country

2007 real

2007 computed

2008 real

2008 computed

2009 real

2009 computed

Austria

118962.00

176907.67

125301.00

182930.94

102569.00

149219.17

Belgium

300298.00

215163.02

317043.00

222080.13

254367.00

181641.42

Bulgaria

21862.00

126567.68

25094.00

131005.61

16876.00

107036.55

Croatia

18833.00

137148.87

20817.00

142058.14

15218.00

115848.48

Cyprus

6286.00

141032.66

7237.00

145597.14

5617.00

118779.95

Czech Republic

86224.00

186189.03

96572.00

192543.30

75314.00

157406.40

Denmark

71526.00

207068.28

74356.00

213454.28

59602.00

173774.68

Estonia

11439.00

123046.13

10896.00

127368.57

7270.00

102815.36

Finland

59616.00

138432.60

62402.00

143034.45

43655.00

116305.01

France

460315.00

193481.21

487350.00

198730.65

404098.00

162209.70

Germany

769779.00

142111.11

805730.00

148378.11

664143.00

121704.74

Greece

60130.00

146487.20

64857.00

150842.99

52087.00

122742.87

Hungary

69730.00

131484.30

74069.00

136498.92

55750.00

111404.33

Ireland

61162.00

201134.69

57088.00

207046.45

44955.00

168527.84

Italy

373340.00

138628.06

382050.00

143280.52

297609.00

117638.95

Latvia

11180.00

130242.39

10975.00

135292.63

7034.00

110066.30

Lithuania

17813.00

151113.59

21144.00

157097.81

13123.00

128578.65

Luxembourg

20452.00

229857.47

21864.00

236687.49

18160.00

193862.77

Malta

3503.00

171267.85

3604.00

176259.09

3210.00

143440.19

Netherlands

359443.00

211995.73

394980.00

216980.09

317718.00

177363.49

Poland

120912.00

179959.47

141966.00

186118.49

107155.00

152032.23

Portugal

59927.00

181101.41

64194.00

186714.92

51379.00

153424.26

Romania

51305.00

124088.28

57148.00

128751.78

38948.00

104921.34

Slovak Republic

44229.00

143385.23

50253.00

149224.56

39898.00

121732.08

Slovenia

23038.00

157337.52

25180.00

162381.38

19053.00

132118.07

Spain

284058.00

183146.81

286105.00

188383.85

210222.00

154049.35

Sweden

111803.00

157248.38

114565.00

162512.64

85945.00

132519.16

United Kingdom

465715.00

198856.54

447228.00

205855.63

372581.00

170066.39

Table A.5. The exports of European Union countries (million of Euro) as functions of the imports of the others during 2010-2012

Country

2010 real

2010 computed

2011 real

2011 computed

2012 real

2012 computed

Austria

119943.00

176301.76

137513.00

197272.02

138942.00

203979.11

Belgium

295072.00

214825.56

335447.00

239858.73

341787.00

248155.45

Bulgaria

19245.00

126358.33

23407.00

141589.04

25460.00

146278.39

Croatia

15137.00

136908.53

16281.00

153319.18

16214.00

158237.62

Cyprus

6464.00

139953.11

6234.00

156656.90

5678.00

162000.26

Czech Republic

95536.00

185918.34

109285.00

207610.16

110066.00

214684.39

Denmark

62648.00

206074.27

68724.00

230148.30

71548.00

237437.56

Estonia

9268.00

121928.77

12543.00

136457.66

14077.00

140887.27

Finland

51899.00

138251.06

60535.00

154936.31

59517.00

159716.34

France

460941.00

191839.00

517262.00

215338.68

524918.00

222024.95

Germany

795666.00

143395.27

901487.00

159964.35

898857.00

165724.24

Greece

50741.00

144347.37

48474.00

161491.27

49291.00

166685.95

Hungary

66514.00

131824.11

73592.00

147788.28

74078.00

152822.99

Ireland

45467.00

200087.12

47849.00

224617.18

48855.00

231677.47

Italy

367390.00

138454.59

401428.00

154553.68

380292.00

159445.94

Latvia

8819.00

130629.93

11703.00

146544.07

13409.00

151627.72

Lithuania

17653.00

152392.09

22826.00

170611.14

24879.00

176657.57

Luxembourg

18713.00

228154.77

20733.00

254390.36

21437.00

262500.10

Malta

3818.00

168470.98

4520.00

188193.60

5135.00

194442.21

Netherlands

386834.00

209184.44

426987.00

234304.69

456824.00

240551.39

Poland

134306.00

179769.32

151291.00

201255.02

154934.00

208042.68

Portugal

58647.00

180518.30

59551.00

202036.13

56374.00

208762.94

Romania

46850.00

124211.70

54943.00

139186.32

54644.00

143787.68

Slovak Republic

49050.00

144352.39

57358.00

161699.97

60241.00

167065.44

Slovenia

22720.00

155682.97

25525.00

173990.57

24934.00

179642.25

Spain

246674.00

180736.99

270550.00

201207.35

262561.00

207614.22

Sweden

112352.00

155738.58

127174.00

173854.84

127985.00

179526.99

United Kingdom

445291.00

198967.23

487905.00

220410.04

541112.00

228362.66

Table A.6. The exports of European Union countries (million of Euro) as functions of the imports of the others during 2013-2015

Country

2013 real

2013 computed

2014 real

2014 computed

2015 real

2015 computed

Austria

138000.00

205349.42

137001.00

209683.58

140132.00

220485.61

Belgium

340093.00

250989.30

342215.00

253562.71

338750.00

267145.90

Bulgaria

25829.00

148260.27

26118.00

150511.44

26408.00

157623.03

Croatia

16581.00

160060.43

17154.00

162783.82

18558.00

170843.60

Cyprus

4754.00

163881.80

5089.00

166062.30

5016.00

173848.59

Czech Republic

108621.00

216712.55

116203.00

220918.33

126805.00

232016.96

Denmark

72728.00

238504.13

74783.00

242830.66

76957.00

255029.18

Estonia

13899.00

141942.38

13775.00

143994.51

13074.00

150277.17

Finland

58407.00

160315.50

57769.00

162367.68

54251.00

169876.07

France

513114.00

225875.98

509299.00

228879.24

515938.00

240843.43

Germany

889416.00

167794.77

908575.00

169350.65

946454.00

175974.53

Greece

46808.00

168576.34

48004.00

170970.21

43639.00

179240.17

Hungary

75379.00

154661.07

78978.00

157694.35

83487.00

165352.31

Ireland

54314.00

237148.90

60721.00

236969.08

66530.00

248703.99

Italy

361002.00

161359.26

356939.00

163139.61

368715.00

171269.81

Latvia

13451.00

153254.29

13285.00

155837.21

12900.00

163126.93

Lithuania

26208.00

178774.20

25889.00

182519.48

25397.00

191946.03

Luxembourg

20266.00

264745.82

20099.00

268802.53

20878.00

282040.33

Malta

4625.00

196446.34

5132.00

199219.80

5220.00

208695.82

Netherlands

444015.00

244839.33

443689.00

247761.74

456370.00

262001.60

Poland

156319.00

209263.92

168366.00

213198.20

174990.00

223979.93

Portugal

57013.00

211739.86

58976.00

214414.45

60162.00

225020.11

Romania

55328.00

145250.28

58555.00

147743.20

62976.00

155037.36

Slovak Republic

61543.00

169041.84

61689.00

172986.95

66289.00

181873.40

Slovenia

25129.00

181301.13

25551.00

184356.69

26789.00

193306.57

Spain

256455.00

209570.21

270173.00

211744.11

281298.00

222302.06

Sweden

120931.00

181227.64

122132.00

184243.03

124467.00

192927.63

United Kingdom

496977.00

228483.51

519733.00

232194.00

414761.00

242093.07



Appendix A.3.

Table A.7. The regression analysis of the real exports of Austria in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.984200185






R Square

0.968650004






Adjusted R Square

0.965515005






Standard Error

2760.52265






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2354572289

2354572289

308.97931

7.55161E-09


Residual

10

76204852.99

7620485.299




Total

11

2430777142

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

15293.75398

5920.421406

2.583220506

0.02726525

2102.233023

28485.27493

X Variable 1

0.595316325

0.033867496

17.57780731

7.55161E-09

0.519854841

0.67077781

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.844346728

Observation

Predicted Y

Residuals





1

91510.88273

3192.11727





2

98977.3758

1490.624197





3

111003.9562

-2090.95621





4

118095.5726

1291.42736





5

123320.7414

-61.74142028





6

101644.9109

-3430.910866





7

118411.0903

-3332.090293





8

130612.8128

-3150.812763





9

131548.013

-1869.013038





10

129098.328

2786.671969





11

131197.9968

2975.003195





12

135555.3194

2199.680601







Table A.8. The regression analysis of the real exports of Austria, after eliminating the autoregression, in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.978625399






R Square

0.957707671






Adjusted R Square

0.953008524






Standard Error

2127.036434






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

922069663.7

922069663.7

203.8045502

1.73225E-07


Residual

9

40718555.92

4524283.991




Total

10

962788219.6

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 43.0%

Upper 43.0%

Intercept

2372.020002

4015.793257

0.590672838

0.569273351

4.545994527

4739.494009

X Variable 1

0.648743087

0.045442876

14.27601311

1.73225E-07

0.621952657

0.675533517

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.938372124

Observation

Predicted Y

Residuals





1

49704.51802

752.2052848





2

58513.61911

-2656.308447





3

59320.63454

2550.994473





4

60933.66368

-721.2017006





5

34305.55949

-1182.844392





6

65050.3984

-1836.783122





7

68698.58951

-2008.135405





8

62695.8897

-327.7177623





9

59488.16959

3915.236895





10

63186.01471

1340.435269





11

66726.07155

174.1189065







Appendix A.4

Table A.9. The regression analysis of the real exports of Belgium in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.992286064






R Square

0.984631633






Adjusted R Square

0.983094797






Standard Error

5058.483974






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

16394071764

16394071764

640.6872407

2.12343E-10


Residual

10

255882601.1

25588260.11




Total

11

16649954365

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

33128.77583

11208.48087

2.955688305

0.014393895

8154.724131

58102.82753

X Variable 1

1.276977324

0.050449881

25.31180042

2.12343E-10

1.164567984

1.389386665

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.943349066

Observation

Predicted Y

Residuals





1

244779.9778

1783.022219





2

265403.7234

3331.276561





3

297263.5032

-5176.503186





4

311847.8867

2601.113253





5

323543.1985

-2738.1985





6

267891.122

-1905.12203





7

311958.6645

-4428.66453





8

344073.2523

-2355.252332





9

352120.0483

-5031.048322





10

343071.9872

9884.012819





11

349004.2492

6523.750809





12

362053.3868

-2488.386763







Appendix A.5

Table A.10. The regression analysis of the real exports of Luxembourg in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.042767701






R Square

0.001829076






Adjusted R Square

-0.097988016






Standard Error

1594.80033






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

46605.75198

46605.75198

0.018324279

0.895007617


Residual

10

25433880.91

2543388.091




Total

11

25480486.67

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 10.0%

Upper 10.0%

Intercept

14857.87413

3557.059584

4.17701019

0.001896703

14399.40405

15316.34421

X Variable 1

0.002081943

0.015379968

0.135367199

0.895007617

9.96162E-05

0.00406427

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.994809279

Observation

Predicted Y

Residuals





1

15217.33961

-2157.339608





2

15251.88702

114.1129808





3

15302.75447

3034.245529





4

15332.15996

1401.840039





5

15354.46351

2115.536494





6

15258.07093

40.92906829





7

15331.58838

-1151.588384





8

15388.56286

-398.5628621





9

15396.57736

-737.5773648





10

15385.16871

-1497.168712





11

15394.02311

-909.023112





12

15411.40407

144.5959312







Appendix A.6

Table A.11. The regression analysis of the real exports of Bulgaria in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.934324544






R Square

0.872962353






Adjusted R Square

0.860258588






Standard Error

2038.736668






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

285617846.6

285617846.6

68.71682298

8.61242E-06


Residual

10

41564472.02

4156447.202




Total

11

327182318.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-22905.41873

4741.031555

-4.831315393

0.000690417

-33469.09534

-12341.74213

X Variable 1

0.28806911

0.034750828

8.289561085

8.61242E-06

0.21063944

0.365498779

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.063343154

Observation

Predicted Y

Residuals





1

6498.653724

1209.346276





2

9394.140049

-238.140049





3

13830.2603

-2082.260301





4

16599.32462

-3087.324617





5

18500.83712

-3296.837121





6

9945.680047

1753.319953





7

15854.86186

-293.8618557





8

20150.17393

114.8260726





9

20618.65496

151.3450411





10

19549.62761

2722.372387





11

20349.97866

1694.021338





12

21807.80712

1353.192876







Appendix A.7

Table A.12. The regression analysis of the real exports of Croatia in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.957581743






R Square

0.916962794






Adjusted R Square

0.908659073






Standard Error

457.168052






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

23079730.39

23079730.39

110.4279436

1.00707E-06


Residual

10

2090026.278

209002.6278




Total

11

25169756.67

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 83.0%

Upper 83.0%

Intercept

-1510.528066

1003.236114

-1.505655593

0.163071256

-2994.070175

-26.98595746

X Variable 1

0.074253652

0.007066076

10.50847009

1.00707E-06

0.063804644

0.084702659

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.753454488

Observation

Predicted Y

Residuals





1

6271.894702

-53.8947018





2

7041.598403

-81.59840267





3

8226.946572

25.05342792





4

8968.097516

35.90248375





5

9486.472654

98.5273455





6

7228.540881

287.4591187





7

8887.397162

17.60283752





8

10104.72861

-522.7286073





9

10241.20533

-612.2053341





10

9989.647328

-458.6473277





11

10203.69313

227.3068682





12

10633.77771

1037.222292









Appendix A.8

Table A.13. The regression analysis of the real exports of Cyprus in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.815806766






R Square

0.665540679






Adjusted R Square

0.632094747






Standard Error

156.2327471






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

485708.2041

485708.2041

19.89900224

0.001214567


Residual

10

244086.7126

24408.67126




Total

11

729794.9167

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 75.0%

Upper 75.0%

Intercept

-457.8203583

372.0109404

-1.230663694

0.246610338

-912.1407263

-3.499990333

X Variable 1

0.011023035

0.002471073

4.460829771

0.001214567

0.008005224

0.014040846

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.50747398

Observation

Predicted Y

Residuals





1

795.5241686

-37.52416862





2

914.4836585

260.5163415





3

1098.645612

-36.64561219





4

1209.664549

-192.6645487





5

1285.681602

-175.6816017





6

931.3619091

-30.36190905





7

1179.16789

-121.1678898





8

1359.332119

-53.33211938





9

1381.223977

-27.22397684





10

1333.349063

186.6509375





11

1363.403367

0.596632929





12

1421.162086

226.8379144







Appendix A.9

Table A.14. The regression analysis of the real exports of Czech Republic in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.964782205






R Square

0.930804703






Adjusted R Square

0.923885173






Standard Error

7705.506309






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

7987012248

7987012248

134.5184919

4.02159E-07


Residual

10

593748274.7

59374827.47




Total

11

8580760523

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-86039.09442

16195.15678

-5.312643502

0.000341316

-122124.1525

-49954.03639

X Variable 1

1.017423963

0.087722493

11.59821072

4.02159E-07

0.821966067

1.212881858

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.160581481

Observation

Predicted Y

Residuals





1

51129.85161

4156.148393





2

64558.29126

-1836.291255





3

85520.93848

-9916.938483





4

98173.96881

-8791.968806





5

107951.7895

-8142.789534





6

69670.47022

11312.52978





7

99255.71431

1055.285688





8

121846.1381

-4792.138137





9

124709.0267

-2479.026729





10

120873.2061

1311.793875





11

124609.0241

7189.975872





12

131888.5807

10933.41934























Appendix A.10

Table A.15. The regression analysis of the real exports of Denmark in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.978848543






R Square

0.95814447






Adjusted R Square

0.953958917






Standard Error

1605.052516






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

589734647.9

589734647.9

228.9170553

3.21796E-08


Residual

10

25761935.78

2576193.578




Total

11

615496583.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

25237.4467

3395.827651

7.431898582

2.23119E-05

17671.07118

32803.82222

X Variable 1

0.253974849

0.016786171

15.13000513

3.21796E-08

0.21657293

0.291376768

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.268507634

Observation

Predicted Y

Residuals





1

62897.55096

-980.5509556





2

66594.49267

1808.507333





3

72314.00118

1401.998817





4

75635.30139

-355.3013944





5

78120.53672

1375.463279





6

67681.0885

-299.0885012





7

75957.89263

-3210.892628





8

82184.10891

-1822.108905





9

82969.41692

-879.4169159





10

81743.71906

1161.280943





11

82773.50326

694.4967427





12

84758.38781

1105.612186









Appendix A.11

Table A.16. The regression analysis of the real exports of Estonia in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.950793005






R Square

0.904007338






Adjusted R Square

0.894408072






Standard Error

892.0949659






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

74947318.39

74947318.39

94.17462969

2.09137E-06


Residual

10

7958334.281

795833.4281




Total

11

82905652.67

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-9027.256286

1900.454667

-4.75005084

0.000780175

-13261.73317

-4792.779407

X Variable 1

0.14771808

0.015221824

9.704361375

2.09137E-06

0.113801743

0.181634417

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.120941197

Observation

Predicted Y

Residuals





1

4449.987397

317.0126032





2

5868.360153

332.6398473





3

7983.353648

-264.353648





4

9271.648817

-1237.648817





5

10194.74944

-1724.74944





6

6125.628915

361.3710847





7

9058.366067

-315.366067





8

11305.47566

697.5243413





9

11658.02849

862.9715083





10

11223.97516

1065.024838





11

11596.01792

486.9820811





12

12208.40833

-581.4083319











Appendix A.12

Table A.17. The regression analysis of the real exports of Finland in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.429016554






R Square

0.184055204






Adjusted R Square

0.102460724






Standard Error

5771.774637






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

75146032.35

75146032.35

2.255731085

0.16402133


Residual

10

333133824.6

33313382.46




Total

11

408279856.9

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 83.0%

Upper 83.0%

Intercept

37525.62094

12412.65385

3.023174689

0.012825741

19170.3261

55880.91577

X Variable 1

0.133454299

0.088856439

1.501909147

0.16402133

0.002057245

0.264851353

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.097430679

Observation

Predicted Y

Residuals





1

51245.22333

-1804.223329





2

52645.47388

-4.473877948





3

54723.03702

6765.962976





4

55955.06976

9732.930237





5

56797.42129

8782.578712





6

52856.43576

-7793.435765





7

55852.83977

-3413.839766





8

58088.18993

-1233.189933





9

58466.50084

-1588.500842





10

57974.09718

-1926.097184





11

58347.50899

-2374.508985





12

59043.20224

-5143.202243







Appendix A.13

Table A.18. The regression analysis of the real exports of France in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.964936764






R Square

0.931102958






Adjusted R Square

0.924213254






Standard Error

9446.546343






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

12059887379

12059887379

135.1441133

3.93514E-07


Residual

10

892372378.2

89237237.82




Total

11

12952259758

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

158856.3841

21650.23854

7.337396481

2.49002E-05

110616.6464

207096.1217

X Variable 1

1.269691052

0.109219326

11.62515003

3.93514E-07

1.026335228

1.513046875

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.893684525

Observation

Predicted Y

Residuals





1

347424.6522

15783.3478





2

366645.1084

5749.891629





3

396701.6286

-1776.628551





4

409989.5295

-1662.529465





5

418658.8276

324.1723973





6

366372.3914

-18337.39143





7

406224.1718

-11137.17177





8

434425.1147

-5924.114662





9

438872.8297

3770.170281





10

431075.0094

6363.990572





11

437427.2865

-490.2864568





12

448653.4503

7336.549656







Appendix A.14

Table A.19. The regression analysis of the real exports of Germany in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.983927434






R Square

0.968113195






Adjusted R Square

0.964924515






Standard Error

27788.39183






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2.34446E+11

2.34446E+11

303.6093474

8.22256E-09


Residual

10

7721947207

772194720.7




Total

11

2.42167E+11

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 79.0%

Upper 79.0%

Intercept

-83740.24497

61069.85943

-1.371220529

0.200290384

-165553.9051

-1926.584824

X Variable 1

6.877499574

0.394705341

17.42438944

8.22256E-09

6.348723367

7.40627578

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.978650566

Observation

Predicted Y

Residuals





1

704309.1029

26134.89705





2

785984.3622

-5995.362187





3

894079.3297

-11547.32971





4

965266.6772

-1228.677202





5

1024528.234

-41273.2341





6

799149.9596

3862.040379





7

960348.0958

-10719.09583





8

1081656.735

-22759.73451





9

1112307.962

-21777.96196





10

1084353.746

3717.254028





11

1102955.182

22078.81848





12

1138797.614

59508.38558







Appendix A.15

Table A.20. The regression analysis of the real exports of Greece in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.933612973






R Square

0.871633184






Adjusted R Square

0.858796502






Standard Error

1919.574472






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

250202081.4

250202081.4

67.90175301

9.07815E-06


Residual

10

36847661.55

3684766.155




Total

11

287049742.9

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-15317.93886

4492.726576

-3.40949724

0.006663906

-25328.3575

-5307.520225

X Variable 1

0.242635663

0.029445175

8.240251999

9.07815E-06

0.177027724

0.308243602

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.310137051

Observation

Predicted Y

Residuals





1

12577.16267

392.8373263





2

15272.0175

-446.0175008





3

19346.78016

-2073.780164





4

21733.65997

-2341.659971





5

23336.03074

-2017.030741





6

15414.54654

2259.453458





7

21310.47426

-170.4742585





8

25539.94385

-1244.943847





9

25815.50032

1769.499683





10

24703.11528

2855.884717





11

25271.63248

1949.367522





12

26726.13622

-933.1362231



















Appendix A.16



















SUMMARY OUTPUT






Regression Statistics






Multiple R

0.98771277






R Square

0.975576515






Adjusted R Square

0.973134167






Standard Error

2294.701727






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2103324067

2103324067

399.4419804

2.16076E-09


Residual

10

52656560.15

5265656.015




Total

11

2155980627

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-25082.86424

4819.717363

-5.20421891

0.000398858

-35821.86375

-14343.86473

X Variable 1

0.711653864

0.035607539

19.98604464

2.16076E-09

0.632315323

0.790992405

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.423748616

Observation

Predicted Y

Residuals





1

44997.07921

-737.0792079





2

52031.29373

-1626.293728





3

62850.31834

-2914.318342





4

69993.78596

-383.7859626





5

75225.08235

-1453.082351





6

54748.92904

4764.070963





7

69879.76478

2144.23522





8

81464.8919

-780.8918952





9

82814.03106

-2202.031057





10

80744.51315

200.486845





11

82625.25775

640.7422466





12

86586.05273

2347.947269







Appendix A.17

Table A.22. The regression analysis of the real exports of Ireland in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.626075259






R Square

0.39197023






Adjusted R Square

0.331167253






Standard Error

5777.701719






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

215198121.1

215198121.1

6.446563146

0.029413122


Residual

10

333818371.5

33381837.15




Total

11

549016492.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

56109.67246

13302.51305

4.217975373

0.001777314

26469.82629

85749.51862

X Variable 1

0.152348008

0.060002958

2.5390083

0.029413122

0.018653086

0.28604293

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.129948206

Observation

Predicted Y

Residuals





1

81644.82721

2582.172794





2

84222.7886

3914.211405





3

88087.40966

-1494.409656





4

89463.64234

-777.6423399





5

90546.82144

-5069.821442





6

83912.42828

-798.42828





7

89116.31326

-1241.313257





8

92834.84629

-2504.84629





9

94154.03379

-3266.033785





10

92789.44811

-4967.448107





11

93544.47265

-1752.472647





12

95102.96839

15376.03161









Appendix A.18

Table A.23. The regression analysis of the real exports of Italy in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.983435565






R Square

0.96714551






Adjusted R Square

0.963860061






Standard Error

8426.232211






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

20900849158

20900849158

294.3723971

9.55226E-09


Residual

10

710013892.7

71001389.27




Total

11

21610863051

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 81.0%

Upper 81.0%

Intercept

27138.52056

19200.97586

1.413392775

0.187904329

140.128922

54136.9122

X Variable 1

2.210412128

0.128832286

17.15728408

9.55226E-09

2.029261725

2.391562531

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.787575325

Observation

Predicted Y

Residuals





1

274911.0872

8582.912815





2

298296.4296

1277.570353





3

332067.1946

-54.19455608





4

352995.1334

11748.86656





5

368693.8561

322.1438575





6

302182.29

-10449.28996





7

349141.943

-11734.94302





8

387000.2241

-11096.22414





9

395133.3914

-4951.391354





10

387118.8127

3114.187252





11

393779.8455

5090.154512





12

405730.7923

8150.207676







Table A.24. The regression analysis of the real exports of Italy, after eliminating the autoregression, in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.98010413






R Square

0.960604105






Adjusted R Square

0.956226783






Standard Error

6233.650561






Observations

11






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

8527483336

8527483336

219.4501957

1.25727E-07


Residual

9

349725593.8

38858399.32




Total

10

8877208930

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 33.0%

Upper 33.0%

Intercept

-5288.769383

11689.02623

-0.452455943

0.6616493

-10437.2029

-140.335868

X Variable 1

2.452933644

0.165583788

14.81385148

1.25727E-07

2.380002237

2.52586505

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.80563333

Observation

Predicted Y

Residuals





1

141988.8689

-815.6394282





2

164964.8306

-337.2159613





3

167249.4098

11984.08543





4

171694.2154

-6476.993012





5

88151.17151

-2603.90645





6

181503.5591

-7100.827208





7

194398.2841

-7018.657784





8

179949.8177

197.8138908





9

166012.9356

6207.939071





10

178374.233

2455.145715





11

187506.245

3508.255741







Appendix A.19

Table A.25. The regression analysis of the real exports of Latvia in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.940726109






R Square

0.884965612






Adjusted R Square

0.873462174






Standard Error

1035.851684






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

82545587.55

82545587.55

76.93052745

5.21402E-06


Residual

10

10729887.12

1072988.712




Total

11

93275474.67

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-11040.27378

2144.982426

-5.147022954

0.000433316

-15819.59246

-6260.955102

X Variable 1

0.140894299

0.016063644

8.771004928

5.21402E-06

0.10510227

0.176686328

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.24547556

Observation

Predicted Y

Residuals





1

2603.935791

619.0642091





2

4025.128133

122.8718666





3

6176.02755

-1274.02755





4

7474.267073

-1412.267073





5

8473.57398

-1576.57398





6

4426.492315

1095.507685





7

7428.249586

-237.2495864





8

9725.059139

-292.0591393





9

10110.70938

872.2906207





10

9702.293438

1190.706562





11

10117.22433

839.7756683





12

10813.03928

51.9607179









Appendix A.20

Table A.26. The regression analysis of the real exports of Lithuania in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.93952497






R Square

0.882707169






Adjusted R Square

0.870977886






Standard Error

2223.788491






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

372162097.7

372162097.7

75.25670242

5.75237E-06


Residual

10

49452352.52

4945235.252




Total

11

421614450.3

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-22155.78215

4514.777815

-4.907391474

0.000616301

-32215.33401

-12096.2303

X Variable 1

0.253636416

0.029237418

8.675062099

5.75237E-06

0.188491389

0.318781443

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.087026461

Observation

Predicted Y

Residuals





1

6061.091562

1411.908438





2

8934.137772

554.862228





3

13421.83848

-2158.838477





4

16216.80018

-3707.80018





5

18391.8618

-2314.8618





6

10168.0485

1628.951501





7

16404.00161

-753.0016094





8

21113.20807

-962.2080696





9

21877.76461

1169.235391





10

21063.15546

3481.844541





11

22055.12495

2305.875055





12

23639.96702

-655.9670169







Appendix A.21

Table A.27. The regression analysis of the real exports of Malta in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.682393372






R Square

0.465660715






Adjusted R Square

0.412226786






Standard Error

336.9866634






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

989641.5534

989641.5534

8.71470108

0.014483342


Residual

10

1135600.113

113560.0113




Total

11

2125241.667

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 8.0%

Upper 8.0%

Intercept

85.07987218

810.7464575

0.104940171

0.918498325

1.57376909

168.5859753

X Variable 1

0.01340127

0.004539622

2.952067255

0.014483342

0.012933693

0.013868847

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.779671474

Observation

Predicted Y

Residuals





1

1901.964441

121.0355587





2

2074.085664

-146.0856644





3

2336.763826

-110.7638263





4

2486.06148

21.93851971





5

2587.255007

-220.2550071





6

2080.171717

-31.17171723





7

2455.466917

249.5330834





8

2720.995127

430.0048734





9

2737.699944

570.3000561





10

2664.316331

73.68366923





11

2699.957009

-493.9570087





12

2789.262537

-464.2625368















Appendix A.22

Table A.28. The regression analysis of the real exports of Netherlands in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.977219202






R Square

0.954957368






Adjusted R Square

0.950453105






Standard Error

17480.34108






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

64782846493

64782846493

212.0118921

4.65087E-08


Residual

10

3055623242

305562324.2




Total

11

67838469735

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-139596.1248

39223.56978

-3.558985721

0.005190005

-226991.6845

-52200.56505

X Variable 1

2.638938977

0.18123799

14.56062815

4.65087E-08

2.23511557

3.042762383

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.154539328

Observation

Predicted Y

Residuals





1

289181.9788

-2071.978795





2

330635.1975

-4080.197531





3

396010.0286

-26761.02864





4

423729.2589

-21828.25892





5

443094.0306

-9372.030638





6

331423.0792

25538.92085





7

418366.0113

14806.98871





8

485573.5855

-6334.585521





9

499342.2232

10755.77676





10

483035.1637

22615.83627





11

497724.237

8614.763024





12

523217.2056

-11884.20556

























Appendix A.23

Table A.29. The regression analysis of the real exports of Poland in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.944219192






R Square

0.891549882






Adjusted R Square

0.88070487






Standard Error

12865.13173






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

13606426848

13606426848

82.20829031

3.87137E-06


Residual

10

1655116144

165511614.4




Total

11

15261542992

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-122654.2762

26977.34642

-4.546565639

0.0010639

-182763.5499

-62545.00257

X Variable 1

1.386567639

0.152926677

9.066878752

3.87137E-06

1.045825769

1.72730951

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.156972511

Observation

Predicted Y

Residuals





1

56131.97369

4084.026308





2

73710.57318

-1821.57318





3

101099.0555

-12870.05552





4

116976.9189

-14717.91887





5

128984.0677

-13089.06774





6

79656.93783

18208.06217





7

118103.1307

2379.869291





8

147964.806

-12406.80602





9

152112.7647

-7830.764709





10

146964.8689

7379.1311





11

151760.5072

13954.4928





12

161940.3956

16730.60437







Appendix A.24

























SUMMARY OUTPUT






Regression Statistics






Multiple R

0.95192827






R Square

0.906167431






Adjusted R Square

0.896784175






Standard Error

2279.207787






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

501675260.3

501675260.3

96.5728047

1.86458E-06


Residual

10

51947881.38

5194788.138




Total

11

553623141.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-13663.53419

5457.792629

-2.503490901

0.031259318

-25824.25399

-1502.814385

X Variable 1

0.275240345

0.028008166

9.827146315

1.86458E-06

0.212834262

0.337646427

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.948436047

Observation

Predicted Y

Residuals





1

27082.54824

1685.45176





2

31130.30706

6.692937875





3

36961.9426

-1321.942596





4

40296.91425

-2002.914251





5

42359.62319

-3512.623193





6

30785.9924

911.0075993





7

38863.31666

-1595.316659





8

44885.31392

-2057.31392





9

45618.68631

-405.6863133





10

44126.33316

3176.666835





11

45374.60042

2730.399577





12

47472.42178

2385.578223





























Appendix A.25

Table A.31. The regression analysis of the real exports of Romania in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.922339983






R Square

0.850711045






Adjusted R Square

0.835782149






Standard Error

4959.567538






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

1401657837

1401657837

56.98419168

1.95065E-05


Residual

10

245973101.6

24597310.16




Total

11

1647630939

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-43168.1268

10710.11997

-4.030592275

0.002397225

-67031.76121

-19304.4924

X Variable 1

0.631915739

0.083710893

7.548787431

1.95065E-05

0.445396245

0.818435232

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.07763901

Observation

Predicted Y

Residuals





1

16240.62884

2512.371163





2

22017.80473

154.1952663





3

31104.08323

-5254.083225





4

37004.67858

-7461.678585





5

41259.67689

-7580.676892





6

23968.061

5116.938999





7

36418.95589

979.0441136





8

45765.43832

-481.4383219





9

47105.51043

-2086.510433





10

45354.04854

4216.951462





11

47038.91915

5454.080847





12

50178.19439

4430.805607







Appendix A.26

Table A.32. The regression analysis of the real exports of Slovakia in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.95739738






R Square

0.916609743






Adjusted R Square

0.908270718






Standard Error

4781.955359






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

2513507550

2513507550

109.9180864

1.02883E-06


Residual

10

228670970.6

22867097.06




Total

11

2742178521

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-54467.40819

9893.527489

-5.505357745

0.000259829

-76511.56117

-32423.25521

X Variable 1

0.705009601

0.06724507

10.48418268

1.02883E-06

0.555178247

0.854840954

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.524590464

Observation

Predicted Y

Residuals





1

20794.72847

1417.271531





2

28206.03615

-2623.036145





3

39883.83632

-6543.836322





4

47556.73781

-4860.73781





5

53434.1138

-5064.113797





6

31249.04088

8958.959115





7

47898.43481

878.5651865





8

60243.95663

-2894.956633





9

61649.04782

1092.952183





10

59507.25685

5058.743149





11

62084.47585

2996.524153





12

66414.33461

1583.66539







Appendix A.27

Table A.33. The regression analysis of the real exports of Slovenia in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.970259019






R Square

0.941402564






Adjusted R Square

0.935542821






Standard Error

1234.242141






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

244735803

244735803

160.6559323

1.74332E-07


Residual

10

15233536.63

1523353.663




Total

11

259969339.7

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-13714.99681

2838.919974

-4.831061436

0.00069068

-20040.5047

-7389.488916

X Variable 1

0.222485889

0.017553111

12.67501212

1.74332E-07

0.183375121

0.261596656

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.425212074

Observation

Predicted Y

Residuals





1

13269.79602

-598.7960175





2

15830.55742

-560.5574248





3

19800.5133

-1299.513303





4

22175.69033

-195.6903314





5

23837.05253

-633.0525336





6

16218.41262

2476.587375





7

21869.26052

157.7394832





8

25970.30063

-1055.300631





9

26268.51404

-1235.514042





10

25312.65904

302.3409575





11

25917.82956

1157.170441





12

27335.41397

1484.586027





























Appendix A.28

Table A.34. The regression analysis of the real exports of Spain in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.947880996






R Square

0.898478382






Adjusted R Square

0.888326221






Standard Error

12495.218






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

13817732424

13817732424

88.50118862

2.77413E-06


Residual

10

1561304728

156130472.8




Total

11

15379037153

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

-71457.96937

29009.12347

-2.463292951

0.033487171

-136094.3244

-6821.614304

X Variable 1

1.429564886

0.151960012

9.407507035

2.77413E-06

1.090976878

1.768152893

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

0.914929148

Observation

Predicted Y

Residuals





1

134763.1127

11964.88733





2

154316.8727

498.1272737





3

182478.1144

-12267.11444





4

197712.7158

-12891.71581





5

210142.7968

-18754.79678





6

156469.9547

6520.045304





7

197287.0343

-5375.034271





8

228258.0286

-8035.028581





9

233743.3405

-3941.340526





10

226138.3841

13175.61587





11

230363.3488

13923.65121





12

240258.2966

15182.70342







Appendix A.29

Table A.35. The regression analysis of the real exports of Sweden in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.913538903






R Square

0.834553328






Adjusted R Square

0.81800866






Standard Error

5565.085133






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

1562210963

1562210963

50.44243655

3.2864E-05


Residual

10

309701725.4

30970172.54




Total

11

1871912689

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 95.0%

Upper 95.0%

Intercept

32860.69799

12234.0614

2.68600074

0.02285607

5601.510457

60119.88552

X Variable 1

0.554061705

0.078011765

7.102283897

3.2864E-05

0.38024066

0.72788275

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.347442

Observation

Predicted Y

Residuals





1

97116.83515

1833.164845





2

103603.5735

1662.426487





3

113356.8048

4350.195185





4

118848.127

4330.873005





5

123058.3366

1586.663381





6

104939.1448

-11176.14479





7

118010.2638

1586.736197





8

128309.6947

6003.305326





9

129910.1185

4230.881469





10

128065.1872

-1908.187244





11

129817.1691

-5896.16914





12

132941.7447

-6603.744719









Appendix A.30

Table A.36. The regression analysis of the real exports of United Kingdom in function of imports of the other EU countries (million of Euro)

SUMMARY OUTPUT






Regression Statistics






Multiple R

0.700181537






R Square

0.490254185






Adjusted R Square

0.439279603






Standard Error

59196.87448






Observations

12






ANOVA







 

df

SS

MS

F

Significance F


Regression

1

33702738823

33702738823

9.617620595

0.011227133


Residual

10

35042699480

3504269948




Total

11

68745438303

 

 

 


 

Coefficients

Standard Error

t Stat

P-value

Lower 31.0%

Upper 31.0%

Intercept

-56019.03444

133307.3296

-0.420224714

0.683208016

-110759.7973

-1278.271604

X Variable 1

2.090141757

0.673972104

3.101228885

0.011227133

1.813384678

2.366898836

RESIDUAL OUTPUT


DURBIN-WATSON STATISTIC:

1.092209265

Observation

Predicted Y

Residuals





1

252154.4342

27111.56576





2

283068.3206

31067.67943





3

323053.3385

36063.66147





4

352378.4036

-29991.40361





5

375518.4257

-54490.42571





6

289742.4776

-35038.47763





7

351364.2877

-37598.28773





8

399117.7983

-35202.79826





9

405411.3405

-37422.3405





10

397853.2416

9206.758407





11

403252.1196

-22970.11955





12

414925.8121

149264.1879







1 PhD, Danubius University of Galati, Department of Economics, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.

2 PhD, Danubius University of Galati, Department of Economics, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, E-mail: ginaioan@univ-danubius.ro.

AUDŒ, Vol. 13, no. 1, pp. 51-144

Refbacks

  • There are currently no refbacks.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.